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Abstract: Schizophrenia is a common psychotic disorder which affects a substantial amount of the population, where
the paranoid variant is viewed as the most common form of the disorder. This form of psychosis has been seen to affect
both adults and adolescents; where in the case of adolescents, it is increasingly challenging to diagnose with traditional
means involving clinical interviews. The use of electroencephalography (EEG) signals has proven to be an effective
means of non-invasively diagnosing brain disorders, alongside having the ability to mitigate any form of subjective bias
from the diagnosis process. This paper explores the use of acquired EEG signals, metaheuristics and deep wavelet
scattering decomposition, and a combination of supervised and unsupervised learning, for the automated prediction of
adolescent schizophrenia. The results showed the best accuracy for the metaheuristic decomposition alongside the
candidate learning methods, in the region of 95%+ across the various classification metrics, which showcases an
enhanced means of prediction of adolescent schizophrenia. Further work would now explore the use of Long Short-Term
Memory and Convolution Neural Networks to investigate the classification performances.
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1. Introduction
Psychosis generally involves the inability to

perceive things for what they are and are accompanied by
bouts of hallucinations and delusions [1,2].
Schizophrenia is a prominent psychotic disorder
characterised by symptoms such as delusions,
depressions and cognitive impairment to name a few; and
these symptoms prevent the individual from forming
functional relationships, in addition to fitting effectively
in a professional setting [3]. These factors make apparent
that the impacts of the schizophrenia disorder span
beyond the individual alone, as the inability to work
comes with economic consequences to society [3]. The
roots, sources and origins of schizophrenia continue to be
a subject for debate, but some of the established causes
include genetics and environmental factors [4]. There are
also various categories of schizophrenia, with the
paranoid variant being the most common and prevalent
[5].

Recent medical research has helped uncover the
notion that there exists varying extents and severity to the

schizophrenia disorder a summary of the four stages
alongside their characteristics, means of diagnosis,
accompanying disability and care strategy can be seen in
Table 1 [6].

As there are yet to be established biomarkers for the
diagnosis of schizophrenia, the means towards diagnosis
of the illness are via questionnaire style interviews, series
of observations and a review of the patient’s medical
health records [7]. These means of diagnosis have
received wide criticism for their subjectivity and lack of
replicability, and are made tedious by the fact that
schizophrenia also carries overlap with other forms of
mental psychotic disorders [8].

Unlike other psychotic disorders, schizophrenia is
one which has been known to occur in the early stage of
life, as adolescents (i.e., 10–17 years) have also been
seen to have the disorder [9]. Due to the established
methods for clinical diagnosis of schizophrenia being
formed with data from adult patients, the means towards
the diagnosis of adolescents have applied these biased
diagnosis practices, which have been reported to yield
false positives on occasions [9]. Other challenges faced



Digital Technologies Research and Applications | Volume 01 | Issue 02 | August 2022

53

in the application of classical interview style clinical
diagnosis towards adolescent schizophrenic patients
include the ability to differentiate between genuine
explanation of delusions against adolescent fantasies - a
trait which is common amongst that age group due to
their naïve psychology [9].

However, it is worth mentioning that neuroimaging
results have shown consistencies in the neuro circuitry
configuration between both adolescent and adult
schizophrenics, therein showing on a neurobiological
scale that similarities exist between the two groups [9].
Depending on the stage of the diagnosed schizophrenic
disorder, antipsychotic medications are usually the
default resort for these patient, but specifically in the
case of the adolescent patients, in addition to
antipsychotics there exists a high emphasis of the

combination of medication with psychosocial
interventions such as psychiatric awareness and
counselling, in addition to a thorough assessment of the
social needs of the adolescent patient [9]. The research
presented as part of this paper involves the application of
signal processing models on a dataset from a brain-ma-
chine interface (BMI) towards the diagnosis of
adolescent schizophrenia.

Electroencephalography (EEG) represents a
specialised form of BMI that has been used in varying
degrees for different functions, and which also involves
the identification of neurodegenerative and psychotic
diseases [10]. EEG signals effectively represent neural
oscillations associated with the flow of bioelectrical
signals across the

Table 1. A summary of the four stages of schizophrenia. [6]

Stage 1 Stage 2 Stage 3 Stage 4*

Characteristic - Genetic-based susceptibility
- Cognitive impairment
- Social and behavioural

deficits
- Psychomotor abnormalities

- The disorder morphs from
being mainly psychological

to also medical

Diagnosis Method - Genome sequencing - Structured interview for
prodromal syndrome (SIPS)

- Hallucinations

- Disorganised thought

- Questionnaire-based
interview by psychiatrist

- Questionnaire-based
interview by psychiatrist

Disability
- Family history review

- Sparse, sometimes a light
cognitive deficit

- Cognitive assessments

- Notable change in social
function

- Steady loss of function - Chronic manifestation of
symptoms

Care Intervention - N/A - Counselling support
- Polyunsaturated fatty acid

- Antipsychotic medication

- Psychosocial care-based
interventions

- Societal seclusion due to
esoteric behaviours

- Antipsychotic medication

- Steady rehabilitation
programme

*It should be noted that the stage 4 level of schizophrenia is not a universal outcome for all patients.

brain. They hold merits over other brain-based analysis
counterparts such as magnetic resonance imaging (MRI)
and functional magnetic resonance imaging (fMRI) due
to greater affordability, and requiring a much smaller
segment of data in order to infer a neural state, i.e., in the
or- der of milliseconds, relative to the likes of fMRI
which re- quires minute-long data segments at the very
minimum [11]. Due to the dynamic nature of the brain,
acquired EEG signals are typically stochastic non-
stationary signals which require state of the art signal
processing and machine learning models to decode the
underlying information embedded within a time varying
signal [12]. The feature extraction aspect of the signal
processing involves the extraction of signals from
multiple perspectives which span linear, frequency and
complexity/nonlinear-based features, as have been

applied in other studies involving stochastic
physiological signals [13,14]. The machine learning
aspect has seen the application of models with soft and
hard interpretability for the classification and pattern
recognition element [14]. It should be noted that in the
majority of cases, the recognition capability of the
machine learning model hinges upon the quality and
effectiveness of the signal processing mechanism applied
towards the acquired signal which, in addition to the
extraction of appropriate features, also includes the
decomposition of a candidate signal to minimize
redundancy.

In signal processing, the decomposition of a signal
al- lows for the expression of that same signal as a
superposition of its constituent parts, thus a given signal
f(t) can be decomposed into a1.g1(t)+a2.g2(t)……an.gn(t),
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where is a constant and gn is a component part [15]. This
approach is useful for a variety of reasons in a broad
number of examples which includes: mixture signals
where a source separation is desired; analysis of seismic
waves in seismology; the detection of an underlying
anomaly embedded deep within a signal, i.e., an
intermittent heart problem or a blip in the stock market;
denoising of signals whose information is convolved
within noise and uncertainties; and the analysing of
physiological data such as that which results from a set
of brain waves and comprise of a convolution of multiple
frequency scales and neural oscillations [16–19]. For a
decomposed signal, the optimal decomposed constituent
typically reflects the part which contains the rich
information within the signal that is relevant towards the
signal processing task at hand, and is usually determined
with the use of a select cost function/performance index
[15].

The canonical decomposition method is the Fourier
transform, which applies geometric functions as its basis
for decomposing a candidate signal into component parts
with respect to frequency. The Fourier approach towards
signal decomposition formed the inspiration for the wave
let decomposition, which uses a select basis function
from a library of bases (i.e., Har, Daubechies and
Moorlet) to obtain a time-frequency representation of a
signal [15,20] . Research work on source separation of
mixture signals conducted by Nsugbe et al. yielded a
metaheuristic and therein an artificial intelligence-based
means towards the decomposition of a signal to estimate
its constituent parts [16,21–23]. The approach uses a set
of heuristics and linear thresholds as a basis function
towards systematically decomposing a mixture signal,
while also learning for the quality of information within
each constituent decomposition produced with respect to
a performance index. The approach, now named the
linear series decomposition learner (LSDL), although
originally conceived for source separation of mixtures,
has been applied towards classification tasks given an
acquired physiological signal in the areas of pregnancy
and rehabilitation medicine. The LSDL was applied
towards achieving enhanced labour prediction from
acquired magnetomyography signals from womb
contractions, and for a “mind-based” control of a bionic
prosthesis limb for a transhumeral amputee using
acquired EEG signals [24,25]. In the case of the mixture
separation and bionic prosthesis limb, the LSDL was
benchmarked against the wavelet decomposition (with
Daubechies mother wavelet), where it was seen that it
possessed a superior performance when compared [24].

In the machine learning literature, convolutional
neural networks (CNN) represent a form of deep learning
architecture that is capable of an unsupervised feature
learning, where deep multiscale characteristics of the
training samples are learned, and which have produced
impressive results in the area of image recognition, but
have been criticised for a heavy computational demand
alongside the need for a broad and augmented amount of

training samples in order to learn effectively [26]. The
wavelet scattering (WS) represents a form of automated
feature extraction method inspired by the learning
process carried out by the CNNs, and allows the user to
use the extracted multiscale features to train machine
learning models of their choice. Chiefly speaking, the
WS involves three main stages enroute towards arriving
at its final feature set: convolution using wavelets;
nonlinearity by taking the modulus; followed by filtering
and averaging using wavelet low pass filters, and is also
analogous to pooling [27].

There exists a substantial amount of literature in the
area of the application of EEG and machine learning, for
the prediction of the schizophrenia psychosis. However,
these works utilise a varied source of EEG data with
further variations in the acquisition electronics, which
ultimately makes it challenging to form a like-for-like
comparison of the literature. That being said, the range
of methods and techniques used span the application of
statistical methods, non-linear complexity theory, nature
inspired computational methods, and feature selection
alongside the occasional use of decomposition methods,
all of which have been applied in a varying capacity to-
wards forming an intelligence system that is capable of
pattern recognising the schizophrenia psychosis from an
acquired EEG signal [8,28–36].

The application of the LSDL to EEG signals for the
prediction of adolescent schizophrenia presents a novel
opportunity for the enhancement of the prediction ca-
pability of schizophrenia from EEG signals due to the
capability of the LSDL to reduce redundancy from the
signal, which allows for a boost in accuracy, as observed
in previous studies. Thus, in this study, the performance
of the LSDL prediction of schizophrenia will be
compared with modelling done purely with the raw
signal, which represents the state of the art in the
majority of the cases presented in the literature, albeit via
a varied source of EEG signals. The work will be
complemented with the inclusion of analysis from the
WS which, as mentioned, represents an unsupervised
feature extraction and signal decomposition option and,
as per the literature, is yet to be applied to the prediction
of schizophrenia.

In this paper, the respective performance of the
LSDL and WS will be contrasted in their ability to
produce an enhanced means of predicting adolescent
schizophrenia from a set of EEG signals. This will be
combined with unsupervised learning models as part of
strides towards an automated platform for clinical
decision support. Specifically speaking, the contribution
of this manuscript is as follows:

● A contrast of the abilities of the LSDL and WS
decomposition methods in producing an enhanced means
of predicting the presence of schizophrenia in
adolescents, while being benchmarked with predictions
made with the raw EEG signals, which represent the state
of the art.
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● A novel application of the K-Means unsupervised
learning for the automated labelling of the data, followed
by the application of supervised learning methods as a
means towards intelligent self-learning and classification
between the Schizophrenic and Normal adolescents,
which could lead to a clinical decision support platform
that provides a greater autonomy and minimal external
intervention in the prediction of the psychosis.

2. Materials
The human brain consists of over a billion neurons

whose interaction and signalling produces a bioelectrical
signal that abides to Maxwell’s equations and the laws of
electrodynamics, as shown in previous studies [37]. For a
continuous stream of EEG signals acquired from an array
of channels, they can be represented as a
multidimensional vector where x(t)=(x1(t),……xd(t)),
where d represents the number of electrode channels for
a fixed time interval.

t∈ [0, T]. Based on the discrete sampling sequence
of EEG acquisition systems, an acquired set of EEG
signals can be expressed as a series in the following form
(x(0), x( �

�
) , x(2�

�
)……�(�) . A sample image of an EEG

acquisition process can be seen in Figure 1, while Figure
2 provides an illustration of small electrical fields
generated by the synaptic currents in the pyramidal cells
within the brain. In order for candidate EEG electrodes
to be able acquire signals through the skull and thick host
of tissues, cells in the order of thousands need to
simultaneously fire for a cumulant of a bioelectrical
signal to be able to propagate through and be acquired by
the EEG electrodes [38].

Figure 1. Image of an EEG acquisition process. [38]

Figure 2. A cross-sectional view of the human skull and
the various layers while little electrical fields are being
generated by the pyramidal cells. [38]

3. Experimental Method
The EEG data used for the analysis in this study

was taken from an opensource database with data from
Normal and Schizophrenic adolescents aged 10-14 years
who were clinically diagnosed with schizophrenia at the
Research Center for Psychological disorders of the
Russian Academy of Medical Sciences [39]. The EEG
electrode placement was done following the 10/20
electrode scheme with a reference electrode placed on the
earlobe, as seen in Figure 3 [39]. It was also confirmed
that the patients were not on any antipsychotic
medications prior to the acquisition of the EEG signals.
Thus the influence of psychiatric medication on the
acquired EEG signals can be negated [39].

Figure 3. Image showing electrode placement
location on patients. [39]

The acquisition parameters for the experiment
include a sampling of 128 Hz and spanned 60 seconds,
thus producing a signal vector of 7680 Hz in length. As
part of the proof-of-concept work done in this paper, a
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sum total of 20 patients ’ EEG data was utilised and
comprised of 10 Normal and 10 Schizophrenic patients.

3.1. Signal Processing and Machine Learning

3.1.1. LSDL
The LSDL was originally conceived for the source

separation of mixture signals acquired from acoustic
emission signals of powders in the micron scale striking
a medium. It works with the hypothesis that source
activities manifest themselves in the time domain in the
form of an impulse signal of a fixed magnitude that can
also be characterised by its magnitude [16, 21-23]. As
these impulse signals are dynamic, an accompanying
decay typically accompanies them and thus a unit
impulse signal can be mathematically expressed as s(t)=e
-wu()+ for u(t)= 0, � < 0

1, � ≥ 0 where, u(t) is a step function,
indicates that the function is 0 until ≥ 0, and is a noise
source associated with the decay of the activity of the
impulse signal. From a discretisation perspective, the
decay of the impulse signal manifests itself in the form of
“false” impulse signals in the time domain which
dynamically carries a lower magnitude than the original
impulse signal. In the case of events which occur
simultaneously, the resulting time domain signal has
been seen to contain overlapping impulse, with the
magnitude (also referred to as amplitude in this case)
being a key characteristic towards an effective
characterisation of the source events, as described by
Nsugbe et al. [16 ,21-23]. This gives rise to the
hypothesis that an optimal amplitude region within a
candidate signal is one whose information quality is
maximised as adjudged by a designated performance
index, and therein contains minimal uncertainties within
it.

In order to separate a candidate signal into various
“amplitude bands”, tuned linear thresholds of varying
amplitudes are employed in the process, which work with
a set of heuristics. These thresholds are used to create
subsignal components and therein a decomposition of the
original signal. The thresholding, and therein the signal
decomposition process , works first by the application of
an initialisation threshold which splits the signal into two
constituent parts; X1 1 and X12, belonging to the set
x={xuxa, which hosts both signal decompositions, where
xx represents the upper-amplitude region and the 1st
threshold iteration/1st decomposition of the signal, and
X2 represents the lower amplitude region and the 1st
threshold iteration/2nd decomposition. The initialisation
threshold is typically selected to be 0 5 of the maximum
of the signal itself in order to effectively separate the
signal into two equal parts. To assess the quality of the
decompositions within the set, select features are
extracted from each candidate decomposition from which
their quality is evaluated using a performance index J.

The decomposition is then repeated using a set of defined
threshold scaling heuristics to further decompose
xn.andxa, where for each subsequent decompositions J
is computed to form an array where the argmax(J) is
chosen. At the end, the iterations are terminated once a
conditional minimum is found, with the assumption of a
convex optimisation problem. The performance index
used as part of the LSDL algorithm is the normalised
Euclidean distance and is expressed as follows, for the
calculation of the distance in Euclidean space between
two candidate decompositions from two different source
signals which require classification as shown in
Equations (1)–(3) [40]:

where ED is the Euclidean distance given coordinates p
and q, which in this case correspond to the features
within the feature vectors from a specific electrode
channel, w is the wth feature within the feature vector,
��, �� are specific feature within the feature vector, μ is
the mean of the features, while �� represents the mean of
the standard deviations of the of the two candidate
features in question from two signal decompositions.
Note that by means of standardisation, the decomposition
levels need to be equivalent for the two signals used for
the computing of1, i.e., for two candidate signals with
their accompanying decompositions, S1={1x2} and S2={
1x2}, once the feature vectors are formed for the
respective decomposi tions, s(xa(fctre) and
s2=xn(features) and not S1=xn(features) and
s2={x2(features)3.

The threshold scaling works with a set of heuristics
which can be modified by the user as per the
requirements and resources available. For a sample
signal=…Table 2 shows the defined threshold parameters
adopted for the scaling used in this study, where it can be
noted that the parameters for the Upper threshold region
have been updated from what was proposed previously in
studies by Nsugbe and Sanusi [24], and Nsugbe et al.
[25].

��(�, �) = (�1 − �1)2 + (�2 − �2)2 (1)

� = �=1
�� (�� − �)2�

��
(2)

J = (�, �) = ��(�,�)
��

(3)
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Table 2. Threshold parameters for implementation of LSDL.

Iteration 1 2 3 n

Upper threshold

region parameter

(Upper)

Tl_ upper_ 1

= 50% of max |sn |

Tl_ upper_ 2
max | sn | + Tl_ upper_ 1

= 2

Tl_ upper_ 3
max | sn | + Tl_ upper_ 2

= 2

Tl_ upper_ n

max | sn | + Tl_ upper_3
= 2

Lower threshold

region parameter

(Lower)

Tl_lower_ 1

= 50% of max |sn |

Tl lower 1
Tl_lower_2 = 2 _
_

Tl lower 2
Tl_lower_ 3 = 2_ _

Tl_lower_n =
lower

2
_ n− 1

where T and T:ta are the thresholds corresponding to the
Upper and Lower amplitude regions of the signal
respectively. Expressing the respective threshold regions
as a series as shown in Equations (4)-(6):

Upper(x)=T1_upper_1(x)+ T1_upper_2(x)+ T) … …… T (4)

Lower(x)=T1_upper_1(x)+ T1_upper_2(x)+ T) ………T (5)

T(x)=upper(x)+Lower (6)

Using the law of superposition, T(x) refers to the
recovered and reconstructed version of the original signal.

A comprehensive list of the steps and heuristics
used as part of the LSDL process for classification
purposes can be seen in Nsugbe and Sanusi [24], and
Nsugbe et al. [25], and the optimisation objective can be
formulated as can be seen in Equation (7):

argmaxJxiER (7)

where R is a set of real numbers and xi is a value within
the set.

3.1.2. Optimal LSDL Signal Region
Using candidate signals from each set of classes

(i.e., Schizophrenic and Normal) and for three iterations
and decomposition levels, the result for the LSDL can be
seen in Table 3.

Table 3. LSDL decomposition results.

Iteration 1 2 3

Upper 2.761 2.773 2.547

Lower 2.826 2.439 2.827

It can be seen from Table 3 that both sets of signals
can be said to be of a high quality, as reflected by the
concise range of performance indexes in the table. This
could also be said to represent a sense of optimalityin the

acquisition process of the experiment,i.e., sample rate etc.
Expressing the optimisation objective from the
perspective of evolutionary metaheuristic algorithms, the
selection process is one of “elitism” where the “fittest”
item is selected from the batch, as has also been the
approach in prior work [24,25,41]. As part of the work
done in this paper, the “crossover” and “mutation”
evolutionary rules were applied as part of the selection
process, where the top two items that produced the
maximum J were selected as part of the crossover
process and the signals from theirrespective threshold
regions were superimposed, i.e. T1 lower 1(x)+ T1 lower 3(x)
due to these two regions having the highest indices for J.
The resulting J value for the crossover and mutation
exercise was 2.826, which shows a minor degradation in
performance when compared with the elitism value of
2.827, therein implying that superimposing LSDL
decomposition regions does not yield an optimal and
enhanced quality as part of the LSDL method. Thus, the
optimal LSDL decomposition region can be seen to be
from iteration 3 of the Lower threshold region. This
threshold region was generalised across subsequent
analysis of further signals in this work where the LSDL
was applied. In terms of computational complexity, it has
been seen that the LSDL’s complexity is of the order O(n)
[42,43].

3.1.3. Deep Wavelet Scattering
The deep wavelet scattering allows for a form of

unsupervised feature extraction of low-variance features
for a given time domain signal, where the obtained
features are robust to translations and are also continuous
[44]. Unlike a standard CNN, the wavelet scattering uses
predefined wavelet and scaling filters as opposed to
learning them from the data [44]. The incremental steps
that have culminated in the deep wavelet scattering has
seen combined work from Mallat, Bruna and Andén,
who made strides towards establishing a mathematical
formalism of CNNs, followed by work done by Andén
and Lostanlen who provided the computational
framework for the wavelet scattering [27,45–47]. Mallat
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[45] has described the key properties of CNNs carried
over to the deep wavelet scattering that allow for the
extraction of useful features, including: multiscale
contractions, the linearisation of hierarchical symmetries,
and sparse representations. By having an a-priori set
value for the filters, the deep wavelet scattering is said to
be able to work effectively with small training data
samples [44]. A diagram showing the various steps
associated with the deep wavelet scattering can be seen
in Figure 4.

Figure 4. The key associated steps of the deep wavelet
scattering. [44]

Working with the mathematical formalism proposed
by Liu et al., assuming a sample signal f(t) being
analysed with Ø being a low pass filter and a wavelet
function of Ψ for filtering purposes, which spans the
range offre-quencies of the signal. Assume Ø1(t) to be a
low pass filter which provides localised translation
invariance of f at a defined scale T [48,49] . The family
of wavelet indices possessing an octave frequency
resolution Qk is denoted as , while the multiscale high
pass filter banks are constructed via a dilation
of the wavelet Ψ[48,49].

The wavelet scattering network is implemented via
a deep CNN which iterativelyconvolves through classical
wavelets, nonlinear modulus, and an averaging scaling
function as seen in Figure 4 [48]. The convolution part
sof() =f*g (e ) , where sa is the zero-order scattering
coefficients, generate locally translation invariant
features off which, although yielding a loss of high
frequency information, can be recovered via the wavelet
modulus transform lwl, expressed as shown in Equation
(8) [48]:

(8)

In a cascading fashion, the first order scattering
coefficients can be obtained by the averaging of the
wavelet modulus coefficient with as shown in Equation
(9):

(9)

Once again, to recover the information lost from the
averaging process, while bearing in mind that saf(t can
be assumed to be the low frequency component of |f*Ψj1|,
by applying the wavelet modulus the high frequency com
- ponents can again be expressed as shown in Equation
(10) [48]:

(10)

And therein further defining the second order
coefficients shown in Equation (11):

= = 1 2 (11)

Sequentially iterating the defined process deduces
the relevant wavelet modulus convolutions shown in
Equation (12):

(12)

where um is an mth order modulus.

How to obtain the mth order scattering coefficient, umf(t)
with , can be seen as shown in Equation (13):

(13)

The defined approach is used to obtain a final
scatter matrix sf(t)={snf()m, which concatenates the scat-
tering coefficients from all orders as a means of charac-
terising an input signal, where 1 represents the maximum
decomposition level [48]. A tree-based visualisation of
the scattering decomposition network ca be seen in
Figure 5.

Figure 5. A tree-based visualisation of the scattering
decomposition network. [48]

The wavelet scattering decomposition retains
characteristics of both the CNN and the wavelet
transform itself; for example, the wavelet scattering
exhibits translation invariance and is also stable to local
deformations [48]. In terms of the key differences
between the CNN and the wavelet scattering
decomposition, in addition to not needing to learn the
filters (as they are pre-set), the output features are not
only the output from the last layer but also a combination
of all preceding layers [48]. The energy of the scatter
coefficients is seen to dissipate with an increasing
number of layers, with the majority of the energy hosted
in the first two layers; thus in this work, a two-order
scattering network is used for the extraction of features
[48]. Other parameters used for the wavelet scattering
decomposition in this work include the utilisation of the
Gabor wavelet for decomposition purposes, where the
invariance scale was set to 1 second as inspired by a
related work, and the default value for the filter banks of
8 wavelets per octave in the first filter bank and 1
wavelet per octave in the second filter bank [48]. A
visualisation of the filter banks from the two network
layers and the low pass filter with a 1 second invariance
scale can be seen in Figures 6 and 7.
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3.2. Feature Extraction

Inspired by work done in physiological signal
processing, the features used in this work include a
concatenation of various feature groups in order to
effectively model the nonlinear EEG signals-these
features are described as follows [25,50–52]:

● Linear Features: these are commonly used low order
and computationally effective features. The list of
features in this category is as follows: mean absolute
value, waveform length, zero crossing, root mean square,
4th order autoregressive coeffi-cient, number of signal
peaks, simple squared integral, and variance. For the
features which require a threshold, a value of 1µv was
used, while for the number of signal peaks, a peak can be
defined as

�����.�'��−1��� ��+1
0, ��ℎ������

● Frequency Features: these features are extracted from a
frequency representation of a candidate signal. The
frequency features used were the maximum cepstrum
coefficient, and median frequency.
● Nonlinear Features: these features represent a selection
taken from areas such as chaos and complexity theory
and generally display a good capability towards
charactering a set of nonlinear signals. The list of
features from this category is as follows: sample entropy,
maximum fractal length, Higuchi fractal dimension, and
detrended fluctuation analysis. The parameters used in
the computation of the various features were 2 and 0.2
for the values of m and r for the sample entropy
calculation, and then K as 10 for the Higuchi fractal
dimension.

Figure 6. The first filter bank with 8 wavelets per octave.

Figure 7. The low pass filter with 1 second invariance
scale.

3.3. Machine Learning Models

3.3.1 Unsupervised Learning

The K-means unsupervised learning method was
adopted as a mode towards an unsupervised partitioning
of the unlabelled feature vector belonging to the two data
classes; a description of the K-means algorithm can be
seen as follows [53]:

K-means: this represents an iterative clustering
method which separates data into a defined K number of
clusters based on the Euclidean distance performance
index [53]. The clustering method works with the
expectation-maximisation (E-M) method where the E
step assigns data points into various groups after a
random initialisation using the following objective
function �=1

�
�
� �� ������ j |x2-uk|2 is a specific data point

and represents a cluster centroid mean; the M-step rep-
resents a form of a recursive update stage for the cluster
centroid via where wik represents a binary
variable used to indicate whether a particular data point
belongs in a specific class [53]. As the K-means works
with a random initialisation, the model was run five
times with K selected as 2, where the model with the
least error was chosen as the final designated K-means
model.

It can be noted that the justification for the selection
of the K-means algorithm (ahead of similar models such
as the Gaussian Mixture Models) stems from the
advantages of the algorithm, such as being easy to
implement and carryinglow computational complexity.

3.3.2 Unsupervised Learning

Four machine learning classification models with a
low complexity and an “easy” interpretability, as
highlighted via various sources, were chosen for the
supervised learning aspect of the work done in this paper,
and are described as follows [14]:
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● Logistic Regression (LR): this is a classification
model which emanates from statistics and uses a
sigmoidal activation function and an assigned threshold
towards distinguishing between data from two different
classes in a binary-like fashion. A mathematical
underpinning of the LR classifier and a previous use case
can be seen inNsugbe and Sanusi [24].

● Naïve Bayes (NB): this model works with the as-
sumption that the underlying structure to the data is
Gaussian and assigns data to various classes while
utilising the Bayes probabilistic framework for class
sorting.

● Discriminant Analysis (Linear and Quadratic,
LDA and QDA): this is a statistically driven and compu-
tationally effective method towards classification of data
via the projection into a lower dimensional space, and
shortly followed by the instillation of class boundaries,
both linear and quadratic class boundaries were utilised
for the work done in this paper. A mathematical
framework for both the LDA and QDA can be seen
inNsugbe et al. [25,50].

● Support Vector Machine (L-SVM): these are
iterative classification models based around an optimal
separation boundary between data classes, using a subset
of the data referred to as support vectors, in a process
that involves the projection of the data into a higher
dimensional space, which maximises class separability
and where class boundaries are set [24] . This is followed
by a preservation of the structure whilst the data is
projected back down into a lower dimensional space and
the class boundaries are pre- served in a process known
as a kernel trick [24].

Three feature vectors were formed and used as part
of the initial unsupervised learning machine learning
exercise, namely, the raw data feature vector comprising
5400 samples (15 electrodes × 18 features × 20 patients),
the LSDL feature vector comprising 5400 samples (15
electrodes × 18 features × 20 patients), and the wavelet
scattering feature vector comprising 330,240 samples
(7,680 multiscale features × 43 windows)

All supervised learning models were validated using
a holdout dataset comprising of 25% unseen data, which
was used to validate the models and obtain the final
classification metrics.

A flow diagram of the various steps involved in the
full prediction process in this work can be seen in Figure
8.

Figure 8. Flow diagram of the full prediction process.

4. Results and Discussion
The plots in Figure 9 represent the fast Fourier

transform (FFT) of the LSDL decomposed data and raw
data from electrode channel 1 of a Normal patient and a
Schizophrenic patient [54]. Note that the FFT of the deep
wavelet scattering was not plotted since the method de-
composes the signal into separate frequency bands as
part of the feature vector which it returns.

Interpreting the FFT from the LSDL, it can be seen
that the bulk of the frequency content resides within the 0
Hz-5 Hz region, which constitutes the delta cognitive
state, and accounts for unconscious and deeply relaxed
states. Thus, the implication is that this frequency band is
where the schizophrenia psychosis manifests itself in the
adolescent case. The remainder of the frequency
spectrum consists of what appears to be a form of
broadband noise, with the Normal patient’s EEG
recording showing a slightly higher noise magnitude in
comparison.

It can be noted that, in adult schizophrenic
psychotic patients, the optimal frequency band for the
diagnosis of the schizophrenia psychosis has been
previously noted to be in the gamma-range, as reported
by Baradits et al. [55]. These results obtained in this
paper, echo the differences in the configuration of the
neural circuitry of adolescents in contrast to adults,
whose brains are no longer in the developmental stage,
and therein forms further insight as to why means of
psychosis diagnosis developed in studies involving
mostly adult patients should ideally not be generalised
towards adolescent patients [55] .

In the case of the raw data, which is effectively
without any form of decomposition, more activity can be
seen in the spectrum, albeit largely contaminated by
noise. The underlying pattern is similar to the LSDL but,
as mentioned, a lot noisier. The visualisation via the FFT
showcases the benefits of the LSDL decomposition. It
can be seen that the bulk of the energy in the spectrum of
the raw signal is also present in the very low frequency
region and exhibits an exponential decay towards the
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higher frequency. A principal component analysis plot of
the various feature vectors can be seen in Figure 10.

From the PCA plots in Figure 10, the first subplot
(which represents the raw data) shows some degree of
separation between the clusters with some degree of over
- lap. The middle plot (which represents the LSDL)
shows a high separability between clusters with a linear
decision boundary and a few outliers overlapping in an
opposite cluster. Finally, the plot for the deep wavelet
scatter shows a substantial amount of cluster overlap,
although it is worth being mindful that only the first two
principal components from the deep wavelet scatter were
plotted and account for only 57% of the total variability
of the data, while the prior two plots contained up to 99%,
hence poor visualisation.

4.1 K-means Clustering Results

The K-means clustering results for the various
feature vectors can be seen in Tables 4-6. The
clustering result for the feature vector from the raw
data showed good clustering prowess for the
Normal patient cluster, but was only sparsely able
to accurately cluster the data from the
Schizophrenic patient, hence an overall clustering
accuracy of 46%. The results of the LSDL
clustering showed a good accuracy for both the

Figure 9. FFTplots of the LSDL signal from electrode
channel1 of a Normal patient and a Schizophrenic patient.

Figure 10. Left plot: raw data with 99% variability.
Middle plot: LSDL data with 99% variability. Right plot:
deep wavelet scattering with 57% variability.

Schizophrenic and Normal patients clusters, recording an
overall clustering accuracy of 83%. The results for the
clustering exercise for the deep wavelet scattering can be

seen to comprise more samples due to the multiscale
decomposition pattern of the wavelet scattering network,
even though it was fed the same number of samples as
the LSDL. Although the deep wavelet scattering
provided the best accuracy in the clustering of the
Schizophrenic patient cluster, the clustering accuracy for
the Normal patients was relatively low in comparison,
thus the final clustering accuracy was seen to be 55%.
Due to this result, only the LSDL data and the associated
clustering labels were used for the supervised learning
exercise in the subsequent section.

Table 4. Clustering results with the raw data.

Schizophrenia Patient
Cluster

Normal Patient Cluster

Correctly Clustered/Total
data points: 8/150

Correctly Clustered/Total
data points: 131/150

Clustering Accuracy: 46%

Table 5. Clustering results with LSDL.

Schizophrenia Patient
Cluster

Normal Patient Cluster

Correctly Clustered/Total
data points: 109/150

Correctly Clustered/Total
data points: 139/150

Clustering Accuracy: 83%

Table 6. Clustering results with the deep wavelet
scattering.

Schizophrenia Patient
Cluster

Normal Patient Cluster

Correctly Clustered/Total
data points: 32807/38400

Correctly Clustered/Total
data points: 9666/38400

Clustering Accuracy: 55%

A plot showing the K-means cluster partitions can
be seen in Figure 11.

It can be said that the reason the K-means was able
to cluster the data from the LSDL is largely due to
theminimal overlap between the respective clusters,
therein implying that the K-means is primarily suited
with data that has a good degree of linearseparability.

4.2 Supervised Learning with Clustering Labels
To effectively characterise the performance of the

trained model the following classification metrics were
adopted, as utilised in prior studies: accuracy (ACC),
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sensitivity (SEN), specificity (SPEC) and area under the
curve (AUC) [52].

The results of the supervised learning exercise are
shown in Table 7 across all five candidate classification
models, from which it can be seen that all models
produced high accuracies in the range of 95%+.
Comparatively speaking, the LDA produced the lowest
metrics, which was followed by a closely matched
performance from both the LR and NB, while the LSVM
and QDA jointly produced the best model performances.
This is thought to be due to the complexity of the
classification boundary and computational power of the
latter two models when compared to the other models.

Figure 11. Image showing the K-means LSDL clustered
data visualised as PCA with 99% variability explained.

Table 7. Supervised learning results with 25% holdout
validation.

Acc SEN SPEC AUC

LR 96.7 97.7 95.6 96.7

NB 96.7 97.7 95.6 96.7

LDA 95.6 97.7 93.6 95.7

LSVM 98.9 97.8 100 98.9

QDA 98.9 97.8 100 98.9

These results thus showcase how the LSDL
decomposition, alongside an unsupervised learning
driven platform, can contribute towards an automated
schizophrenia classification platform using EEG signals,
with interpretable models. Furthermore, they provide a
quantitative validation of the visual interpretation of the
LSDL, as the data clusters can be effectively classified
with the use of a linear boundary and a low complexity
classifier.

Further advantages of the LSDL as a signal
decomposition tool are that it can allow for an
unsupervised decomposition of the signal, while it
requires only a small decomposed subset of the signal
and thus encourages sparse and parsimonious signal
modelling. It can also be implemented with an analogue
circuitry which can allow for further computational
efficiency. Furthermore, the LSDL can also serve as an
adaptive decomposition scheme in the case of a
degrading or varying signal source. The main

shortcoming of the method remains a lack of insight into
the frequency content associated with the various signal
decompositions.

In terms of comparison with the current literature,
the state of the art appears to suggest that the use of the
raw data for signal processing purposes is the
commonality amongst authors, and is surpassed by the
LSDL, which can be seen from Tables 4 and 5. In terms
of further comparisons, Piryatinska et al. [29] utilised the
same dataset alongside complexity modelling for the
prediction of adolescent schizophrenia with a prediction
accuracy of 79.7%-83.6%, dependent on the classifier,
the results of which are below the prediction accuracy
obtained by the proposed method in this manuscript, as
shown in Table 7.

5. Conclusions
Schizophrenia is a psychotic disorder which is

characterised by an array of symptoms that make it
difficult for an individual to fit into standard settings.
The psychosis can be said to involve four various stages
where the most common form of the disorder is the
paranoid variant. The effective diagnosis of
schizophrenia has historically proven to be challenging
as the disorder also shares commonalities with other
forms of psychiatric disorders. In addition to this, the
diagnosis of schizophrenia in adolescents is even more
tedious due to the naïve psychology of the age cohort.

EEG signals provide surface manifestations of brain
neurons firing in synchronism and have proved to be a
useful tool in the non-invasive detection of brain-related
disorders. This paper explored the prediction of schizo-
phrenia from acquired EEG signals from adolescent pa-
tients as a means of eliminating bias and shortcomings
associated with standard psychiatric-based interview
style diagnosis methods. EEG signals are nonlinear
manifestations of neural oscillations within the brain and
tend to benefit from pre-processing and signal
decomposition. As part of the work done, this paper
contrasts a metaheuristic decomposition with a deep
wavelet scattering decomposition, followed by
unsupervised and supervised learning for an automated
schizophrenia prediction platform. Following the
extraction of an enhanced group of features, the
clustering work done with K-means showed that the
LSDL decomposition method provided the best
clustering accuracy, and its associated labels were used
to train five candidate supervised learning models with
an “easy” interpretability, where the results showed high
metrics in the region of 95% for the various
classification metrics which were investigated, therein
showcasing the capability of the LSDL alongside
unsupervised learning to serve as an automated clinical
support tool for the diagnosis of schizophrenia in
adolescents. The main limitation of the proposed work is
tied down to the long and arduous process involved in
the tuning and optimisation of the LSDL in order to find
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the optimal decomposition region. Hence, subsequent
work would likely involve the potential streamlining of
the heuristics used as part of the algorithm in order to
minimise this.

Further work would also now involve the use of
deep learning architectures such as long short-term
memory, and convolution neural networks for
classification of the EEG signals. In addition, further
work would also explore parsimonious modelling based
on the application of electrode selection methods towards
reducing the amount of channels used to make
predictions of the presence of the psychosis [56].
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