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ABSTRACT 

Regarding coronavirus disease (COVID-19) pandemic, this research article wants to study some herbals as the 

probable therapy for this disease. Cinnamon leaves, curcuma longa (turmeric), ginger, mentha pulegium (pennyroyal), 

rosemary, salvia divinorum and thyme including some principal chemical compounds of cynnamil, curcumin, gingerol, 

pulegone, rosmarinic acid, salvinorina A and thymol, respectively, as a probable anti COVID-19 receptor have been 

selected. The possible roles of these medicinal plants in COVID-19 treatment have been carried out through quantum 

sensing methods. Formation of hydrogen bonding between principal substances selected in COVID-19 natural drugs 

bound to Tyrosine-Methionine-Histidine (Tyr-Met-His) or (TMH) (the database amino acids fragment) as the active 

area of the COVID-19 protein has been evaluated. In fact, it has been exhibited the role of oxygen, nitrogen, and 

hydrogen atoms in the active sites of these anti-virus medications towards hydrogen bonding in the active site if “TMH” 

protein. The physical and chemical attributes of nuclear magnetic resonance, vibrational frequency, the highest 

occupied molecular orbital energy and the lowest unoccupied molecular orbital energy, partial charges and spin density 

and have been accomplished using density functional theory (DFT) method and 6-311+G (2d,p) basis set by Gaussian 

16 revision C.01 program toward the industry of drug design. This research has exhibited that there is a relative 

agreement among the results that these medicinal plants could be efficient against COVID-19 symptoms. 
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1. Introduction 

Pandemic coronavirus disease (COVID-19) is a serious malady 

caused by a new coronavirus known as severe acute respiratory 

syndrome (SARS-CoV-2). There is non-trustworthy remedy or 

vaccine accessible to fight versus SARS-CoV-2[1–6]. More attempts to 

probe for antiviral agents against COVID-19 are essential, while 

phytochemicals can be powerful solution. On top of exhibiting direct 

antiviral effects, medicinal plants with reported anti-inflammatory 

activities may have pleiotropic roles in COVID-19 management as 

the elevation of inflammatory markers[7–11]. Moreover, it has been 

discovered that a detrimental change in COVID-19 epidemiology 

should be existed as a (variant of concern) VOC, and the WHO has 

determined Omicron variant (B.1.1.529 as a VOC). 

Local treatment in rural zones keeps its importance as the 

primary procedure in the usual seasonal maladies like colds and flu. 

The most important reason for herbs and medicinal plant treatment is 

the belief that it will influence health. The natural products from 

medicinal plants are therefore bringing hope to consisting of 
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phytocompounds which can either kill the SARS-CoV-2 or interferes its replication or make human body 

immunity strong to fight against. 

Recently, antibodies have been almost all produced in human cells, transformed animal cells, and these 

are platforms that require a lot of equipment, which are very long to set up. Many plant-based antibodies can 

respond very quickly to the emergence of new variants of COVID-19. The emergence of a new coronavirus, 

known as the SARS-CoV-2 has initiated a pandemic of COVID-19. Since its first reported case in Wuhan, 

China in December 2019, new discovered evidence by both clinicians and researchers globally have helped 

shed some light on the disease pathogenesis and the nature of the virus itself. The availability of new 

information subsequently fed policy changes on transmission prevention strategies as well as development of 

preventative vaccines and therapeutic drug candidates. Enforced physical distancing, hand hygiene, and 

arguably proper usage of personal protective equipment including wearing a surgical mask remains the most 

effective way of controlling the spread of the disease, with most countries which adopted such measures 

reporting some success in curbing the disease spread[12–19]. 

In the research of phytomedicine, it is common to observe multiple pharmacological properties from a 

single plant. It is now well understood that a single plant may contain a wide range of phytochemicals, 

making ethnopharmacology research both full of possibilities yet challenging. 

Ćavar Zeljković and his co-workers have indicated that the essential oils from Mentha aquatica L. cv. 

Veronica, Mentha pulegium L., Mentha microphylla K.Koch, Mentha x villosa Huds., Micromeria thymifolia 

(Scop.) Fritsch, and Ziziphora clinopodioides Lam., and their monoterpenecomponents, carvone, carvacrol, 

pelugone, menthofuran, and 1,8-cineole exhibited notable antiviral activity against SARS-CoV-2[20]. 

New investigations have approved the medicinal advantages of turmeric for liver diseases, diabetes, 

cancer, respiratory diseases, AIDS and Alzheimer’s disease. Therefore, the turmeric might have the powerful 

impact against COVID-19. Many therapeutic influences of the natural polyphenol, curcumin, have been 

exhibited such as potential chemotherapeutic, antioxidant, antiviral, antibacterial, and anti-inflammatory 

properties[21]. In fact, curcumin can appear a high-affinity for interaction with the S glycoprotein through the 

establishment of six hydrogen bonds. Moreover, docking results have indicated that curcumin interacted with 

the active site of the protein, in addition to forming two hydrogen bonds[22]. 

Thymol (2-isopropyl-5-methylphenol) relates to the phenolic monoterpenes and exists in thyme specie 

which is one of the main compounds of thyme essential oil. They have been used in traditional medicine as 

expectorant, anti-inflammatory, antiviral, antibacterial, and antiseptic agents, in the remedy of the upper 

respiratory system[23–26]. 

The pharmacological impacts of ginger are related to its terpene and phenolic compounds. The ginger-

extracted phenolic ingredients consist of gingerols, paradols, shogaols, and zingerone. The major pungent 

compounds of fresh ginger are gingerols. Gingerols have anticancer activity, anti-inflammatory, antioxidant, 

antiangiogenesis, anti-metastasis, antimicrobial, antifungal, neuroprotective, antiemetic and 

antihyperlipidemic effects[27,28]. 

Scientific researches approve that cinnamon can be a potent anti-inflammatory, antioxidant functional 

food and might be fruitful in mitigation of SARS-CoV-2 induced hyper inflammation. During the COVID-19 

pandemic, the patients request for consumption of cinnamon powder as prophylactic functional food against 

SARS-CoV-2[29–31]. 

Herbal of rosemary as a natural antioxidant removes reactive oxygen species from tissues, enhances 

expression on Nrf2 gene and decreases inflammation by inhibiting production of pro-inflammatory cytokines. 

Furthermore, rosmarinic acid in rosemary extract has positive impacts on renin-angiotensin-system. This 
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medicinal plant influences respiratory system by decreasing inflammation, oxidative stress, and muscle 

spasm[32–34]. 

In the work, it has been studied cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A 

and thymol as the probable anti-COVID-19 receptor extracts from herbals containing cinnamon leaves, 

curcuma longa (turmeric), ginger, mentha pulegium (pennyroyal), rosemary, salvia divinorum and thyme 

(Table 1). 

Table 1. Cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol as the anti-COVID-19 receptor extracts 

from herbals: cinnamon leaves, curcuma longa (turmeric), ginger, mentha pulegium (pennyroyal), rosemary, salvia divinorum and 
thyme. 

Component Image Species Symptoms of COVID-19 which can 

be treated by the medicinal plants[35] 

Cynnamil  

 

Cinnamon Anorexia, skin rash 

Curcumin 

 

Turmeric Muscle-joint pain 

Gingerol 

 

Ginger Cough 

Pulegone 

 

Mentha Nausea-vomiting, headache 

Rosmarinic acid 

 

Rosemary Shortness of breath, decreased blood 
oxygen level, muscle-joint pain 

Salvinorina A 

 

Salvia divinorum Sore throat, shortness of breath 

Thymol 

 

Thyme Fever 

Based on this research, it can been estimated the occasions for discovering the efficient medication 

against COVID-19 using quantum mechanics computations to measure the effect of hydrogen bonding in the 

variety of junction with these seven natural drugs’ components of cynnamil, curcumin, gingerol, pulegone, 

rosmarinic acid, salvinorina A and thymol binded to the active area of COVID-19 virus[36–41] (Figure 1). 
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(f) 

Figure 1. (Continued). 
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(g) 

Figure 1. The junction of (a) cynnamil; (b) curcumin; (c) gingerol; (d) pulegone; (e) rosmarinic acid; (f) salvinorina A; and (g) 

thymol to TMH (Tyr160-Met161-His162) by hydrogen bonding. The sequence of hydrogen bond are as follows: g > e > c > a > f > 
b > d. 

Recently, several traditional medicinal plants including Glycyrrhiza glabra, Nigella sativa, Curcuma 

longa, Tinospora cordifolia and Withania somnifera with high potential in modulating the main protease 

(Mpro) activity and cytokine storm in coronavirus disease infection have indicated remedial impacts on 

COVID-19 patients[42]. 

2. Material and method 

Cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol have been attached 

to the active area of COVID-19 compounds which approves the existence of hydrogen bonds toward 

resistant complexes. Therefore, quantum mechanics approaches with m062x/cc-pvdz pseudo=CEP function 

for complexes of seven inhibitors for COVID-19 has been accomplished. The favorable coordination of the 

optimized substances of phenolic natural drug joint to Tyr160-Met161-His162 with IR spectroscopy using 

the Gaussian 16 revision C.01 program package[43] has been measured due to the DFT method and 

m062x/cc-pvdz pseudo=CEP level of theory. The (Perdew-Burke-Ernzerhof) “PBE” functional with high-

precision generalized gradient approximation “GGA” has been employed to achieve more authentic 

results[44]. 

It has been exhibited that polarization functions into the employed basis set in the calculation always 

remark us a magnificent prosperity on the simulation and modeling in the drug design industry[45–52]. 

Frequency achievement is the finding of harmonic potential wells by analytic procedures which keep the 

activity of all atoms at the same time in the vibration time scale conducting to an inherent illustration of 

vibrations in molecules[53–57]. 

Thus, the geometry optimization of coordination in medicinal extracts-TMH agents based on the drug 

design has been found from the active area of certain atoms of “O”, “N” and “H” in the attachment of bond 

angle and torsion angle values (Table 2 and Figure 1a–g). 

For carrying out a firm compound of natural medication attached to COVID-19 active site, chemical 

shift of nuclear magnetic resonance, vibrational frequency and intensity of the normal modes have been 

commutated with the “QM” methods, and the original vibrational modes have been analyzed[58–63]. 

The computational measurements have been carried out in variety of theoretical levels to profit the more 

precise balance geometrical amounts and infrared spectral information for each of the indicated substances. It 

is assumed that a further diffuse and polarization functions into the basis set employed in the calculation 

direct us to the high evolution on the results of methodical approaches[64–67]. 

The different approaches in modeling and simulation exhibit the path which can generate a usual model 

at a particular temperature by evaluating all physical and chemical attributes based on the partition function 

amounts[68–76]. 
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Table 2. The geometry optimization amounts with m062x/cc-pvdz pseudo=CEP for cynnamil, curcumin, gingerol, pulegone, 
rosmarinic acid, salvinorina A and thymol binded to active site of COVID-19 protein through the drug design approach. 

Medicinal extracts—COVID-19 

active area 

Bond length (Å) Bond/Torsion angle (°) 

Cynnamil acetate N71–H72 1.03 N71–H72–O10 177.85 

 H72–O10 0.99 

 O10–C9 1.42 N71–H72–O10–C9 139.37 

Curcumin N96–H97 1.03 N96–H97–O23 178.49 

 H97–O23 0.99 

 O23–C9 1.42 N96–H97–O23–C9 110.09 

Gingerol N95–H96 1.03 N95–H96–O17 178.00 

 H96–O17 0.99 

 O17–C11 1.40 N95–H96–O17–C11 −128.61 

Pulegone N49–H50 1.03 N49–H50–O72 176.66 

 H50–O72 0.99 

 O72–C57 1.41 N49–H50–O72–C57 172.37 

Rosmarinic acid N91–H92 1.03 N91–H92–O6 174.51 

 H92–O6 0.99 

 O6–C5 1.40 N91–H92–O6–C5 −176.79 

Salvinorina A N105–H106 1.03 N105–H106–O4 178.66 

 H106–O4 0.99 

 O4–C2 1.41 N105–H106–O4–C2 99.43 

Thymol N73–H 74 1.03 N73–H74–O11 175.09 

 H74–O11 0.99 

 O11–C4 1.37 N73–H74–O11–C4 −168.33 

3. Results and discussion 

Nuclear magnetic resonance or “NMR” shifts for Tyr160-Met161-His162 through the database of 

amino acids in beta sheet conformation and four certain extracts of natural medications containing cynnamil, 

curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol have been evaluated to discover the 

exhibited of oxygen, nitrogen, and hydrogen in the active sites of these anti-virus medications through the 

production of hydrogen bonding by representing the reaction area of “TMH” agent (Figure 2a–f). 

 
(a) 

Figure 2. (Continued). 
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(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

Figure 2. “NMR” spectroscopy for (a) cynnamil acetate; (b) curcumin; (c) gingerol; (d) pulegone; (e) rosmarinic acid; (f) salvinorina 
A binded to “TMH” COVID-19 active area through the drug design approach. 
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NMR properties have denoted the critical points of essential extracts of pharmaceutical kinds for 

attaching to the Tyr160-Met161-His162 (TMH) in producing the anti-virus medications while each critical 

atom of “O” and “N” as the electronegative atoms for jointing to the hydrogen has remarked the major 

changing in the “NMR” graphs (Figure 2a–f). 

The technique of infrared (IR) for main ingredients of medicinal plants including cynnamil, curcumin, 

gingerol, pulegone, rosmarinic acid, salvinorina A and thymol have been calculated for fixing the 

intersection of Tyr160-Met161-His162 as the COVID-19 medication through the drug design approach 

applying “IR” spectroscopy using Gaussian 16 revision C.01 program to obtain the best amounts for 

geometrical coordination and thermochemical parameters. Then, thermodynamic properties have 

distinguished the resistant anti-COVID-19 agent complexes of principal extracts of pharmaceutical kinds of 

“TMH” through the hydrogen bonding constitution employing the drug design framework (Table 3). 

Table 3. Physical and thermochemical properties of cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and 

thymol jointed to COVID-19 active site (TMH) complexes at 300 K. 

Component-COVID-19 

active site 

Eelectronic × 10−4 

(kcal.mol−1) 

Ecore-core × 10−4 

(kcal.mol−1) 

∆G × 10−4 

(kcal.mol−1) 

∆S  

(kcal.K−1. mol−1) 

T∆S × 10−4 

(kcal/K−1. mol−1) 

Cynnamil acetate −167.07 151.18 −15.88 529.81 15.89 

Curcumin −267.14 245.21 −21.93 731.67 21.95 

Gingerol −244.84 225.18 −19.66 655.03 19.65 

Pulegone −175.39 159.96 −15.43 514.44 15.43 

Rosmarinic acid −268.87 246.53 −22.34 744.48 22.33 

Salvinorina A −330.98 307.19 −23.79 792.74 23.78 

Thymol −166.91 151.62 −15.28 509.72 15.29 

In cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol attached to 

Tyr160-Met161-His162 through its database of amino acids in beta sheet conformation, as the critical point 

of COVID-19 protein compound in the procedure of drug design steps, the thermodynamic properties of 

pharmaceutical extracts-TMH complexes have been discovered to be significantly distinct through the 

resistance of hydrogen bonding organized between critical point of COVID-19 agent and pharmaceutical 

extracts which establishes the anti-COVID-19 medication (Table 3 and Figure 3). 

 

Figure 3. (Continued). 
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Figure 3. ∆G°R for the stable anti-COVID-19 complexes of cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A 
and thymol jointed to TMH through the H-bonding formation using the drug design method. 

Moreover, the heat formation (∆H°f) for cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, 

salvinorina A and thymol jointed to COVID-19 has been discussed the H-bonding due to the database of 

amino acids in beta sheet conformation; Tyr160-Met161-His162 (∆H°TMH = 25.8242 × 10+4 kcal.mol−1) as 

the active site of the COVID-19 variant B.1.1.529 molecule. Finally, the reaction heat formation ∆H°R have 

been calculated as follows (Table 4, Figure 4): 

∆H°R = ∆H°f(X-TMH) – (∆H°f,TMH + ∆H°f,X), 

where X is cynnamil acetate, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A, thymol. 

Table 4. The heat of formation, ∆H°f (kcal.mol−1), ∆H°R(kcal.mol−1) among cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, 
salvinorina A and thymol jointed to COVID-19 active site (TMH) complexes at 300 K. 

∆H°f × 10−4
 ∆H°f × 10−4

 ∆H°R × 10−4 

Cynnamil acetate 
−29.6736 

Cynnamil acetate-TMH 
66.9460 

−25.8146 

Curcumin 
115.3026 

Curcumin-TMH 
192.8237 

−25.8165 

Gingerol 
−145.3195 

Gingerol-TMH 
−70.9553 

−25.8168 

Pulegone 
−48.9909 

Pulegone-TMH 
21.7634 

−25.8172 

Rosmarinic acid 
355.7935 

Rosmarinic acid-TMH 
−107.7616 

−25.8706 

Salvinorina A 
−218.2009 

Salvinorina A-TMH 
−134.8384 

−25.8159 

Thymol 
−28.9166 

Thymol-TMH 
53.7594 

−25.8160 

 

Figure 4. The difference of ∆HF among cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol jointed 
to COVID-19 active site (TMH) complexes at 300 K. 
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In cynnamil acetate, gingerol, pulegone, and thymol linked to the database of amino acids in beta sheet 

conformation, as the active site of COVID-19 protein (Tyr160-Met161-His162) in the process of drug design, 

the frequency and intensity of different infrared (IR) normal modes of medicinal components-TMH 

complexes have been discovered to be significantly distinct through the stability of H–bonding formed 

between active site of COVID-19 variant B.1.1.529 and medicinal ingredients which prove the anti-COVID-

19 variant (Table 5 and Figure 5). 

Table 5. Cynnamil acetate, gingerol, pulegone and thymol as anti-COVID-19 drugs in distinct normal modes of infrared spectrums. 

Inhibitor Normal mode Frequency (cm−1) Intensity (km.mol−1) Dipole (Debyes) 

Cynnamil acetate 234 3680.71 115.4354 5.034 

Gingerol 109 1943.71 67.268 4.291 

Pulegone 248 3424.38 829.8741 5.439 

Thymol 236 3275.85 4169.9663 8.826 

In Table 5, it has been shown that intermolecular force of a hydrogen bond forms a special type of 

dipole-dipole attraction when the hydrogen atom in  the active site if “TMH” protein bonded to a strongly 

electronegative atom becomes in the vicinity of another electronegative atom with a lone pair of electrons in 

gingerol, cynnamil acetate, pulegone and thymol with dipole mement of 4.291, 5.034, 5.439 and 8.826 debye, 

respectively. 

 
Figure 5. “IR” properties for the phytochemicals of cynnamil acetate, gingerol, pulegone and thymol anti-COVID-19 drugs. 

In this part, the atomic charge of certain atoms of “O” attachment of cynnamil, curcumin, gingerol, 

pulegone, rosmarinic acid, salvinorina A and thymol with Tyr160-Met161-His162 agent has been measured 

in the critical point of hydrogen bonding existence (Table 6). 

In Table 6, it has been sketched the alterations of “Q” of indicated “O” atoms for optimized molecules 

of cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A and thymol attached to Tyr160-

Met161-His162 agent due to existence of hydrogen bonding. Thus, the consequences of Table 6 in a polar 

area have notified the consistency of COVID-19 medications which have been accomplished considering the 

oxygen as the electronegative atoms in growth of the hydrogen bonding using the drug design insight which 

has proposed the modeling of anti-COVID-19 drug. In fact, hydrogen bonding is a weak force present in 

polar compounds when the H atom attached to the more electronegative atom having a lone pair of electron. 

This leaves a partial positive charge on H atom and a partial negative charge on electronegative atom. So, it 

is observed that the electronegativity of an atom is related to its ability to pull the electron towards itself in 

covalent bond and this power to pull electrons depends on the size of atom. The results in this article have 
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manifested that medicinal plants and phytocompounds can have a considerable function due to their 

substantial antiviral activity against COVID-19 and other coronaviruses. Cynnamil, curcumin, gingerol, 

pulegone, rosmarinic acid, salvinorina A and thymol extracted from cinnamon leaves, curcuma longa 

(turmeric), ginger, mentha pulegium (pennyroyal), rosemary, salvia divinorum and thyme, respectively, were 

identified through in-silico molecular modeling by using DFT screening. Identified natural phytocompounds 

revealed to be potential in exhibiting antiviral activities by disrupting the viral life cycle including viral 

entrance, replication, assembly, and discharge, as well as virus specific host targets. Thus, this prompt 

increasing of pharmaceutical industry focused on phytochemical extracts from medicinal plants, and 

aromatic herbs in the hopes of discovering lead compounds, with purposeful to antiviral medications. 

Table 6. The amounts of atomic charge (Q) for indicated “O” atoms in the linkage of cynnamil, curcumin, gingerol, pulegone, 

rosmarinic acid, salvinorina A and thymol to Tyr160-Met161-His162. 

Cynnamil acetate Q (e) Curcumin Q (e) Rosmarinic acid Q (e) 

O10 −0.39 O20 −0.19 O2 0.14 

O11 −0.24 O21 −0.24 O3 −0.20 

 O22 −0.3473 O6 −0.37 

O23 −0.3482 O7 −0.28 

O24 −0.2328 O16 −0.23 

O25 −0.2122 O17 −0.24 

 O33 −0.22 

O34 −0.22 

Thymol Q (e) Gingerol Q (e) Salvinorina A Q (e) 

O11 −0.26 O17 −0.31 O3 −0.20 

  O18 −0.30 O4 −0.38 

  O19 −0.17 O12 −0.23 

  O20 −0.23 O13 −0.36 

Pulegone Q (e)   O20 −0.29 

O17 −0.34   O22 −0.24 

    O25 −0.33 

    O28 −0.04 

Moreover, a research has compared the total phenolic (TPC), flavonoid (TFC), radical scavenging and 

cytotoxic activities in the aqueous methanolic extracts of Angelica sinensis, Dioscorea polystachya, Ginkgo 

biloba, Glycyrrhiza uralensis and Lycium barbarum with two dietary plants of Brassica oleracea and 

Zingiber officinale that all of them were considered inactive and safe for consumption[77]. For instance, the 

effect of Peperomia pellucida (L.) Kunth as the medicinal plant on the inflammatory illnesses such as 

conjunctivitis, and gastrointestinal and respiratory tract disorders in tropical and subtropical regions[78]. 

Moreover, it has been evaluated the bioactive compounds in Peperomia pellucida (L.) Kunth with 

liquid-liquid partitioning method and compare their anti-glycaemic, anti-inflammatory, antioxidant, and anti-

glycation potential in different solvent fractions[79]. 

Another investigation has approved the pharmacological activities of anti-inflammatory, anti-diabetic, 

antioxidant and anti-glycation potential for the phenolic compounds, flavonoid, tannin, saponin, alkaloid in 

the plant fractions[80]. They have shown that ethyl acetate fraction exhibited relatively high anti-inflammatory, 

anti-diabetic, antioxidant and anti-glycation potential while the non-toxic methanolic and aqueous fractions 

exhibited high hyaluronidase and lipoxygenase inhibitory activities, respectively[80]. 
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4. Conclusion 

Medicinal plants of cinnamon leaves, curcuma longa (turmeric), ginger, mentha pulegium (pennyroyal), 

rosemary, salvia divinorum and thyme are puissant to adhere the database amino acids segment of Tyr160-

Met161-His162 agent as the appointive area of the COVID-19 through exhibiting the alteration in their 

frequency and intensity spectrums after approximation by “NMR” approach which are influenced by the 

atomic configuration of the anti-virus macromolecule. The resistance of hydrogen bonding between several 

pharmaceutical extracts of cynnamil, curcumin, gingerol, pulegone, rosmarinic acid, salvinorina A, thymol 

and COVID-19 through the constitution of anti-COVID-19 through two possibilities of [N H] and [O H] 

with distinct atomic charges have been inquired using “IR” approaches. Therefore, the thermodynamic 

attributes of Gibbs free energy, enthalpy of formation, electronic energy, core-core interaction can authorize 

the consistency of anti-COVID-19 due to hydrogen bonding foundation using the drug design framework. 

Here, we used the network pharmacology, metabolite analysis, and molecular simulation to comprehend the 

biochemical basis of the health-boosting impact of medicinal plants. The present study investigates the drug 

ability, metabolites and potential interaction of the title tea with genes associated with COVID-19-induced 

pathogenesis. Altogether, the evidence presented in this work supports the notion that medicinal plants have 

promising therapeutic potential, especially in the case of herb products against viral infections. 
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