
Trends in Immunotherapy | Volume 09 | Issue 04

Trends in Immunotherapy
https://ojs.ukscip.com/index.php/ti

Article

Modeling Hepatitis C Transmission to Inform Public Health Strate‑
gies and Long‑Term Control
Naresh Kumar Jothi 1* , Jayaprakash M 1 , Sukumaran. D 2 , Vadivelu V 1 , C. Mattuvarkuzhali 3

1 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi,
Chennai, Tamil Nadu 600062, India
2 Department of Mathematics, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Chennai,
Tamilnadu 600062, India
3 Department of Mathematics, Vel Tech Multi Tech Dr.Rangarajen Dr.Sakunthala Engineering College, Avadi,
Tamilnadu 600062, India
* Correspondence: nareshsastra@yahoo.co.in

Received: 24 June 2025; Revised: 01 July 2025; Accepted: 08 July 2025; Published: 10 October 2025

Abstract: The majority of people today would suffer and pass away from the hepatitis C virus (HCV); there is little
knowledge of the illness in the world. Althoughmany individuals have HCV characteristics and are affected, several
individuals do not genuinely believe that this is amajor issue. They are simply visiting the hospital to get short‑term
relief fromsymptoms like fatigue, nausea, jaundice; in long‑termsituations, theymay experience ϐluid accumulation
in the belly and easily bruise. Later on, it will develop into a chronic illness that causes liver cancer, liver failure,
and scarring of the liver (cirrhosis). Since HCV continues to be a major cause of death among the populations,
we established a compartmental framework for the nationwide outbreak in the current research, classifying those
infected into two sections with the most effective control. To get the fundamental reproduction number, ϐirst, we
employed the Next‑Generation Matrix method to identify the model’s endemic and disease‑free equilibrium point.
Using infected and disease‑free equilibrium points with reproduction number coordination, as well as MATLAB
software to simulate the model’s numerical equations, the local and global stability were analysed.
Keywords: Hepatitis C Virus; Mathematical Modeling; Stability; Equilibrium Points; Reproduction Number

1. Introduction
The hepatitis C virus (HCV) was identiϐied by the Chiron group (Choo, Kuo, Houghton) in the 1980s. Blood

transfusions were a major factor in spreading HCV. A watery acute hepatitis outbreak in Kashmir, India, raised the
ϐirst suspicion of hepatitis E. Hepatitis C is a virus that mainly affects the liver and can cause both short‑term and
long‑term health problems. The HCV causes it and is amajor health issueworldwide because serious issues, includ‑
ing liver cancer, liver failure, and scaring of the liver (cirrhosis), can result from it, so preventing it and detecting
it early are very important for controlling its spread. Effective vaccines for hepatitis A and B are available, signiϐi‑
cantly reducing the incidence of these diseases. Advances in treatment for hepatitis C have led to high cure rates,
making it a potentially curable chronic disease. Research continues to focus on understanding the natural history
of hepatitis B and C, developing new therapies, and preventing transmission. The majority of hepatitis A patients
recover without medical assistance because it is an acute condition. Hepatitis B or hepatitis C infections that are
persistent and long‑lasting can cause chronic liver damage.
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It’s transmitted frommother to child after childbirth or by intimate relations, sharing of needles, or contactwith
contaminated blood or body ϐluids. Elaiw et al. [1] noted that liver inϐlammation is a key feature of hepatitis and is
primarily caused by the hepatitis B virus (HBV) and hepatitis C virus (HCV), which mainly target liver cells. To im‑
prove treatment strategies for these co‑infections, researchers have developed mathematical models to understand
better the interaction between the two viruses and the immune response, particularly the role of CTL’s. Enhancing
CTL activation rates increases the number of healthy hepatocytes while reducing the levels of both HCV and HBV, ul‑
timately improving liver function. Abiodun et al. [2] stated that by reducing the reproduction number of co‑infection,
treating HCV ϐirst can lower the risk of liver cancer in individuals with both HBV andHCV. Simulation results suggest
that HCV treatment may also signiϐicantly reduce the negative impact of HCV on the HIV/AIDS epidemic.

Churkin et al. [3] mentioned that clinical research patient data and in‑silico patient data were integrated to cre‑
ate a precisemachine learningmethod for predicting the time to cure for hepatitis C. Carvalho et al. [4] examined the
prevalence of HIV viremia and the effectiveness of therapy in relation to the severity of HIV/HCV co‑infection pat‑
terns. It has also been discovered that therapy effectiveness inϐluences the natural progression of HCV in HIV/HCV
co‑infection. Artenie et al. [5] and Pitcher et al. [6] emphasized the importance of economic evaluations to deter‑
mine the budgetary impact, cost‑effectiveness, and optimal impact of HCV eradication initiatives to improve the
global public health response are necessary in conjunction with speciϐic expenditures to increase HCV prevention
and treatment among drug injectors, given the ϐindings indicating limited coverage.

Hepatitis C can be hard to identify in its early stages since it frequently goes years without showing any symp‑
toms [7]. HCV is eliminated, but a new steady state for infectious virions is obtained that is lower than the prior
steady state value for effectiveness below this threshold value [7]. As a result, many individuals do not realise they
have the infection until signiϐicant liver damage has already occurred. In addition to public health promotion, symp‑
toms such as nausea, jaundice (yellowing of the skin and eyes), stomach discomfort, and fatigue indicate the need to
raise awareness among high‑risk groups and healthcare professionals and signiϐicantly increase prevention, screen‑
ing, and treatment [8]. Mayanja et al. [9] stated that the ϐinding of reproduction and performing sensitivity analysis
to ascertain the relative signiϐicance of the various factors affecting the dynamics of HIV‑HCV co‑infection indicates
a signiϐicant proportion of people will eventually be co‑infected with HIV and latent HCV; thus, we must prevent
this and begin therapy as soon as possible. The illness caused by the disease might range from a minor one that
lasts a few weeks to a major one that lasts a lifetime; sufϐicient conditions have been determined in real‑life data
with a handled model [10].

Our numerical analysis of the fractional order model [11] ensures that it is more informative and has the same
behaviour as the classical model. In the fractional case, it should yield accurate ϐindings, as seen in Guedj et al. [12].
Considering the early degradation of HCVRNA following the start of IFN‑based antiviral treatment, important aspects
of the in vivo viral kinetics have been calculated, including the rate of free virus generation and clearance [13]. The
dynamical complexity of the model, including the instability of immune control equilibrium and the existence of a
stable periodic solution, has led to changes in the way hepatitis C is treated with the advent of direct‑acting antiviral
(DAA) drugs. Jothi et al. [14] developed a mathematical model concept for the dynamics of spreading disease, using
the stability concept of controlling the infection to prevent the spread of disease. Nakabayashi [15] and Durso‑Cain
[16] create a mathematical model that depicts the whole HCV replication process in a single infected cell; the effect
of dendritic cells (DC) and CTL is important to control the HCV. Since these drugs have a cure rate of over 95%, are
usually well tolerated, and have a brief course of therapy, it makes sense that they would be more effective than HCV.

Hakami et al. [17] used the most precise estimates of the physico‑chemical characteristics of the pharma‑
ceutical drugs to treat hepatitis, which may be obtained via quantitative Structure‑Property Relationships (QSPR)
analysis. However, many regions like Italy still face challenges in accessing these treatments due to their high cost
and healthcare inequalities [18,19]. We demonstrate the elimination plan of Khader et al. [20], Haggar et al. [21],
and Belay et al. [22]. The ability to produce viral persistence in cell‑to‑cell transmission might be the consequence
of two complementary modes of transmission. More and more mathematical model approaches are being used for
diagnosis, cost‑effectiveness, and HCV drug prediction.

Mannan et al. [23] showed the suggested approach’s accuracy, robustness, and convergencewhile emphasising
how it may be applied to other nonlinear epidemiological models. Institution like as theWorld Health Organization
(WHO) and the Centers for Disease Control and Prevention (CDC) have set aggressive goals to eradicate hepatitis C
as a danger to the public in order to address the disease’s worldwide effect; the aim would show Canada’s strong
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commitment to the general health and welfare of Canadians with chronic HCV infection in addition to placing the
country among the world’s most successful nations [24–26]. Mathematical modelling is necessary to comprehend
the dynamics of infectious disease transmission in Hepatitis C, where heavy alcohol use can accelerate the illness’s
progression and complicate therapy. By integrating components such as vaccine research, treatment strategies,
and behavioural interventions, models can guide effective disease control initiatives. While cost‑effectiveness anal‑
ysis make sure that suggestedmeasures, such as targeted treatment or immunisation, have the best possible public
health impact within ϐinancial limits, stability analysis aids in determining if an illness will endure or disappear
under certain circumstances, so that the spread of the disease would be most effective in terms of the dynamics of
the people [27]. We should determine the infection rate utilising modelling approaches, and we demonstrate the
optimal solution to stabilise the disease in the high‑infection areas of the world. This includes increasing efforts in
screening, early diagnosis, and improving access to treatment [27–34]. Hepatitis B is also a long‑term disease; util‑
ising screening and vaccination are two of the best ways to prevent hepatitis, but early diagnosis is also important
for this [35,36]. In our model, it has to be veriϐied to be controllable.

In this study, we developed a nonlinear Ordinary differential equation (ODE) model with the compartments.
Here is the total population, which represents susceptible people, exposed people, acutely infected people, chroni‑
cally infected people, and recovered people. The exposed people are affected in twoways. One is an acutely infected
population, in which acutely infected persons are those who recover spontaneously or after taking antibiotics, but
another type of impact is very complicated from 𝐼𝑎 . According to the next session’s results, this work is organised
as follows: various analytical ϐindings are determined with a viewpoint for the purpose of deϐining boundedness
and positivity of the answer and identifying the model’s ϐive stable states for every equilibrium. In numerical anal‑
ysis, we exhibit both local and global stability analysis of steady states, as well as global stability, locally asymptotic
stability, and numerical simulation. The ϐinal portion serves as the work’s ϐinale.

2. The Model Description of HPS
In our model, we have ϐive stages. The ϐirst one is the susceptible people, normal people with low immunity,

who cannot ϐight back against the virus HPS. They are considered to be in the ϐirst stage, and then the second stage is
exposed. In that stage of exposure, individuals with a disease expose themselves and being exposed is going to the
chronic stage because it is also like the individual having the acute stage of the disease, like having live cancer and
cirrhosis. So we consider the acute stage as all are curable with their immunity andmedication, if they properly con‑
tinue for a particular time period, and the chronic stage means having cancer and liver failure. The previous studies
focus on early prevention, but our model differs from others because we prove that exposure to chronic conditions
when symptoms are negative can put an individual at risk. In this study, we must prevent the infection before that
stage using the reproduction number and by checking the stability criteria of the model. In the exposed stage, indi‑
viduals are exposed to the highly infectious virions of HPS, but because the individuals do not have any symptoms,
the disease is not effective, which means they are already in the acute stage of liver disease. After the effectiveness
of the infections, they should change to highly infected individuals―chronic stage, as described in our model. To
prevent the illness of the individuals, we have to diagnose the infection at an early stage, and ϐind the reproduction
number. Our model should help prevent the spread in the early stage. In the early stage, we had the immunotherapy
to combat that virus and were highly expecting a higher recovery rate and lower infection rate. If they are having
recovery, they will be going through the stage of being exposed to acute to recovery, a key aspect of this model.

3. Mathematical Statement of the Model
The collection of ODEs from the ϐlow chart Figure 1 is written as Equations (1)–(5).

dS
dt = u− (μ + α)S (1)

dE
dt = αS− (μ + β + γ)E (2)

dIa
dt = γE− (μ + ε)Ia (3)
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dIc
dt = βE− (τ + μ)Ic (4)

dR
dt = εIa − μR (5)

Figure 1. The compartment model of HCV.
Note: u = individual population; S = susceptible individuals; E = exposed people (infected‑ symptoms not recognized); Ia = acutely infected people (exposing symp‑
toms); Ic = chronically infected people (suddenly highly infected); R = recovered people; α = the rate of exposed people; β = infection rate of chronically infected
individuals; γ = infection rate of acutely infected individuals; ε = recovery rate of acutely infected individuals; μ+τ = the mortality rate of people with chronic infec‑
tions; μ = individual death rate.

4. State of Equilibrium
• A result that remains constant in the absence of a disease state is called equilibrium. This suggests that since

the system began at equilibrium, it will continue to be in that condition until the end of time.
• A system that is constantly changing is said to be dynamic. When time is calculated in various periods, we have

a discrete dynamical system.
• The sequencedescribedby the recurrence relation {xn}+1 = f {xn}, where is a real‑valued function, is a discrete

dynamical system.
• An iteration from on a function:
• A ϐixed point is occurs [xn+1 = xn = x∗ = x∗ = f(x∗)] when the system has same solution, it is the dynamical

systems equilibrium.
• A differential equation of the following type describes a continuous dynamical system: dx

dt = f(x)
• An equilibrium, also referred to as a steady state point, occurs when: dx

dt = 0; This indicates that there is no
change over time and the system is in rest.

5. Steady State‑Equilibrium Points
In this model, the population is free of the virus as no one is afϐlicted with it.

Consider now that HCV is a disease‑free state.
Now

Ḋ = (Ṡ, Ė, ̇Ia, ̇Ic, Ṙ)
= (Ṡ, 0, 0, 0, 0)

dS
dt = 0

⇒ u− (μ + α)S = 0

Ṡ = u
μ + α

Here is the HCV’s disease free equilibrium points [Equation (6)].
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E0 = ( Ṡ , Ė , ̇Ia , ̇Ic , Ṙ ) = ( u
μ + α , 0 , 0 , 0 , 0 ) (6)

6. HCV’s Basic Reproduction Number {R0}
• After establishing the compartments, we will calculate the fundamental reproduction number (R0) in our

model using the next generation matrix approach.
• The HCV, in the model virus infected states are Ia and Ic. Hence, we ϐind the reproduction number must be

determined the R0(a) and R0(c) of the HCV model.
Now, the state of HCV’s Reproduction number is [R0(a)]
i.e.,

dIa
dt = γE− (μ + ε)Ia

We have that F=[γ] and v=[μ + ε]
Now the inverse matrix of v is,

v−1 = ቈ 1
μ + ε቉

Let
R0(a) = Fv−1

Then,
R0(a) = γ ቈ 1

μ + ε቉ ,

R0(a) = ቈ γ
μ + ε቉ .

Furthermore, the HCV reproduction number state [R0(c)],
i.e.,

dIc
dt = βE− (τ + μ)Ic

we have that F=[β] and v=[τ + μ]
for v, the inverse matrix is

v−1 = ቈ 1
μ + τ቉

Now,
𝑅0(𝑎) = 𝐹𝑣−1

Then,
R0(c) = [β][ 1

μ + τ],

R0(c) = [ β
μ + τ].

The represented state conditions are shown below. On average, one person from each of the two infectious
classes contributes to a new infection.

thus, R0 = R0(a) + R0(c).

7. Positivity and Boundedness
Theorem 1. The equation combined with Equation (6), the proposed model’s in Equations (1)–(5) solution set is

positive for all time 𝑡 > 0.
Proof of Theorem 1. We evaluate, Equation (1) while taking into consideration non‑linear system of equa‑

tions.
dS
dt + (μ + α)S = u
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To ϐind the Integrating Factor, which implies that:

S(t) = u
α + μ + ce−(μ+α)t

Now
S0 = S(0)

S0 =
𝑢

μ + α + c

c = S0 −
u

μ + α
Substitute c in S(t)

S(t) = uα + μ + ቆS0 −
u

μ + αቇ e
−(α+μ)t

This goes
S(t) ≥ 0

Let Ω={S, E, Ia, Ic, R} ∈ R +
5 , N ≤ U

μ , S0 ≥ 0, E0 ≥ 0, Ia ≥ 0, Ic ≥ 0,R ≥ 0. The model’s responses will always
stay positive for the model for all time t > 0

8. Uniqueness Solution
Lemma 1. If all initial conditions, can be satisϔied 𝑆(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼𝑎(𝑡) > 0, 𝐼𝑐(𝑡) > 0, 𝑅(𝑡) > 0, then in

this model, for all then , will exist inℝ+
5 .

Proof of Lemma 1. Therefore, if it is continuously differentiable on ℝ+
5 , we may conclude that f is Lipschitz

Locally inℝ5
+

x=
⎛
⎜⎜

⎝

S
E
Ia
Ic
R

⎞
⎟⎟

⎠

𝑎𝑛𝑑𝑓(𝑡) =
⎛
⎜⎜

⎝

U− (μ + α)S
αS− (μ + β + γ)E
γE− (μ + ε)Ia
βE− (μ + τ)Ic

εIa − μR

⎞
⎟⎟

⎠
Theorem 2 (Uniqueness and Existence theorem). f:ℝn→ℝn is the function we assume that it is continuously

differentiable and thus, the differential equation 𝑑𝑦
𝑑𝑡 =f(y) with the interval τ is have a answer, it’s y(t) if for �t∈ τ

then y(t) is derive on the interval τ and y(t) is inℝ5 and 𝑑𝑦
𝑑𝑡 =f(y), given y0∈ ℝn and, the initial valued Problem had a

solution ,that is y(t).
dy
dt = f(y)

y(t0) = y0
Basedon thedistinctness,wemaypresume that theODE’smodel Equation (1)haspositive, unique, andbounded

outcomes. Existence and uniqueness of the preceding theorem, which we recently stated without veriϐication, as
well as the proven lemmas of the solutions are positive and bounded.

9. HCV Dynamic Model
Given an all‑out population and the model of Equations (1)–(5), we distinguish according to time and proce‑

dures. We get,
dN̂(t)
dt = dS(t)

dt + dE(t)
dt + dIa(t)

dt + dIc(t)
dt + dR(t)

dt
When we combine Equations (1) through (5), we obtain Equation (7).

= u− (μ + α)S+ αS− (μ + β + γ)E+ γE− (μ + ε)Ia + βE− (τ + μ)Ic + εIa − μR

= u− μ(S+ E+ Ia + Ic + R) − τIc
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dN̂(t)
dt = u− μN̂(t) − τIc (7)

Hence, the population’s dynamics of variances may, there will be in the Equation (7).
Theorem 3. Considering that Equation (7) includes a model solution in manner of Equations (1)–(5) beginning

circumstances, in what else is there in the set of compact (π) as 𝑡 → ∞. Next, a positive continuous set of the model,
the feasible Answer, is provided by

π = ቊ(S(t) + E(t) + Ia(t) + Ic(t) + R(t)) ∈ R 5
+ ≥ 0 ∶ N̂(t) ≤ u

μ ቋ

Proof of Theorem 3. In Equation (7), variation in N cause changes in every variable in the population.
i.e., N̂ = (S(t) + E(t) + Ia(t) + Ic(t) + R(t)), and we obtain Equation (8).

dN̂(t)
dt = u− μN̂(t) − τIc (8)

Assumed that at the beginning stage, there is no disease, say next, Equation (8) provides Equation (9).
d N̂(t)
dt = u− τIc (9)

From Equation (9), As we see this if so we obtain Equation (10).
dN̂(t)
dt ≤ u− τIc (10)

Modifying Equation (10), we obtain:
dN̂(t)
dt + τIc ≤ u

Using an integrating factor that is linear, I.f = e∫ μdt = eμt .
This refers to the common answer of Equation (10) that is found.

N̂(t).(I.f) ≤ න (I.f)dt + c

Equivalently,
N̂(t).eμt ≤ ∫ 𝑢𝑒μtdt+ c,
N̂(t).eμt ≤ u eμt + c
N̂(𝑡) ≤ u

μ + c e−μt
(11)

Using N̂(𝑡 = 0) = N0,we have
N̂(0) = u

μ + c,

ቈN̂(0) − u
μ቉ = c

(12)

From Equation (11) and (12), we have Equation (13).

N̂(t) ≤ u
μ + ቈN̂(0) − u

μ቉ e
−μt (13)

Where in Equation (13), the overall population reduces N̂(t) ≤ u
μ , it implies at that point, 0 ≤ N̂(t) ≤ u

μ , there
are restricted regulations for models of Equations (1) to (5) in the area (π). This completes a statement.

Thus, ⩝ t >0, the region suggested by:

π = ቐ
(S(t), E(t), Ia(t), Ic(t), R(t)) ∈ R 5

+ ≥ 0,
S(t) + E(t) + Ia(t) + Ic(t) + R(t) ≤ N̂(t), N̂(t) ≤ u

μ
ቑ ,

stands for a model’s region of feasible.
Based on this, it is positively invariant. As a result, both mathematically and epidemiologically, the model in

Equations (1)–(5) is given quite well. As a result, it is sufϐicient to focus on the model’s dynamics in the region π.
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10. Dimensionless Transformation
Using the state variables, we perform dimensionless adjustments to enhance the analysis of model S(t), E(t),

Ia(t), Ic(t), R(t). The consistent set of models becomes into Equations (14)–(18).

S′(t) = u− (μ + α)S (14)

E′(t) = αS− (μ + β + γ)E (15)
I′𝑎(t) = γE− (μ + ε)Ia (16)
I′c(𝑡) = βE− (τ + μ)Ic (17)

R′(t) = εIa − μR (18)
Adding Equations (14)–(18) yield Equation (19).

S′(t) + E′(t) + I′a(t) + I′c(t) + R′(t) = u− μ(S+ E + Ia + Ic + R) − τIc
= u− (μ + τIc)

(19)

Where (S+ E + Ia + Ic + R) = 1.

11. Region of Feasible
• All of the state variables in the models are consistently positive as the population being studied is the human

population. Thus, in the area π, the system Equations (14)–(18) model equations are limited to an a positive
state.

• π = ൛൫S,E, Ia, Ic, R൯ ∶ S > 0, E > 0, Ia > 0, Ic > 0, R > 0ൟ ∈ R 5
+,

• Our model Equations (14)–(18) have biological value except in cases where the feasible area is positively in‑
variant.

12. Positivity Solution
• Since, they deal with the human population, we demonstrate in this section that each condition variable is not

negative.

13. HCV’s Endemic Equilibrium Points( ̂E∗)
Consider ̂E∗ = (S∗, E∗, I∗a, I∗c , R∗) ∈ π are the organization’s points of equilibrium, as shown by the conϐigura‑

tion of Equations (1)–(5). Setting the condition yields the states of equilibrium points are:
dS
dt =

dE
dt =

dIa
dt = dIc

dt = dR
dt = 0

dS
dt = u− (μ + α)S = 0,

S∗ = u
μ + α,

dE
dt = αS− (μ + β + γ)E = 0

E∗ = αu
(μ + β + γ) (μ + α) ,

dIa
dt = γE− (μ + ε)Ia = 0

Ia∗ =
γαu

(α + μ)(ε + μ)(β + γ + μ) ,

dIc
dt = βE− (τ + μ)Ic = 0
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Ic∗ =
βγαu

(τ + μ)(ε + μ)(μ + β + γ) (α + μ) ,

dR
dt = εIa − μR = 0

R∗ = εβγαu
(μ)(τ + μ)(ε + μ) (α + μ)(β + γ + μ)

Accordingly the given a equilibrium points is:

̂E∗ = (S∗, E∗, I∗a, I∗c , R∗) = E∗

= ൮
u

α + μ,
αu

(μ + β + γ) (μ + α) ,
γαu

(μ + ε)(μ + β + γ) (μ + α) ,
βγαu

(τ + μ)(μ + ε)(μ + β + γ) (μ + α) ,
εβγαu

(μ)(τ + μ)(ε + μ) (α + μ)(β + γ + μ)
൲

Theorem 4. In the even that R0 > 1, then the area π is the Global Asymptotic Stability (GAS) point of equilibrium
for the endemic.

Proof of Theorem4. Assuming that R0 >1, we are able to establish the global stability by deϐining andderiving
the Lyapunov P function as Equation (20).

P(y1, y2, ..., yn) =
n

෍
1

1
2 ൣyi − y∗i ൧

2 (20)

Using the Equations (1)–(5), where yi=human population classes and y∗i = endemic equilibrium point of indi‑
vidual people ̂E∗, Equation (20) becomes Equation (21).

𝑃 (𝑆, 𝐸, I𝑎 , I𝑐 , 𝑅) =
1
2 ൣ(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (I𝑎 − I∗𝑎) + (I𝑐 − I∗𝑐) + (𝑅 − 𝑅∗)൧2 . (21)

Equation (21) differentiate it with respect time t, relating to the Equations (1)–(5), we get Equation (22):
dP
dt (S,E, Ia, Ic, R) = ൣ(S− S) + (E− E∗) + (Ia − I∗𝑎) + (Ic − I∗c) + (R− R∗)൧ .

d
dt [S+ E+ Ia + Ic + R] ,

dP
dt (S,E, Ia, Ic, R) = ൣ(S+ E+ I𝑎 + Ic + R) − ൫S∗ + E∗ + I∗a + I∗c + R∗൯൧ .

d
dt [S+ E+ Ia + Ic + R] ,

(22)

but, in Equation (7) from, we getting Equation (23).

dN̂(t)
dt = d

dt [S+ E+ Ia + Ic + R] (23)

Thus, substitute Equation (8), and then Equation (23) yields Equation (24):

dN̂(t)
dt = u− μN̂(t), (24)

but , from Equation (13), we getting Equation (25):

൫S∗ + E∗ + I∗a + I∗c + R∗൯ = u
μ , (25)

in Equation (22) ,we substitute Equations (23)–(25), we getting Equation (26) and (27).

dP
dt = ቈ𝑁̂(t) − u

μ቉ ൣu− μN̂(t)൧ (26)
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dP
dt = −1μ ൣμN̂(t) + u൧ ൣu− μN̂(t)൧

dP
dt = −1μ ൣu− μN̂(t)൧

2 (27)

Subsequently, fromEquation (27), which follows dP
dt < 0, makes it obvious that is a functionof Lyapunov strictly,

indicating that GAS, which is made up of the area π, is the endemic point of equilibrium. According to this, For a
very long period, hepatitis (HPS) will remain physiologically stable in the human population.

Once again in Equation (27), and subsequently, in the region π, converges positively as t → 0
Thus, it is becomes closer to the proof.
Theorem 5. The Disease‑free equilibrium of our model Equations (1)–(5), Locally asymptotically stable (LAS)

models have a reproduction number of 𝑅0 < 1; otherwise, they are unstable.
Proof of Theorem 5. At the disease‑free equilibrium point, we are now use the Jacobian matrix to determine

the local stability of Equations (1)–(5) in the HPS disease free equilibrium.
Applying Equations (1)–(5) of the system as follows:

j( ̂E0) =

⎡
⎢
⎢
⎢
⎢
⎣

−(μ + α) 0 0 0 0
α −(β + γ + μ) 0 0 0
0 γ −(ε + μ) 0 0
0 β 0 −(τ + μ) 0
0 0 ε 0 −(μ)

⎤
⎥
⎥
⎥
⎥
⎦

(28)

we now handle matrix Equation (28), the LAS will depend on the eigenvalues’ outcome of the matrix.
Now here and the unit matrix is I = 5 × 5; are eigenvalues.
Then,

⎡
⎢
⎢
⎢
⎢
⎣

⎛
⎜⎜

⎝

−(μ + α) 0 0 0 0
α −(μ + β + γ) 0 0 0
0 γ −(μ + ε) 0 0
0 β 0 −(μ + τ) 0
0 0 ε 0 −(μ)

⎞
⎟⎟

⎠

−
⎛
⎜⎜

⎝

−(λ) 0 0 0 0
0 −(λ) 0 0 0
0 0 −(λ) 0 0
0 0 0 −(λ) 0
0 0 0 0 −(λ)

⎞
⎟⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=
ተ
ተ

−(μ + α) − λ 0 0 0 0
α −(μ + β + γ) − λ 0 0 0
0 γ −(μ + ε) − λ 0 0
0 β 0 −(μ + τ) − λ 0
0 0 ε 0 −(μ) − λ

ተ
ተ
= 0

when the above mentioned equation is evaluated,

λ1 = −(μ + α) , λ2 = −(μ + β + γ), λ3 = −(μ + ε) , λ4 = −(μ + τ) , λ5 = −(μ)

Since all the eigenvalues of j( ̂E0) < 1, that is, λ1 = λ2 = λ3= λ4 = λ5 < 1
Hence, R0 < 1, the proof of this statement is indicates that, disease‑free equilibrium point is LAS.
Theorem 6. The global asymptotically stable (GAS) equilibrium of the endemic point on π will exist if 𝑅0 < 1.
Proof of Theorem 6. Nowwe consider the Lyapunov function [Equation (29)].

Lf (S,E, Ia, Ic, R)
= S− S∗ InS+ k1(E− E∗ InE) + k2 (Ia − I∗a InIa) + k3 (Ic − I∗c InIc) + k4(R− R∗ InR) (29)

Characterized and continuous and fulϐills
dLf
dt = 𝜕Lf

𝜕S
dS
dt +⋯+ 𝜕Lf

𝜕R
dLf
dt
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Which turns on

̇Lf (S,E, Ia, Ic, R) = Ṡ− S∗ 1
S Ṡ+ k1(Ė− E∗ 1

E Ė) + k2 ( ̇Ia − I∗a
1
Ia

̇Ia)

+k3 ( ̇Ic − Ic∗
1
Ic

̇Ic) + k4(Ṙ− R∗ 1
R Ṙ)

̇Lf (S,E, Ia, Ic, R) = ቆ1 − S∗ 1
S ቇ Ṡ+ k1 ቆ1 − E∗ 1

E ቇ Ė+ k2 ቆ1 − I∗a
1
Ia
ቇ ̇Ia

+k3 ቆ1 − Ic∗
1
Ic
ቇ ̇Ic + k4 ቆ1 − R∗ 1

Rቇ Ṙ

After simpliϐication we obtain the Equation (30).

̇Lf (S,E, Ia, Ic, R) = ቆ1 − S∗ 1
S ቇ (𝑢 − (μ + α)S) + k1 ቆ1 − E∗ 1

E ቇ (αS− (μ + β + γ)E)

+k2 ቆ1 − I∗a
1
Ia
ቇ (γE− (μ + ε)Ia) + k3 ቆ1 − Ic∗

1
Ic
ቇ (βE− (τ + μ)Ic)

+k4 ቆ1 − R∗ 1
Rቇ (εIa − μR )

(30)

By assuming Equations (1)–(5):

u = (μ + α)S∗ , αS∗ = (μ + β + γ)E∗, γE∗ = (μ + ε)I∗a, βE∗ = (τ + μ)I∗c , εI∗a = μR∗

̇Lf (S,E, Ia, Ic, R) = ቆ1 − S∗ 1
S ቇ ((μ + α)S∗ − (μ + α)S)

+k1 ቆ1 − E∗ 1
E ቇቆ(β + μ + γ)E∗

S∗ .S− (μ + β + γ)Eቇ

+k2 ቆ1 − I∗a
1
Ia
ቇ ቆ(μ + ε)I∗a

E∗ .E− (μ + ε)Iaቇ

+k3 ቆ1 − Ic∗
1
Ic
ቇ ቆ(τ + μ)I∗c

E∗ E− (τ + μ)Icቇ + k4 ቆ1 − R∗ 1
Rቇቆ

μR∗
I∗a

Ia − μR ቇ

̇Lf (S,E, Ia, Ic, R) = ቆS− S∗
S ቇ (S∗ − S) (μ + α)

+k1 ቆ
E− E∗

E ቇቆ E∗.S− E
S∗ ቇ (μ + γ + β)

+k2 ቆ Ia − I∗a
Ia

ቇ ቆ I
∗
a.E− Ia
E∗ ቇ (μ + ε)

+k3 ቆ Ic − Ic∗
Ic

ቇ ቆ I
∗
c .E− Ic
E∗ ቇ (τ + μ) + k4 ቆ R− R∗

R ቇቆR
∗.Ia − R
I∗a

ቇ (μ)

After simpliϐication, we have

̇Lf (S,E, Ia, Ic, R) = −ቆ(μ + α)
S ቇ ൫S− S∗൯2

−k1 ቆ
μ + β + γ

E S∗ ቇ (E.S∗ − E∗.S) (E− E∗)

−k2 ቆ ε + μ
Ia E∗

ቇ ൫Ia.E∗ − I∗a.E൯ ൫Ia − I∗a൯

−k3 ቆ τ + μ
Ic E∗

ቇ ൫Ic.E∗ − I∗c .E൯ ൫Ic − Ic∗൯

−k4 ቆ μ
R I∗a

ቇ ቀR.I∗a − R∗.Iaቁ (R− R∗)

̇Lf = A ൫S− S∗൯2 + B (E− E∗) + C ൫Ia − I∗a൯ + D ൫Ic − Ic∗൯ + E (R− R∗) .
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Therefore, for Note that It follows, the most collection of compact invariant in is such that is the singular ̂E∗,
where is the endemic equilibrium. At this point, Lasalle’s invariant principle implies that is GAS in the interior of π.

Table 1. The value of parameters used in the numerical simulation.

Parameter Parameters Value Source

u 2,25,000 WHO
α 58,500 WHO
β 8,000 Assumed
γ 22,000 Assumed
ε 8,775 Assumed
τ 4,000 Assumed
μ 42,000 WHO

Table 1 contains the parameters of our model as well as some values derived from our illness model’s real‑
world data. The World Health Organization has approved these values for our model of Hepatitis C infection; thus,
we are using them together with the numbers from the numerical simulation. In addition to predicting the future
epidemiology of disease control, having these real‑world data allows us to verify stability and control, which should
be helpful when making decisions in the future.

14. Numerical Simulations
Here, the model contains ϐive individual compartments. Each compartment has to be real and ϐinite, so we

showed the model of different dimensional dynamical pictures of stability control using some real‑world values.
In the 2D plots of Figure 2, the HCV is infection‑populations over time are with some world reality values of

the South‑East Asia region, as follows; the values we applied in Figure 2: u = 225000, μ = 0.42000, γ = 0.172711, α
= 0.58500, β = 0.172711, τ = 0.107000, and ε = 0.84000.

In Figure 3, we applied the real world values from the region of the EasternMediterranean Region, u = 183000,
μ = 0.42000, γ = 0.172711, α = 0.58500, β = 0.172711, τ = 0.107000, and ε = 0.84000.

In Figure 4, we applied the real world values from the region of the European Region, u = 126000, μ = 0.42000,
γ = 0.172711, α = 0.58500, β = 0.172711, τ = 0.107000, and ε = 0.84000.

In Figure 5, we applied the real world values from the region of the Americas, u = 176000, μ = 0.42000, γ =
0.172711, α = 0.58500, β = 0.172711, τ = 0.107000, and ε = 0.84000. The total population of all the compartments
are approaching control and stability states. In Figures 2–5, all the values are based on real‑world phenomena of
the region, andwe also assume additional values tomatch our prediction based on our spreading rate and infection
rate per year.

In Figure 6, the 2D plot represents individual stability rates of the differential equation of this model of HCV
dynamics.

In Figures 7–9, the 3D plot shows the dynamic perspective simulation values, based on the region of the epi‑
demic states, such as susceptible vs. Exposed vs. Recovered and Susceptible vs. Acute vs. Chronic Infection and
Exposed vs. Acute vs. Recovered. These state trajectories illustrate the stability of this dynamical model.

In Figure 10, we can visualise the 3D coloured plot, which illustrates the population changing over time in
the real‑world region’s susceptible‑exposed‑recovery stage. The hepatitis C transition from susceptible to exposed,
acute, chronic, and recovered phases is shown in the 3D simulation ϐigures. With one graphic displaying colour
progression dependent on time, they depict how people move through various compartments over time.

In Figure 11, the mesh‑based 3D plot is given, based on the SEIR dynamical structure of the stages, with real‑
world values and some random values for all stages.

Figure 12 is the 3D surface plot of the population. As the population goes through the susceptible and exposed
stages, we see the stability controlled of the overall population of this HCV dynamic epidemiology. We show all the
plots with the random values and the stability control of the dynamic population. All things considered, the ϐigures
concisely convey important aspects of infection, persistence, and recovery.
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Figure 2. Population stability over time when U = 225000.

Figure 3. Population stability over time when U = 183000.
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Figure 4. Population stability over time when U = 126000.

Figure 5. Population stability over time when U = 176000.
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Figure 6. Time‑based changes in all stages.

Figure 7. Evolution of epidemic states: susceptible vs. exposed vs. recovered.
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Figure 8. Evolution of epidemic states: susceptible vs. acute vs. chronic infection.

Figure 9. Evolution of epidemic states: exposed vs. acute vs. recovered.
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Figure 10. Dynamic visualization of susceptible‑recovered stages.

Figure 11. 3D temporal evolution of exposed‑SEIR model states.
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Figure 12. 3D surface visualization of N(t) as a function of S(t) and E(t).

15. Conclusion
In this work, we discussed the acute and chronic stages of HCV, as the majority of individuals worldwide live

with these stages without being aware that they are infected. The population’s ignorance of the HCV’s symptoms is
the primary issue. We used ϐive compartments in the compute model. It was the most appropriate cause of death
in the world. According to this paradigm, we stop the illness before it develops into a chronic, long‑term condition.
We would decrease the duration of illness and enhance the rate of recovery if we were to detect the early impact of
this disease. Thismodelmust be stabilised in order to identify an equilibriumpoint devoid of sickness. To ascertain
if the conditions remain stable, we evaluate R0. We determine that the infectiousness condition is stable based on
the R0. Having these results, we prevent the infection at the stage of arrival and take the immunity to clear the virus,
even if it has emerged in the individual’s body. Lastly, we provide a few reliable ϐigures, based on global data for
this condition, using MATLAB. Early illness detection will be uncovered in the future, which will help reach more
individuals and stop the sickness.
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