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Abstract: Seizures are a widespread condition affecting 50~65 million people in the world, and newborns are also
susceptible to them. EEG is used to monitor the brain activity of newborns with suspected brain injuries, followed
by a qualitative waveform interpretation by a group of clinical experts, where the means towards detection of
seizures include a set of distinct characteristics in the waveform. This means of seizure detection has been
critiqued, particularly due to subjectivity where, at times, waveform reviewing clinicians fail to reach a consensus
on the presence of seizure activity in the brain of a newborn. As a means towards dealing with this problem, the
author investigated the use of Artificial Intelligence-driven prediction machines capable of an automated diagnosis
of seizure, based on a newborn’s EEG waveform. This approach used a reduced selection of EEG electrodes, the
Linear Series Decomposition Learner (LSDL), an ensemble of a group of features, and performance comparison
across multiple classification models. Secondary work was also carried out, which leveraged the patient
information available alongside the EEG dataset. This involved the use of EEG towards predicting the level of
asphyxia within the neonatal brain. The results from the seizure prediction exercise showed an increment in
prediction performance of the seizures when preprocessed with the LSDL. The results spanned a range of figures
(depending on the classification model), with the highest accuracy of 88.1%, while a probabilistic approach
towards predicting the extent of seizures provided a maximum accuracy of 93.5%. The results from the secondary
analysis showed a maximum accuracy for asphyxia prediction of 89. 1%. The obtained results have helped to
demonstrate that a reduced selection of electrode segments, alongside the selected algorithms, can serve towards
the prediction of seizures for newborns within a neonatal intensive care unit.
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1. Introduction
Epileptic seizures are disorders of the nervous

system which manifest themselves in the form of
hyperactivity within the cortex of the brain. It is
estimated that 50~65 million people actively suffer
epileptic seizures, and are — based on epidemiological
statistics— highly prevalent in developing countries [1–3]
. Epileptic seizures can be broken down into three
primary types, namely: 1) generalized seizures, which are
global across the brain, influencing the electrical activity
of all neurons within the brain, and may result in
impairment; 2) partial epilepsy, which is characterized by
more localized manifestations where focal epilepsy is
evidenced amongst a cluster of neurons within a
particular hemisphere within the human brain [4–6]; and

finally 3) intermittent seizures, where the onset is
unknown [1]. It can also be noted that over 50% of
epileptic seizures have been deemed to be drug resistant
[1]. A hierarchical breakdown of the various kinds of
seizures can be seen in Figure 1.Human newborns have
shown a high proneness to seizures, which is largely
attributed to a high excitability alongside low levels of
the inhibitory neurotransmitter gamma-aminobutyric acid
[7,8]. As can be expected, a rapid response is required for
treating newborns with these conditions due to a
potential subsequent impact on their neurological
development, where imaging exercises in children who
had been subject to neonatal convulsions have shown a
reduction in myelination [7]. Seizures in newborns are
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frequently associated with neurological conditions such
as ventricular hemorrhage, stroke, hypoglycemia,
cerebral malformations and hypoxic ischemic
encephalopathy [7]. Acute care must be taken when
dealing with and treating seizures, as although the
episodes may be brief, membrane damage from seizures
releases glutamate – an excitotoxic substance – which
triggers subsequent epileptic activities [7].The time and
onset of seizures tends to vary in newborns, with hypoxic

ischemic encephalopathy being the prime cause of
seizures in the immediate neonatal period [7]. Pyridoxine
-caused seizures can occur within the womb and manifest
themselves as increased in-utero movement, while other
seizures take place typically within a 12–48 hour window
following the birth of a newborn [7]. In neonates, four
main types of seizure can occur; a summary of their
characteristics, alongside their manifestations, can be
seen in Table 1.

Figure 1. A flow diagram showing the hierarchical structure of the various kinds of seizures. Seizure characteristics
established in 2011 are depicted in dark green, while seizure characteristics established in 2016 are depicted in light
green. [6]

Table 1. A summary of the various kinds of seizures and their manifestation characteristics.

Variant Manifestation

Subtle No EEG changes, primarily ocular manifestations,i.e., fixed open stares, apnea, eye deviation, alongside
other characteristics such as swimming movement of limbs, mouthing and chewing

Tonic Stiffening of limbs, characterized by sharp waves and spikes in the EEG signal

Clonic Unifocal or multifocal, non-Jacksonian jerking, newborns are mostly unconscious during this seizure,
changes normally present in EEG

Myoclonic Closely resemble salaam spasms, can lead to abnormality in EEG
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The physiological changes which occur in
newborns during seizures involve fluctuations in blood
glucose levels due to the brain’s transport system being
unable to keep up with the demands, although cerebral
blood flow may increase as a result of the need to meet
the demands for oxygen and glucose [9] . Spectroscopic
measures have provided evidence to suggest that
metabolic demands outweigh the normal physiological
supply, as embodied by shifts in the spectroscopic
spectra from a high energy phosphate towards an
inorganic phosphate. Lactate also increases as arterial pH
falls, alongside systemic blood pressure increasing [7].

Key means and techniques towards the diagnosing
of seizures include the following: EEG, blood glucose
measurements, serum magnesium levels, arterial pH,
serum sodium levels, serum urea and creatine levels,
lumbar puncture, blood cultures, and cranial ultrasound
scanning [7]. EEG is the most frequently adopted means
towards the diagnosis of seizures in newborns due to its
ability to provide a real-time detection and prediction of
seizure episodes, while also lending itself to potential
automated detection of the condition [10,11].

The expert-based identification of seizures
predominantly involves a manual visualization of EEG
series, recognizing specific set markers within the time-
series that are characteristic of a seizure, before
following up with the appropriate care bundle [7,10,12].
Characteristics include a distinct onset alongside a fixed
minimum duration, which ultimately implies a qualitative
means towards diagnosis that carries subjectivity and can
lead to non-consensus amongst a group of reviewing
clinicians, as will be discussed later in this paper
[7,10,12]. Due to this, there has been an uprise in the
notion of the implementation of artificial intelligence-
driven prediction machines that are capable of automated
seizure detection from a real-time stream of EEG signals
from the brain of a newborn. Upon the detection of a
seizure, potential medications that can betitrated for
newborns include phenobarbitone in combination with
phenytoin, both of which are established seizure and
epilepsy medications [13,14].

Newborns with seizures and neurological conditions
are typically cared for within neonatal intensive care
units (NICU), where there are high associated financial
and economic implications that vary based on the
socioeconomic standing of a nation [15,16]. A study
conducted by Cheah et al. [15] has attributed nearly half
of the costs from NICU to be associated with preterm
births, some of which are also affected by seizure and
brain-related conditions. Strategies towards potentially
lowering the number of newborns admitted into NICU,
and reducing the associated financial cost, are focused on
enhancing proactive care of threatened preterm newborns,
which are detailed in the series on the topic conducted by
Nsugbe et al. [16]. Further investment in NICU by
resource holders within government is needed to allow

for equivalent parity with adult intensive care facilities.
Legislation is required around assisted reproductive
therapies and embryo transfers, which have a large
margin for error and can lead to imperfect gestations and
increased neonatal care needs for the newborns [15, 16].

Needless to say, the ability to detect seizures in
newborns could help to prevent brain damage and, in
certain cases, potential death. As mentioned, the real-
time diagnosis of seizures is a big challenge as the
physical manifestations are not satisfactorily distinct in
newborns. Although EEG brainwaves are now widely
adopted in NICU, their interpretation remains subjective
even amidst experienced neonatologists, which often
leads to a non-consensus on the diagnosis of the newborn
seizures [17]. This is typically carried out with the use of
electrodes, carefully placed around the head of a
newborn, alongside specialized equipment for the
visualization of the waveforms [18]. Although another
commonly used variant via EEG waveforms–known as
the amplitude-integrated EEG (aEEG)– is also in use, it
has been reported to be subjective, often carrying less
accuracy in its interpretations [19]. The process towards
a clinical expert-based diagnosis involves a manual
annotation of EEG series amidst varied sources of
interferences

stemming from both artifacts and electronics.
Moreover, expertise is not always on hand for the
interpretation of seizures, which is amplified in
developing nations [20].

This has given rise to the need for automated
intelligent systems capable of detecting seizures from a
stream of EEG waveforms. These systems are modelled
around data-driven frameworks where the art of seizure
detection is learned by a machine in a systematic way,
and used to serve as a decision support tool in the NICU.
Ultimately, this would form an appealing solution to
resource-constrained environments, in addition to
strongly minimizing the issue of diagnosis subjectivity
amongst experts. These automated seizure decision
support systems are supported by machine learning
models, the design of which can be broadly broken into
various stages, including the feature extraction phase.
This is where key features — which can succinctly
characterize the signal in question—are extracted from
the signal to form a feature vector, which is fed into a
machine learning classification model as part of the
training and validation process [21]. The extracted
features tend to be from different domains (i.e ., time,
frequency etc.) and provide quantitative information on
the stream of EEG information [21].

In the literature, supervised learning methods are
primarily used for the design of the classification models
which are reliant on the provision of labelled samples
(i.e., seizure or no-seizure) for the design of the model
[22,23]. The predominant machine learning models used
in this area have been particularly focused on support
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vector ma chines (SVMs) and artificial neural networks,
while more recently there has also been upcoming work
in the appli cation of deep learning [19,24,25]. Studies in
the literature on these machine learning models have
used various neonatal seizure databases and different
windowing schemes, where different feature groups have
also been leveraged and have thus rendered it
challenging and largely unfeasible to do an equivalent
like-for-like comparison of the different model
performances on the recognition of newborn seizures [17
–25]. However, the literature has shown favorable results
in the use of the SVM machine learning models [17–25].

Previous work by Nsugbe et al. [26–29] has shown
the potential for, and appeal of, signal decomposition
methods— in particular the Linear Series Decomposition
Learner (LSDL) — in reducing the overall uncertainty in
the signal as a preprocessing mechanism prior to
modelling of the signal. This has previously been seen to
enhance the classification performance of a model, in
addition to allowing for the use of classification models
with low complexity, which carry a high degree of
clinical appeal due to their explanatory potential [26–29].
In this work, we utilized the seizure database by
Stevenson et al. [19] in the design of a seizure prediction
platform from LSDL decomposed EEG signals capable
of working in real-time, and comprising a unique
ensemble of features and a reduced selection of elec
trode channels. Further to this, as Stephenson et al.’s [19]
database is supported by gestation information and
indepth diagnoses on the degree of brain damage
sustained by the newborns, this information was also
leveraged to form secondary investigations around the
prediction of various newborn conditions from an
acquired EEG wave form. Precisely speaking, the
contributions of this manuscript are as follows:

 A comparison of the accuracy of a newborn seizure
prediction machine for a preprocessed LSDL signal
and state-of-the-art (raw signal) prediction across a
range of classification models, including the
decision tree (DT),logistic regression (LR), SVM
(linear, quadratic and cubic), and artificial neural
network;

 The use of probabilistic reasoning towards grading
the extent of seizures in newborns to aid the
prioritization of care;

 The prediction of asphyxia brain damage in
newborns who experience seizures.

2. Methods

2.1 Seizure EEG Waveform Theoretical
Representation and Newborn Brain Connectivity

International standards detailed by Clancy et al. [10]
define a neonatal seizure as a form of clear ictal event in
the

waveform, which is sudden and repetitive with a
distinct start, mid-point and ending, where a key
characteristic of this is the manifestation of an evolving
periodicity within an EEG waveform [12]. Given a
sample signal x(t) in the absence of noise and
interferences, the periodicity in a signal can be defined as
x(t+T), where t is time and T represents the period.

Primarily speaking, neonatal seizures exhibit two
kinds of time varying periodicity, and are described as
follows:

 The first and most common involves a series of
epileptic spikes, where those spike morphologies do
not vary significantly during the seizure episode and
can be mathematically described as Equation (1)
[12] :x(t) = w(t) �=0

� �(� − ��)�
where tn represents a time shift, w(t) is the waveform
morphology and δ represents an impulse within the
time-domain. This particular function is cyclical and

takes the form of e–t sin (t–2).

The second embodies a seizure where the waveform
is shifted in time and scale, and can be mathematically
described as Equation (2) [12]

:

where τ is time in this case, Ø is a phase constant,
am and m define the harmonic relationship of the signal,
and T(τ) represents the time varying period of a
continuous signal.

Brain functional connectivity looks at the functional
and effective connectivity within the brain, mostly using
brain physiological measurement instrumentation, EEG,
which is subject to the investigation carried out in this
paper [30,31]. EEG measures ionic current flow in the
cortex, and also involves a degree of spatial averaging of
electrical dynamical activity within the cortex [30,31].

Connectivity studies have shown that long range
connections within the brain of the newborn develop
much quicker than short range cortical connections, thus
making unilateral autonomous cortical activity in
newborn babies to be dominant, with no substantial
interhemispheric relationship noted at this point [32]. In
the first few months, expansion of neuronal pathways
occur, which give rise to dynamic changes in the EEG
waveform in due course [32]. The general dynamic
characteristic of a newborn’s EEG is intermittent and
discontinuous activity alongside a mixture of bursts of
spontaneous activity transients (SAT), and general low
voltage activity, which is distinct from burst suppression
activity that mostly appears in newborns with existing
brain damage [32].
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2.2 Experimental Process
The EEG recordings used in the data set forming

part of this research were acquired by Helsinki
University [19] in 2010–2014 from infants admitted to
NICU. The newborns had gestational ages spanning 35–
45 weeks. Each EEG recording spanned approximately
one hour, and data were acquired using the Nico One
EEG sensor, which was sampled at 256 Hz with an EEG
cap comprising 19 electrodes that were positioned using
the 1 0–2 0 international electrode standard [19]. A
sample image of a newborn wearing an EEG cap with
continuous data being collected can be seen in Figure 2.

The acquired EEG wave forms were analyzed and
annotated by three experts to qualitatively identify
seizure events within the EEG wave forms [19]. The
criteria for identifying the seizures were patterns of
activity within the waveform where distinct anomalies
occurred with a definitive start and end with sustained
shape waves, and with rhythmic wave forms spanning 10
seconds or more [19]. The visualization setting for the
experts was a paper speed of 30 mm/ sec (12 seconds per
screen) , a sensitivity of 100 µV/cm, and a cut-off of 0.5–
70 Hz, with the annotation experts receiving
authorization to modify the visualization setting as
deemed fit with their preferences [19]. Each expert had a
minimum of 10 years ’ worth of experience of dealing
with seizure identifications, and they were not given any
prior information regarding the seizures (aside from the
fact that there were suspicions of abnormal brain
activities) in order to keep the annotation process fair and
reflective [19]. All annotations were based on EEG
analysis, although there was also an electrocardiogram at
hand for reference when required. All data acquisitions
were carried out in accordance with the standards of care
expected at the Helsinki University Hospital, Finland,
where permission to release the patient de-identified data
and use for research purposes was granted by the ethics
committee at the Children’s Hospital, Helsinki
University Hospital, Finland [19].

Figure 2. Image of a newborn with an EEG skullcap. [33]

In the opensource database, files marked with
seizures by all three annotation experts were termed
‘consensus seizure files’ [19]. Further, there were files
which did not receive full consensus, i.e., all three
experts did not agree on the presence of seizure within

the EEG waveforms, and finally ‘consensus no-seizure
files’ [19] . Only the consensus files were used for the
signal processing exercises, where a total of 34 newborn
EEG files were used in this work, comprising 17 seizure
cases and 17 nonseizure cases.For the newborn seizure
files, the windowing scheme for the EEG signals
included portions of the signals with and without seizures
in order to make the model design more robust. The
windowing scheme involved a size and receptive field of
5 minutes per window.

2.3 Electrode Selection
Alongside creating parsimonious modelling in

automated seizure diagnosis, a reduced channel
configuration was investigated as part of this work. Work
by Webb et al. [34] considered uncertainty analysis in
EEG electrodes in newborns and highlighted key
electrodes that produce rich signal information and are
generally free from noise and uncertainty. A study of
Webb et al.’s [34] work showed six key electrodes that are
largely uncertainty-free during the acquisition of
newborn EEG signals, as indicated in Figure 3: F3C3,FZ
-CZ, F4-C4, C3-P3, CZ-P3, CZ-PZ and C4-P4.

Figure 3. Image of the map of EEG electrodes employed
by Stevenson et al. [19] (the orange circle indicates the
group of electrodes used in this study).

2.4 Signal Preprocessing
Signal decomposition was employed as a

preprocessing method for the newborn EEG signal as
previous work has shown that this approach contributes
towards the enhancement of recognition and
classification accuracies [28]. Generally, the concept of
signal decomposition involves a systematic
deconvolution and separation of a timeseries signal to
obtain and converge at a region within the signal,
minimizing uncertainty and enhancing the overall
prediction accuracy, where the applications of signal
decomposition methods are disperse [28].

The Linear Series Decomposition Learner (LSDL)
is an intelligent, metaheuristically-driven decomposition
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method that works with set linear basis functions, and
was originally conceived by Nsugbe et al. as part of a set
of source separation exercises [26,28] . Comparisons
with the wavelet decomposition showed the LSDL’s
ability to surpass the wavelet transform in terms of
prediction accuracy and overall computation time [26,28].

In addition to its original case study, the
applications of the LSDL have been broad and span areas
of clinical medicine such as rehabilitation and pregnancy
medicine, where the LSDL has resulted in an enhanced
prediction when compared with the current state of the
art analysis [28,29]. Assuming an absolute signal |Sn |, a
comprehensive list of the tuning methods and heuristics
used as part of the LSDL are reported in Nsugbe et al.
[28] , while the various parameters used in the
implementation of the method can be seen in Table 2. A
tree-like flow of the decomposition sequence of the
LSDL is shown in Figure 4.

From a mathematical perspective, the LSDL
decomposition series can be expressed as follows:

2.5 Feature Extraction
The features used in this study represent a select

subset of features that have been used in prior studies for
the modelling and characterization of physiological
signals [35–38]. The features comprise a unique
ensemble spanning low order statistics, frequency
features and nonlinear features, where a concatenation of
these is believed to provide an effective characterization
of the physiological signal in question from multiple
perspectives [35–38].

Table 2. Threshold parameters for the LSDL.
where Tl_upper_n and Tl_lower_n are the thresholds for the upper and lower amplitude regions of the signal.

Iteration 1 2 3 n

Upper threshold region
parameter (Upper)

Tl_uppeT_1

= 50% of max sn

Tl_uppeT_2

max Isn 1+ Tl_uppeT_1
=

2

Tl_uppeT_3

max sn 1+ Tl_uppeT_2
=

2

max

Lower threshold region
parameter (Lower)

Tl_loweT_1

= 50% of max sn Tl_loweT_2=
Tl_loweT_3= Tl_loweT_n = t

Tl_uppeT_n

2
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Figure 4. Decomposition tree representation for the LSDL (where T indicates the length of the candidate signal). [35]

The list of features is as follows: mean absolute
value (MAV),waveform length (WL), zero-crossing (ZC),
slope sign change (SSC), root mean square (RMS),fourth
order autoregression (AR), sample entropy (SampEN),
cepstrum (Ceps), maximum fractal length (MFL),
median frequency (MedFrq),peak frequency (PeakFrq),
number of peaks (NP), simple squared integral (SSI) and
variance (VAR) [35–38]. The value of 1 µv was chosen
for every feature requiring a threshold, while 2 and 0.2
were the chosen values of m and r for the sample entropy.

2.6 Machine Learning Models
In this work, four different machine learning

classification models were considered, each with its own
unique discriminant function and level of classifier
complexity, and level of interpretability. The list of
machine learning models is as follows:

Logistic Regression (LR): This is an interpretable,
statistically-driven binary classification method; its
outputs ranging from 0–1, where classes are assigned
based on the final output value relative to a designated
threshold [39]. Logistic regression supersedes the
classical linear regression for pattern recognition
exercises due to its enhanced ability to deal with outliers
through the nature of its sigmoidal decision function [40].

Decision Tree (DT): These classification models
refer to grey-box models whose classification approach
is based around the use of a Boolean logic-like approach
towards the sorting of data into different classes in a tree-

like hierarchical fashion [40]. The white-box
characteristic of the DT implies that it carries
interpretability. Thus its decision making process is
transparent to a degree [40].

Support Vector Machine (SVM): This approach is
based around the projection of the data vector into a
higher dimensional space, where the class boundaries are
implemented in an iterative fashion with the aid of a
small subset of the data (known as support
vectors),followed by a downward projection of the data,
while preserving the structure of the class boundaries
implemented in a higher dimensional space, in a feat
known as the ‘kernel trick ’ [41]. Due to the
transformations involved as part of the general
operability of the model, the SVM has been seen to be
relatively computationally expensive to run, although
capable of running in real-time [41]. As part of this work,
three different kernel types were explored, namely, the
linear SVM (LSVM), quadratic SVM (QSVM) and cubic
SVM (CSVM). This choice of kernels served as different
kinds of class boundaries that were used to separate data
classes using the SVM approach.

Multi-Layer Perceptron Neural Network (MLPNN):
This is a version of the feed forward neural network
which mainly consists of an input layer, a hidden layer
with an user-definable amount of neurons, and an output
layer that maps out predicted class labels [42] . The
MLPNNs are nonparametrically able to map the
relationship between input data and output label given
sufficient training data using typically nonlinear
boundaries, and are commonly referred to as the
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nonlinear function approximators [42]. The implemented
version of the MLPNN utilized the sig-moid activation
function, 30 units in the hidden layer, the iterative back
propagation algorithm for the training, and a SoftMax
function as part of the output layer [42]. Due to the
nature of the hidden layers of the MLPNNs,
interpretation of the output from the network has
typically been viewed as challenging and at times
infeasible, thus they are typically referred to as black-box
classifiers with minimal interpretabilities [42].

All classifiers were validated using the k-fold cross-
validation approach with k chosen as 10. The MLPNN
was validated with a data split of 70% for training, 15%
for validation, and 15% for testing. All other classifiers
were validated using a split of 80% of the data for
training, with the remaining 20% used for validation
purposes.

3. Results
For the characterization of the seizure prediction

power of the various designed models, the classification
accuracy was calculated. This represents a statistical
figure for the number of correct predictions made by a
model, expressed as a percentage of the total amount of
samples. The results of the various prediction exercises
with the newborn EEG signals are as follows.

3.1 Seizure Prediction
The results of the LSDL decomposition exercise are

shown in Table 3, where it can be noted that the optimal
decomposition level is within the fourth iteration of the
lower threshold region. The implication of this is that the
rich information of the signal—which is crucial for the
classification and pattern recognition exercise—lies
within the lower amplitude region of the signal. Thus, all
subsequent signals that underwent LSDL preprocessing
utilized the parameters corresponding to the optimal
decomposition level for the signal decomposition.

Table 3. LSDL decomposition results.
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upper n/a* n/a* n/a* n/a*

Lower2.0001 2.0019 2.0240 2.0510

* n/a indicates decompositions that could not be carried out due to a
constrained number of samples

The results for the seizure prediction exercise
contrasting the Raw Signal (which represents the state of
the art) with the bespoke LSDL across six different
classification models, are shown in Table 4. At first
glance, it can be seen that the LSDL does indeed lead to
an increase in the prediction accuracy of the presence of
seizures across all the various classifications considered.
The impact of the LSDL is more pronounced in the
classification performance of the classifier with a lower

complexity, i.e., the LSVM, while for the other
classifiers with a higher order complexity (and therein
less interpretability) the LSDL still appears to
outperform the Raw Signal, although in a marginal sense
with increasing classifier complexity.

Table 4. Results of the seizure prediction
classification exercise.
Classification

Model
Raw Signal

(%)
LSDLPreprocesse

d (%)
LR 61.4 68.1
DT 79.5 80.7

LSVM 60.1 70.1
QSVM 79.0 81.5
CSVM 87.6 88.1
MLPNN 74.0 82.4

The best performing classification model is seen to
be for the CSVM for the LSDL Preprocessed signal,
which once again showcases the compatibility of the
kernel classification models for distinguishing between
signals of this kind. It is worth mentioning that the best
model in this case is the cubic variant of the SVM, which
carries a high computational complexity. This reduces
the potential of model explainability, which could be met
with skepticism by clinical regulatory bodies. However,
this seizure prediction model is intended for an auxiliary
source of information which supports and helps to
inform clinical decisions regarding care through a
clinical expert, as opposed to independently driving care
decisions. Furthermore, the use of high-order
classification models breeds the potential for model
overfit, which has strongly negative impacts in a clinical
environment. Thus, if complex models such as the
CSVM are to be adopted, care should betaken to ensure
that a broad and diverse training set is used as part of the
model training and design.

Amongst the models that carry interpretability, the
LSDL preprocessed DT appears to have produced the
higher accuracy and could also be an option for a model
to be deployed in a clinical setting where decision
making can be explained. However, this interpretability
comes at a tradeoff of accuracy where it can be seen that
the DT performs slightly lower than the CSVM.

As the LSDL produced the superior prediction
accuracies (shown in Table 4), all subsequent

analysis done as part of the results section utilized the
LSDL preprocessing.

3.2 Probabilistic Seizure Prediction
Much of the literature has presented the seizure

prediction case as part of a binary prediction solution
where, given an EEG signal, a trained model predicts
whether a seizure is present. Although informative, this
does not give an insight into the severity and intensity of
the seizure, which can make it difficult, if not arbitrary,
to prioritize the delivery of care to the neonates within
NICU settings.
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A computational means towards tackling this
shortcoming can involve the use of probabilistic learning,
which is a learning method where numerical values are
assigned towards the various samples classified within a
certain category, with the assigned value allowing for the
inference of the magnitude of a particular prediction/
diagnosis, which in this case is a seizure in a newborn.
From the prior section, and from the literature, it is seen
that the kernel approach shows a good compatibility with
newborn EEG, thus for this exercise a probabilistic SVM
(PSVM) learner was used to assign probability values to
the samples. These were classified in terms of having
seizures and followed by splitting the probability values
into two groups, which reflected the severity of the
seizure; from here a classification model was used to
design the automatic recognition of these cases [43] .

To create these subclasses, the seizure probabilities
were split as follows:

Class 1 Seizure/Minor-Moderate: 0.5–0.85

Class 2 Seizure/Severe: 0.85

The implemented PSVM model works in a similar way
to the discrete SVM classifier, but also utilizes the Platt
scaling, which serves as a conversion mechanism to
transform classifier scores into a form of probability
distribution where, as mentioned, each sample assigned
to a class is accompanied by a probability score [43]. The
Platt scaling, which is an integral part of this process,
works by transforming output scores into probabilistic
representations by utilizing the logistic regression model,
which can be defined as Equation (5) [44]: 1

1+���(��(�)+�

Where f (x) is the classifier score, and A and B are
learned values during the model fitting process.

As part of the work done in this section, the
SMOTE synthetic sample generation algorithm was
employed as a mean towards ensuring that both created
classes were balanced as part of the model design
process [45]. A flow diagram of the model design
process is shown in Figure 5, while the results for all
models considered can be seen in Table 5.

Table 5. Probabilistic seizure results.

From Table 5, it is evident that the trend carries on
to this section with the LR, which carries the greater
amount of interpretability and least amount of
complexity, thus producing the lowest classification
accuracy, while the high-order SVM produced the
highest accuracy. The presence of this probabilistic
prediction model allows for the deeper exploitation of
data to produce prediction models which can help inform
and prioritize care measures, as mentioned. It is worth
noting that, depending on the preference and overall
clinical needs, further seizure classes can be created from
the probability measures in order to gain further
granularity in the seizure extents, as required.

Figure 5. A diagram of the probabilistic prediction model design flow.

3.3 Birth Asphyxia Prediction
Asphyxia refers to the process by which the brain

becomes oxygen deficient. In newborns, asphyxia does
not have distinct characteristics and manifests itself with
a deficiency in brain function, alongside the
accumulation of waste acids in the body [46,47]. The

level of damage and harm depends on the length of
oxygen deprivation for the newborn, in addition to how
swiftly remedial treatment was administered [46,47].
Asphyxia involves a reduction in blood flow where both
the brain and cells become oxygen deprived; this is
followed by reperfusion injury, which occurs as the brain
begins to receive oxygen and slowly returns to baseline
levels [46,47]. The diagnosis of immediate birth

Classification Model Classification Accuracy
(%)

LR 80.5
DT 90.5

LSVM 86.3
QSVM 93.3
CSVM 93.5
MLPNN 88.8
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asphyxia involves multiple stages, the first of which
utilizes an Apgar score that immediately rates the skin
and muscle tone, heart rate, reflexes and breathing
pattern of a newborn, where a low Apgar score at 1 and 5
minutes of life is frequently a sign of birth asphyxia
[46,47] . Combined with results from arterial and venous
cord blood sample pairs, asphyxia is more likely to be
diagnosed as per Malin et al. [48].

Following this, a specialist clinician could observe
factors such as abnormal breathing, urination frequency,
lethargy, blood clotting anomalies, and blood pressure
[46,47] . For the less severe asphyxia, an immediate source
of breathing support is offered to the newborn alongside
close monitoring, while for more severe versions of
asphyxia a combination of medication, body cooling,
kidney dialysis and targeted breathing support is required
to maintain ventilation of the newborn [46,47] .

Newborn asphyxia is also accompanied by seizure
episodes, as was seen to be the case with a select number
of the newborns whose EEG formed part of the seizure
dataset [46,47]. Due to the kinds of asphyxia that occur,
it is inferred that these newborns would have reperfusion
-related asphyxia at various stages. In this section, it will
first be investigated to see if asphyxia can be predicted
from a newborn’s EEG signal recording, where further
work could potentially consider providing an inference
of the extent and stage of the asphyxia.

For this aspect, a total of 16 neonatal EEG
recordings were used for the prediction exercise, 8 of
which had been diagnosed with asphyxia by clinical
experts, and 8 of which were deemed to be asphyxia free.
The results of the prediction exercise can be seen in
Table 6.

Thus, it can be seen that the prediction results for
asphyxia are generally high, with the lower complexity
classifiers also showing a high prediction result. Once
again, the high-order SVM produced the highest
accuracy across the different models. This demonstrates
that EEG signals from newborns can be used to predict
and monitor asphyxia brain injuries, although in order to
confirm this theory a larger and more diverse sample size
would be needed as part of further work.

Table 6. Results from the prediction of asphyxia using
EEG signals.
Classification Model Classification Accuracy (%)

LR 78.8
DT 82.6

LSVM 77.4
QSVM 88.5
CSVM 89.1
MLPNN 76.4

As can be expected with decision support models,
their presence can be expected to reduce diagnosis
subjectivity and provide auxiliary sources of information

which, in the long term, can inform clinical care
strategies as previously described. Probabilistic
modelling can also be employed as part of prediction
sequences to help grade the various stages of asphyxia
experienced by the newborns.

3.4 Feature Ranking Exercise
A feature selection exercise was conducted in order

to uncover the most common features that influence the
classification decision [49] . The feature ranking work was
done using the ReliefF method, which is a filter-based
means towards a weighted ranking of a feature group
[49]. It is renowned for being computationally efficient
—when compared to the wrapper and embedding
methods— due to being based on a statistical
underpinning [49].

A summary illustrating the features that carried a
considerable weighting, and therein discriminatory
power, is shown in Table 7, where 10 nearest neighbors
were considered.

From the results, it can be seen that five of the six
topranked features are time-domain features which are
able to characterize the EEG signal from multiple
perspectives based on the feature characteristics. The
other feature in the group is a complexity-based feature
which, although showing effectiveness in characterizing
nonlinear physiological signals, is computationally
expensive to calculate.

Subsequent work could involve an exhaustive
selection exercise with further features similar to the top
driving ones, and strategically added to the feature vector
while being optimal towards the overall cost of their
computations [51]. Likewise, low ranked features may be
pruned out as required to boost overall parsimony and
prevent the likelihood of model overfit, which is highly
relevant for this area of research.
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Table 7. Summary of the top features in the classification process.

4. Conclusions
Seizures are brain-based disorders which affect 50–

65 million individuals globally. They can manifest in
newborns, and EEG is commonly used to visualize brain
activity alongside clinical expertise in the qualitative
interpretation of the EEG waveforms. The use of
qualitative means towards diagnosis breeds subjectivity,
leading to cases of non-consensus in the interpretation of
the seizures amongst clinical experts. This has given rise
to the need for AI-driven machines that can predict the
presence of seizures in a newborn from an acquired EEG
signal. Thus, the work done in this paper is centered
around the use of AI-driven prediction machines for the
prediction of seizures in newborns using a reduced
channel representation of six electrodes, LSDL
decomposition alongside a unique ensemble of features,
and comparison of four different classification models.
Using the dataset and supplementary patient information,
further exercises were developed

in the use of probabilistic reasoning for grading the
extent of seizures in newborns, along with the prediction
of asphyxia.

The results of the seizure prediction exercise
initially showed an increment in the prediction accuracy
when the LSDL decomposition was used, across a range
of all classifiers. It was seen that the highorder kernel
classifier with the CSVM produced the highest
classification accuracy, showing in the process that it is
feasible to use a low-channel representation towards a
high and reliable prediction of seizures in newborns. This
was followed by the probabilistic prediction of the SVM
towards predicting the extent of the seizures, where two
subclasses were created based on the probabilistic
grading, and where the classification results showed a
high accuracy of up to 93.5% for the two subclasses.

The final prediction exercise looked at the use of
EEG to predict asphyxia in newborns where, as an
investigation into the problem, the extent to which this
could be predicted from an EEG signal was explored.

The results were seen to be generally high for all
classifiers, with the CSVM once again providing the
highest accuracy and demonstrating the suitability of
kernel-based classification models towards prediction
exercises based around newborn EEG signals.

Future work in this area will involve the validation
of the devised methods using a larger sample set of
newborns with a diverse range of ethnicities where
possible, along with the utilization of probabilistic
reasoning towards grading the various severities of
asphyxia, as well as feature selection exercises to prune
for features that can further boost the prediction
accuracies in the various exercises whilst maintaining
overall model parsimony. In addition to this, further
work would also be done on the computation of
additional statistical metrics for the best performing and
optimal models from the various sets of case studies
carried out, in order to robustly observe and characterize
the model’s capability across different quantitative
perspectives.
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