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Abstract: Rabies is still a serious public health problem globally, especially where there is high dog-to-human con-
tact and low vaccination coverage. In this paper, a fractional-order mathematical model is developed to explain the
transmission dynamics of rabies in dogs and humans. The model is established by adopting the Caputo-Fabrizio
fractional-order derivative (CFFROD), which suits the memory effects and non-locality properties of disease pro-
gression. The model has compartments for susceptible, exposed, infected, and recovered members of both species,
as well as the viral load in the environment. Existence and uniqueness of solutions are proven via fixed-point theory
to ensure mathematical consistency of the model. Numerical computations via the Adams-Bashforth method are
performed to analyse the dynamics of the system for a range of fractional orders. Numerical computations provide
evidence that fractional-order dynamics have a considerable impact on disease progression, ensuring the signifi-
cance of memory in infectious disease modelling. Based on verified experimental data, a comparison between the
fractional-order and classical models is presented. The results show that the fractional model provides greater in-
sight into transmission and control timing patterns and best fits real-world data. This study supports the use of
fractional modelling in the well-informed creation of successful rabies prevention initiatives and improved compre-
hension of disease dynamics.

Keywords: Rabies Transmission; Fractional Order Derivative (FROD); Caputo-Fabrizio Fractional Derivative
(CFFROD); Disease Dynamics; Fixed Point Theory; Numerical Simulation; Adams-Bashforth Method; Susceptible-
Exposed-Infected-Recovered (SEIR) Model

1. Introduction

Rabies, a viral disease, has a long, harmful history, causing fatal effects on human and animal populations.
Rabies poses a global public health challenge, thus requires an understanding of features (e.g., infection history,
transmission, clinical signs), and a collaborative, multidisciplinary approach for prevention and management.

There are historical references to "mad dogs" in visual art as early as 2000 BCE in Mesopotamia, and narra-
tives about the dangers of animal bites, which signal a basic understanding of rabies in ancient texts. Rabies has
long been embedded in human fears, myths, and superstitions and has played a concretive role in societies
throughout history. Transmission is via infected animal saliva in a bite or scratch. The rabies virus travels via
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peripheral nerves to the central nervous system once inside the body [1-5]. Rabies causes neurological dysfunc-
tion through severe hospitalizations upon infection and concludes when support-oriented health progression re-
sults in death.

Domestic dogs are the major rabies reservoir and source of human rabies. Wild animals (e.g., foxes, raccoons,
and bats) as rabies reservoirs have highlighted zoonotic characteristics of rabies in a clinical context. Rabies exists
in 3 distinct phases: the prodromal phase (i.e., fever, fatigue, and headache), the furious phase (i.e., agitation, ag-
gression, hallucinations, and hydrophobia) and the paralytic phase (e.g., muscle weakness, impaired respiratory
function), which is terminal without treatment unless relieved by an unexpected trajectory [6-11].

Controlling rabies continues to be challenging because of rabies's high case fatality rate, complicated modes
of transmission, and heterogeneous global distribution of rabies [12]. Low- and middle-income nations, e.g., LMIC,
bear a disproportionate burden of rabies despite advances in rabies control, as they often lack access to vaccina-
tion and post-exposure prophylaxis (PEP). Rabies control measures consist of (1) dog vaccination campaigns, (2)
enhanced surveillance/diagnostics, and (3) community awareness /education to promote responsible dog own-
ership and ultimately prevent dog bites [13-17].

Recently, new advances in rabies treatment have been introduced, which may offer options beyond tradi-
tional post-exposure prophylaxis (PEP). Monoclonal antibodies (Rabishield), which effectively neutralise the virus,
could provide PEP without the unwanted adverse effects compared to traditional immunoglobulins. New adjunct
therapies using modified antioxidants are also under development, which have been tested and exhibit a neuro-
protective effect to reduce viral-induced oxidative stress that may ultimately impact patient survival [18,19]. Re-
vised guidelines of rabies control by the World Health Organisation (2023) and the Centre for Disease Control
(2024) recommend a rabies control framework to utilise new advances in PEP and rabies therapy [20,21].

Rabies is virtually always lethal when clinical signs appear, and domestic dogs account for up to 99 percent of
rabies-related human deaths globally [22,23]. Rabies can circulate in both wild and domestic species and is com-
monly transmitted to humans via bites, scratches, or through loss of integrity of mucous membranes. Young children
aged 5-14 are the most vulnerable. The incubation period typically lasts between 2-4 months, but can vary from a
few days to more than a year, and is based primarily on the amount of exposure and the site of exposure. By the time
clinical signs appear, it is exceedingly rare to survive because of viral-induced encephalitis [24,25].

Public health messaging regarding dog behaviour and dog bite prevention strategies is essential for dog vac-
cine campaigns. Since rabies is practically eliminated by avoidance of dog bites, there is a cost advantage of the
rabies vaccine as a preventative measure over PEP. Rabies is completely preventable with effective vaccines; the
most significant risk factor for getting rabies is contact and exposure to rabies in dogs. Vaccinating dogs also ex-
pands the number of humans who do not require PEP. If there is concern that a person is exposed to rabies, PEP
is available in Canada. However, pre-exposure prophylaxis could be beneficial for specific high-risk groups such
as veterinarians, animal control, wildlife workers, and lab personnel [26-29].

Mathematical modeling enables researchers to understand better infectious disease dynamics and potential
control strategies [30-32]. In this study, we develop a fractional-order mathematical model for rabies transmis-
sion in dogs and humans based on the Caputo-Fabrizio fractional derivative (CFFROD) that incorporates memory
and non-locality in transmission. In addition, the fractional-order rabies model is then accordingly solved using
the numerical two-step Adams-Bashforth method, allowing for the assessment of the susceptible, exposed, in-
fected, and recovered populations, at fractional orders . Comparing our results with a classical model provides
useful insights to aid in our knowledge and understanding of rabies control [33-36].

2. The Definition and Basic Principles

Basic definitions, theorems, and conclusions for the FROD of Riemann-Liouville and Caputo-Fabrizio are cov-
ered in this section. These derivatives are widely used in the construction of fractional-order mathematical models.

2.1. Definition 1

For every arbitrary real order ® > 0, Riemann-Liouville defines the integrability of a function f (@) as stated
in Equation (1).

Dyof (@) = %fow(d) —t)®71f (t)de. (1)
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@ > 0 and I'(®) denote the Gamma function evaluated at ®. Using the Riemann-Liouville sense, the integral
operator D¢, represents the fractional derivative of f (@) with respect to @ across the interval [0, @].

2.2. Definition 2

Any absolutely continuous function f(w), where f(w) € C"[0,w] with n > 0, has FROD that may be ex-
pressed as the following integral [Equation (2)].

FDEslf (@)] = r(nl_cp) fow(w — )PP () dt. 2)

Wheren —1 < ® < n,n € N.if ® — 1then D f($) — f' (D).

2.3. Definition 3

The CFFROD of a function f (@) with an order greater than zero is expressed as stated in Equation (3).

Yo

“Dewlf ()] = - c1)>)f f'(®)exp [—Cb %] dt. 3)
0

The function W(®) is referred to as a normalization function, Satisfying ¥(0) = W(1) = 1, and f belongs to
the space H'[0,w]. For T > 0.

2.4. Definition 4

For a given function f, the fractional integral is expressed as stated in Equation (4).

DPIf(®)] = Mf(t) + Lf f(®)dd t>0. 4
‘ (2 — D)P(P) 2 - o)¥(®)] ’ =

@ Represents the order of the fractional integral, Such that 0 < & < 1.
Theorem 1. A function g(y) that is continuous on the interval [0, T] and whose (CFFROD) CFD{fw [g(@)] is finite for
¢ € (0,T] has an existential value at a point s in the interval [0, @] [Equation (5)] [31].

1

9(@#) = 9(0) + 15 [ D9l (Hm®, )

Where I'(®) is the gamma function, 0 < s < @, and Vw € (0, T].
3. Creation of the Mathematical Framework

3.1. Familiar Mathematical Model

The transmission model for rabies in dogs and people divides the population into eight divisions to represent
the disease's various phases [Equation (6)]. Specifically: S; depicts the susceptible dog population, which includes
those who are at risk of developing rabies if exposed to the virus. E; represents the exposed dog population, which
includes dogs that have been infected but are not yet symptomatic or infectious. I; refers to the infected dog pop-
ulation, which includes dogs that have exhibited rabies symptoms and can spread the virus to others. R, indicates
the recovered dog population, which includes dogs who have conquered the sickness and are no longer spreadable.

Likewise, for humans: S, refers to the susceptible individuals who are at risk of developing rabies if exposed
to diseased animals. E, signifies the exposed human population, which includes people who have been in contact
with rabid animals but have not yet shown symptoms. I, represents the infected individuals or those who have
developed symptoms of rabies and may spread the virus to others. R, indicates the recovered human population,
meaning people who have fully recovered from rabies and are no longer contagious.
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P W+ ay +y)S + 4Ry

dat =a;5 — (u+ BE;

a BiEy — (u+ g + 6D

T ¥1S1 — (44 + R,

W—ﬂ2+5111+92R2_(#+T2 +12)S; (6)
o 125, — (wy + WE,

dt = wE, — (u+ p)ly

dR,

o 7,85, — (u+ 6)R;

In the transmission model for rabies in both canines and people, numerous elements play critical roles in
influencing the dynamics of disease spread: a; indicates the rate at which susceptible canines are exposed to the
virus. This parameter impacts the risk that vulnerable canines may get rabies when exposed. f5; represents the
infection rate for exposed dogs. It influences how soon exposed dogs become infected and develop rabies symp-
toms. u, represents the disease-related mortality rate among dogs. This metric represents the death rate of rabies-
infected dogs. u, reflects the disease-related mortality rate in people. It represents the fatality rate among infected
persons owing to rabies. pu represents the natural death rate throughout all phases. This metric accounts for death
rates in both canine and human populations that are independent of rabies infection. §, is the rate of transmission
from canines to vulnerable people. It measures how well the rabies virus transmits from infected canines to vul-
nerable people. 7, represents the rate of healing from dog bites in vulnerable individuals. This metric represents
the recovery rate of individuals who have been bitten by rabies-carrying canines but have yet to display symptoms.
6, reflects the rate at which recovered persons revert to being susceptible.n, represents the rate of exposure for
sensitive persons. It assesses the chance of susceptible persons contracting the rabies virus. w, represents the rate
of infection among exposed persons. This parameter controls the development of rabies infection in persons who
have been exposed to the infection.

The rabies transmission model relies heavily on these characteristics, as well as population numbers, vac-
cination rates, rates of recovery, and transmission rates for both canine and human populations. They together
determine the dynamics of rabies transmission, the impact on various groups, and the efficacy of treatments and
control measures in minimizing the disease's effects.

3.2. Mathematical Model for Rabies Transmission in Both Dogs and Humans Based on the
CFFROD

The CFFROD can be used to explain the fractional order transmission model for rabies dynamics in a non-
linear fractional differential equation system.

ODPSy = my — (u+ ay +y)S; + ARy

“ODPE; = aiS; — (1 + B)E;

ODPIL = BiEy — (u+py + 8] ;
“ODPRy = v181 — (A4 + Ry "
CODLS, = my + 811 + 0,R; — (4 + 75 +13)S,

CFthd)Ez =15, — (0 + WE,
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PP L = waEy — (1 + updly
“ODPR; = 1,5, — (U + 62)R,

The comprehensive FROD mathematical model [Equation (6)] for rabies transmission in dogs and people
accurately depicts real-world settings, offering useful predictions to influence decision-making and control efforts.
This paradigm enables the assessment of future conditions and the implementation of preventative steps well in
advance to avert worst-case outcomes. The mathematical model's solution analysis, which includes a local stability

study, is shown below, calculating the reproduction number, establishing the presence of equilibrium points, and
confirming the positivity of solutions.

R} ={§ €R%:&>0},&(t) =[S,(0), Es (), [,(t), Ry (1), S, (1), Ex (8), I, (), R, (D)]".

Lemma 1. The proposed model [Equation (7)] has a positive, unique solution &(t) that lies in R®.

Proof of Lemma 1. It is demonstrated by examining the population model's solution positivity that each com-
ponent remains confined in the positive quadrant. This tendency is inherent in population models, which use var-
iables to describe non-negative values such as population numbers or concentrations. The vector field directing
the system tends to approach the positive orthant R®, reflecting the inherent restrictions of populations, which are
not negative.

CED®S, =, + ARy = 0
PDPE, = 0,8, = 0

‘PP = BiE; =0

‘DR =y,5, 20

CEDPS, =m, + 6,1, +0,R, >0
“ODFEy =138, 20

CED®L, = w,E, = 0

CgD?RZ = ‘[252 = 0.

3.2.1. Disease-Free Equilibrium

Consider the following DFE for the applying model under the Caputo fractional-order opera-
tor: S;(t), EL(t), I, (t), R1 (1), S, (1), E5 (1), I, (t), Ry(t). Assuming the right sides of the model are set to zero, the
outcome are:

m—W@+a+y)S i+ 4R =0

S, —(u+pBE =0

BiEi —(w+uy +8)L =0

V1S — (AL +wWR, =0

my, + 6L + R, — (u+1,+1,)S, =0
NS, — (W, + WE;, =0

wyEy — (U +u)l; =0

7,5, —(u+0)R, =0
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E} = (S{,E7, I, RY, S3, B3, 13, R) = (S7,0,0,R?, 3, 0,0, RY)

_ ( T1+A1Rq Y151 Ty +62R; T35, )
(utas+y)” " A+ (utta+m)” 7 (ut8))°

3.2.2. Disease-Endemic Equilibrium

The endemic equilibrium point in our rabies transmission model is a stable state where the population of
infected individuals remains unchanged. We can reach this equilibrium by modifying some of the model param-
eters to zero, which, over time, shows a constant level of infection in the population. E =
St Ef, 11, R}, S5, E5, I3, R5 is what we obtain. Where,

_ Tl + A + 4¥1 S
! u+ta+y)A +1)

B = a,(my + A4R;)
Pt a v+ By)

I = pra1S;
! (u+ )+ py +6;)

. _ y1(my + 44Ry)
! (u+a;+y)A +p)

o (p + 03) + 611 (1 + 65) + 6,755,

*

S, =
2 U+ +1) (1 +0,)

B = T, (1 + 6,) + 1,6,1; + 0,7,R,
2 (u+ 72 +12) (w0 + 1)
N w2725k

k= (wy + W+ py)

. _ T,(my + 6,1, + 63Ry)
2 U+ 71+ 1)1+ 0,)

3.2.3. Reproduction Number

The basic reproduction number in epidemiological Modelling, denoted as R, can be determined using the
next-generation matrix technique. This method requires defining two matrices: matrix F, which illustrates the
flow of individuals from one compartment (e.g., susceptible) to another (e.g., infected), and matrix V, which
signifies how quickly infected individuals progress to new infections. In the next-generation matrix approach,
R, is computed as the product of matrices V and F, with F capturing compartmental transitions and V encapsu-
lating infectiousness and contact rates.

a5 a; 0 0 O
10 _10 0 0 O
T = s " =0 om0
0 0 0 0 O
(1 + B)E; (1 + 1) 0 0 0
- (w+pm +6)0 V= 0 (e +pq +61) 0 0
' (wz +WE; | 0 0 (wy + 1) 0
(e + u)l, 0 0 0 (1 + p2)
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1
—_— 0 0 0
(u+ B
0 ! 0 0
vl = (W +p + 600
1
0 0 0
(w, + 1)
0 0 !
(1 + po)!
251
— 0 0 0
(u+B1)
Fy-1 = 0 0 0 0
0 0 _ N2 0
(wy + 1)
0 0 0 0

Therefore, the fundamental reproduction number is,

1 ay(wy + 1) + 02+ By)

Ro=FV Gt B, + 1)

4. The CFFROD Mathematical Model Solutions

In this study, we will employ fixed point theory and fractional derivatives to investigate the uniqueness
and existence of solutions for the FROD differential equation described in Equation (7).

S1(t) — $1(0) = “EDP{m, — (u + ay + y1)Sy + 4Ry}

Ey(t) — E;(0) = “6D{ay Sy — (u + B)Eq}

I,(t) = 1,(0) = GDL{B1 By — (u + py + 811}

Ry(t) = R1(0) = “CDP {151 — (A1 + Ry}

S,(t) — S,(0) = “EDF{m, + 8,1, + 0,R; — (U + 15 +15)S,}
Ey(t) — E;(0) = “GD" (1S, — (0, + WE,}

L) — 1(0) = “DM{w2Ep — (1 + ) o}

Ry () — R2(0) = “GDP{1,S;, — (u + 6,)R,}

Now using the FROD in Equation (8),

510 - 5, (0) = 2L ) S, + AR 20 S, + A,R,}d
1(0) — 1()—m{ﬂ1_(#+a1+)’1)1+ 1 1}+mf{ﬂ1_(#+a1+y1)1+ 1R1}dy,
0

2(1 — @)

E;(t) —E(0) = Z=o)w(@)

{a;S; — (u+ BE} + {a:S; — (u + B)E }dy,

2 t
Q—@W@J

_2(1-9) 20 [
h(©) = 10) = g (B = G+ s + 01} + g [ (i = (a4 i + 81}y
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20—
Ri(t) —Ry(0) = W{hsﬁ — (4 + R}
20 g
+ m!{hﬁ — (A1 + WR,}dy, 9)
20—
S,(t) — S5,(0) = W{ﬂz + 0111 + 6,R; — (U + 75 +12)S5}

t
20
+ mf{nz + 8111 + 0;R; — (u+ 75 +15)S,}dy,
0

2(1 - @) 20 |
E;(t) — E;(0) = m{nﬁz — (w0 + WE} + W!{ﬂﬁz — (wz + WEZ}dy,

2(1 — @)

20 g
L) - L(0) = m{wﬁz — (Ut p)l} + W!{%Ez — (U + )l }dy,

2(1 — @)

Ry () — R,(0) = 2= )P (@)

{125, — (U + 6,)R,} +

2P t S 6,)R,}d
m!{fz 2 — (u+ 67)R,}dy.

The equation mentioned earlier may be expressed as follows after being simplified using Equation (9),

A (t,S) =1 —(u+a; +y)S1 + 4Ry,
Ay (¢, Er) =y Sy — (u+ By)Ey,
At L) = BE, — W+ pu + 6L,
Ay(t,R1) = v151 — (4 + Ry,
As(t,S,) =m, + 6111 + 0,R, — (W + 75, +1,)S,, (10
Ae(t, Ez) = 1,5, — (wz + WE,,
Az (t, 1) = 0By — (U + pp)]y,
Ag(t,Ry) =155, — (U + 0,)R,.
Theorem 2. If the suggested fractional-order mathematical model systems meet the requirements listed below, then

the kernels (A, Ay, Az, Ay, As, Ag, A;) and Ag in Equation (7) will adhere to Lipschitz and contraction conditions:
0<(u+a +y,) <1l

Proof of Theorem 2. Considering the functions §; and S;,), let's begin with A, and then apply the following
procedure:

Aq(t,51) — Ay (t’ 51(1)) = —u(S1(t) — S1(t1)) — a;(S1(t) — S1(t1)) — v1(S1(t) — S1(t1)).

Applying the norm to Equation (10) and simplifying, we obtain the result.

”Cﬂl(tv S1) — C'q1(t' 51(1))” < u(S1(@) = SiEDI + lar (S1(®) = S1EDI + v (S1(8) = S &)

< (u+a + ¥ = S @)l
After simplification, we obtain the following Equation (11),

117



Trends in Imnmunotherapy | Volume 09 | Issue 03

||cﬂ1(t' S — Ay (t' 51(1))” < xall(S1 () = Sy )l 11

Where y; = u+a;, +y;

Given that A; fulfills the Lipschitz condition, as implied by Equation (10), the condition 0 <
(u + a; +y;) <1 predicts contraction. In a similar vein, we may determine that the following is the Lipschitz
condition for others:

After simplification, we obtain the following Equation (12),

|42 (t, E1) = Aa (8, Exy) || < 22l (E1(8) = Ex (eI,

[[45 (&, 1) = A3 (& L) || < 23l (@) = LE),

|44 (t, R1) = Au(t, Riw) || < xallR1 () = Ry (eI,

(|45 (£, 52) = As (¢, S )|l < x5 1(S2() = S (&), (12)
|46 (t, E2) = As (8, Ezny) || < 26l (E2(2) = Ez (eI,

|47 (t, 1) = A7 (8 L)) || < 71l (1 (8) = L),

”d‘la(t' R,) — dqs(t' R2(1))|| < xsll(R2(t) — R, (e ).
Now, Equation (9) can be expressed as:

21—-9)

50 -50) = 55w

A 05) + g f (A0 5))dy,

2(1—®)

E;(t) - E(0) = Z=o)w(@)

Ay (6, Er) + f (A (7, En))dy,

2 q9)‘1’@’)

2(1 - )

L) - L(0) = 2= )9 (@)

As(t 1) + m[(d‘%(}" I))ady,

21 —-9)

20
R0 = Ri(0) = G g A (6 R) + s | (A0 RO,
0

21—-9)

20
52000 = 5:(0) = =gy 455 + G grgcas | A0S,
0

21—-9)

E,(t) — E(0) = 2= o) (@)

Ag(t, Ey) + (As (v, Ez))dy,

20
(2- ‘D)‘P(‘D)Of

L 21-9) 20
L) —,(0) = mcfh(t. L)+ m[(ﬂﬂy. I,))dy,

2(1 - )
Ry (1) = R2(0) = o —Sgray As(t R2) +

IO f (Aa(y, R2))dy.

(2 q>)‘P(<1>)

Now, using the Recursive relation, we obtain,
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2(1 — @) 20
Sim(@) = md‘h(t' Simn-1)) + m[(&h(% Sitmn-1)))4Ay,
0

2(1-9) 20 .
Eyny(t) = mrﬂz(t, Eitn-1) + m[(cﬂz(% Ei(n-1)))dy,
0
21— 20 [ ;
Ly (8) = Wcﬂs(t' Iin-1)) +m](cﬂ3(}’; Lin-1y)))dy,

R __24=9) R 2P to‘l R d
1y (@) R CEESTIC) 4(t 1(n—1))+mf( 4 Rin-1)))dy,

2(1 — @) 20
Som(®) = mv‘ls (tSzn-1)) + m[(d‘ls O, S2(n-1y)))dy,
0
_2(1-9) 20
Eymy (@) = mcﬂe(t, Eyn-1)) + mf(cﬂe(% Er(n-1)))ay,
0

1 21— 1 20 1 ;
2y () = mc&(t' 2tn-1)) T mf(cfh(% 2(-1)))4Y,
0

R __2A=®) ok 2P t Ag(y, R d
2y () = CETSTIC] s(t, Ratn-1)) + m}( s(V, Ra(n-1)))dy.
0

Using the requirements listed below:

SP@®) = 51(0), EP (8) = E1(0), 17 (1) = 1,(0), RY (t) = R,(0),S2(t) = S,(0),
E3 (8) = E5(0),I7(8) = 1,(0), R(t) = R,(0).

Furthermore, using the difference of successive terms, we found out as:

2(1 — @)

My =S ® = Sin-0® = G5 w0@)

(cﬂl (t, Sin-1)) = Au(t, 51(n-z)))

20 t
t o Jo (AL (t, S1n=1)) = AL (E S1(n=2) ) Y,

2(1 — @)

M, = Ejgny(t) — Ey(-1)(@) = 2= o)w (@) (0‘12 (t, Exn-1)) — Aa(t, El(n—z)))

20 t
tow@) Jo (A (t, Ex(nery) — A (t, Ex(n-2))) Y,

2(1 — @)

Mz =Ly () — Lin-py(®) = 2P (d‘ls (t hin-1y) — As(t, 11(n—2)))

+ ﬁ fot(d‘l3 (t' Il(n—l)) — A (t' 11(n—2)))dy'

2(1 — @)

Mo = Ry = Ruguy(®) = g

(‘ﬂ4(tf Rin-1) = Aa(t, Rl(n—z)))

20 t
t o Jo (Au(t, Ryn-1)) — As(t, Ryn—2)) )dy,
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21—
Ms = Sy () = Sp-1)(8) = ﬁ(‘ﬂs (6, S2n-1)) — As(t, SZ(n—Z)))

29 t
+ Gayeia Jo (As(t:S20-1) = As(t, San-2)))dy,

2(1 — @)

Mg = Eyiny(t) = Ez(n1y(t) = 2 - D)¥(d)

(As(t, Exne1)) — As(t, Ex(n-2)))

20 t
+ m fo (d‘ls(t: E2(n—1)) - dqe(t' Ez(n—z)))dy,

2(1—-d)
M; = Iz(n)(t) - Iz(n—1)(t) = m (047(t: 12(11—1)) - c/‘Z7(t' IZ(n—Z)))

29 t
t o Jo (A7 (8, Lin-1)) = A7 (t, I(n-2)) ) dy,

2(1 — @)

2 = d)U(d) (As(t, Rotn-1)) = As(t, Ro(n-2)))

MS - Rz(n)(t) Rz(n—l)(t) -
2-0)¥(d) Y0 g\bN2(n-1) g\t N2(n-2) V.

Simy () = X My (8), E1ny () = XF M (8), Ly (8) = X7 M3:(2), Rygny () = X My (),
Somy () = X7 Misi(t), Exny (8) = XF Mg (£), Ly (£) = X7 M7 (2), Ry () = X3t Mg ().
Estimating by using the same procedure, we have Equation (13) as follows:

”erl” = ||Sl(n)(t) - Sl(n—l)(t)”

2(1 — @)
= 2 - d)¥(@) (A1 (t, Sin=y) — Au (8, S1(n—2))) 13)

t
20
+ m!(d‘h(t. Sin-1) = A1 (6, Sin-2)) |-

By employing the triangle inequality, Equation (13) can be transformed:

[[S160)(®) = S1a-y D] < % ” (d‘h(t' Sitn-n) — A (t, Sl(n—z)))”

t
2¢

+m Oj(ﬂl(t' Sl(n—l)) — Ay (L, Sl(n—z)))dy

Kernel satisfying the Lipschitz condition, thus we have:

15200 = Ssnn Ol € 2P 1S ® = S EN ] + ooy, [16.0 - su@iay
PESTI) PRSI
0
Now, we get:
2(1 - @)

20
1M (Ol < 5= @2 - 2)¥(@)

W)ﬁ 1My -y O] + C

t
s [ 1960 .
0

Similarly,
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21-) 2

1M, (DIl < m)(z”]"fz(n—n(t)” + Z-o)w@) J-”Mz(n—l)(t)”dy;

MO < o= ®) MO+ o, [0 o ®la.
2= @) =@

IOl € ) M O + o, [Pt @l
2= (@) - v ™)

MOl < o= ®) M O] + o, [ s @llay, 14
2= @) =@

IOl € 2 M O + oo, [Pt @l
2= (@) - ov@ )

MO < P M O] + 1, [ n @l
2= (@) CEDIOLS

1Ol € 2= My Ol + o, [ Pt ©llay.
2= @) CEDHOLY

The outcomes given in Equation (14) is used to show that the solution has an existence.

Theorem 3. If the following requirements are satisfied, the suggested fractional order mathematical model system

2(1-®)
)Xl +

provides precise coupled solutions for Rabies transmission. That is, we can discover t, so that o F @)

29

ow@ it <1

Where S, (t), E;(t), I, (t), R, (t), S,(t), E,(t),I,(t) and R,(t) are bounded functions. Therefore, Kernels sat-
isfy the Lipschitz condition:

2(1 -

HMMMSMMW«@ P

He—ow® qn)tp(qa) )]

2(1 — @)

z-ow@ )t

1M (Ol < 1| E1 (0) ] [( ((2 )P (@) X2 )]

“(e=am@)]
(o)

()]
(o

2(1 — @)
|M5, (Ol < 111, (0)]| [(

2-oP@*

IMarn (O < ||R1n(0)|| +

2- CD)‘P(‘D)

1M, (Ol < IISZn(O)II

2(1 — @)

”Men(t)”S”EZn(o)” \z-ow@”

+

2- CD)‘P(CD) )]

IM7, (Ol < 1125 (O] [

/-~
\*]
/'\
[E=N
|
'9
—~

PRI +((2—CD)‘P(CD) )]

“)
“)
")
(=)
o)
x)
")
")

uM(meemmK 21— 9)
8n = 2n (2

O)P (@)X +((2 oYY (D) X® )]
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Now, follow the following procedure:

S1(t) = $1(0) = S1,(6) = B4 (0),
E (t) = E1(0) = E1n(8) — Ezn (D),
L(8) = L,(0) = Lin(8) — B3, (0),
Ry () = R1(0) = Ry, (8) — E4n(0),
S2(t) = $2(0) = Szn(t) — Esn (8),
E;(8) = Ez(0) = Epp(t) — Egyn (0),
L(8) = 1,(0) = Ly (t) — E7, (D),

Ry(t) — R2(0) = Ry (t) — Egn(8).

Therefore, we have:

2(1 — @) 20

) (ﬂl(t' Sl(n)) — Ay (L, Sl(n—l))) + ml(d‘h(t' Sl(n)) — Ay (8, S1(n—1)))d}’

IE1n (DIl = Z =) ()
0

= % ” ("410' Simy) = Aa(t, Sl(n—l))) ” + %J‘”(‘ﬂl(t Sim) = A1t Sin-1)) |,
0

2(1 — @) 20
< mh”(ﬁ(n) = Sim-n)| + mh”(&(n) — Sim-n)||t.

We followed,

: _( 2a-®) 2 e
Att,,
_ _( 2a-®) 2 SR 15

We can deduce the following from Equation (15):

IE;n (Ol — 0, n— oo,
In the same way, we have
122, (DI — 0, n— oo,
125, (DIl — 0, n— oo,
IE4n Il — 0, n— oo,
IEs, (DIl — 0, n— oo,
eIl — 0, n— oo,
IE7,(OIl — 0, n— oo,
IEgn (Il — 0, n— oo.
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This indicates that there is a solution to the proposed fractional -order mathematical system [Equation (7)].
If we assume that S;(1)(t), Ey(1)(£), I11) (£), R11)(£), S2(1) (1), Ez(1y((t), I(1) () and Ry (4)(t), is another solution to
system [Equation (7)], then,

_ 2(1 - @)
S1(t) = Sy () = W(d‘h(t' S — A (¢, 51(1))) a6
T ;)q;@)f (‘Al(t 1) — A8, 51(1)))
With the support of norm, Equation (16) takes the form:
2(1-
[5:(®) = Sy y®)| < W ”(v‘h(t S1) — A (t, 51(1)))”
+ 22— [ [ (At 50 = ALt 51)) || @
(2_¢)1P(q)) 0 1 1 1 ’ 1(1) y'
Furthermore, the Lipschitz condition of the kernel yields:
2(1—d)
[15:(®) = S1y(®)]| < mh”(&(t) - Sin®)||
+ e Jo 1l = Sy @)y, an

H&@—&mmmr—za_@ O nQ<0
- @M T 2= )@

Therefore we have:

|E(®) = Expy@) || (1 k) X2 — 2® th) <0,
(2 - 2)¥(P) (2 - D)V (D)
|16 = Lay@| (1 k) X3 — 2P X3t> <0,
(2 - 2)¥(P) (2 - D)V (D)

2(1 — ) 20
TZ-ow@ T 2 - o)w@)

)<
21— ) )
)=

|R.(®) — Ryiy ®|| (1 <0,

152 () = S,y @ (1 T2Z-0)v(d) X~ (2 d))‘P(CD)

|%®—am%0f -9 0,
2 —-D)¥ (D) (2 ‘P)‘V(CI’)

||12(t) - 12(1)@)” (1 - 21— 9) X7 — 2® X7t> 0,
2 - )Y (D) 2 - DP)¥(P)

1 2(1 - @) 20 <
”Rz(t) - R2(1)(t)” ( - 2 — D)P(D) Xg — (2 — D)P(D) X8t> 0

Theorem 4. A unique solution is provided by the proposed fraction order mathematical model system [Equation (7)],

if

2(1-) 29
(1 T w1l T oo Xlt) > 0. (18)
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Proof of Theorem 4: If Equation (18) is true, Equation (17) indicates that||S; (t) — S;(1)(£)|| = 0. So, we get:

S1(t) = Siy(®)
Furthermore, we have:

Ei(t) = Ey1)(0),
L) =L (),
Ry (t) = Ry(1(8),
S2(8) = Sy (),
E;(t) = Ex)(2),
L, (8) = L) (©),

R;(t) = Ry(1y (D).
As aresult, the mathematical model [Equation (7)] for fractional order proposed is unique.

5. Numerical Scheme

We have discussed a new numerical technique for discretizing fractional differential equations in this inquiry
part. It was suggested by Agangana and Owolabi and makes use of the CFFROD. This method was used by Agangana
and Owolabi to solve a particular fractional differential equation.

DLz () = g(t,Z(t)), or
Y
(t,z(®) = a E q)>) Z' (g)exp[ ® (t—g)] do.

Given the equation discussed previously and following the fundamental theorem of analysis, we obtain:

1
Z(t) - Z(0) = (q,(q)) g(t,2(®) + q,(q))fg(Q,Z(Q))dQ
As stated above,
1 @ n+1
2t = 20 = G g0 260) + s f 9(6.2(0))dt, 19
- ®
2(t0) = 20) = 550 (tn1 2(tn-)) + s | 9620 20)
0

The system of equations below is generated using Equations (19) and (20).

1 n+1
Z(tns) - Z(tn)—(q,@) (9t 20) = 9 (tns, ZCn D) + s f 9(t.2(0)dt. @y

124



Trends in Imnmunotherapy | Volume 09 | Issue 03

Where,
tn+1 tn+1 7 ( )
t ) ]
j- g(t,Z(t))dt = f {W (t—tn,_1) — gnl—nl(t — tn)}
tn tn
tn+1

f (t Z(t))dt —_ (tn'Zn) Zg(tn 1' n— 1)

tn

As aresult of Equation (21), the following expression is obtained.

(1-

l]J((I)) {g(tntz(tn)) g(tn 1)Z(tn 1))}

Z(tnsr) —Z(tp) =

+ 3ho (tn, Zy) h (th-1,Zn-1)
Z‘P(QD)g me“n Z‘P(CI))g n-14n-1)-

a1-9) 3hd a1-9) hod
Z(tnsr) — Z(tn) = < Y(D) + le(q))>g(tnt Zy) + < + )g(tn—lﬁzn—l)-

Y(@)  2¥(d)
, _, 1-®) 3ho , a-®) ho
(tns) =Z(tn) + < Y (D) + 2Lp(¢.)> 9(tn Zp) + < Y(d) + 2¥ (D)

22)

)g(tn—lﬁzn—l)'

The comparable two-step Adamas-Bashforth numerical method for the CFFROD is given by Equation (22).

Theorem 5. Assuming that g is a continuous bounded function for the CFFROD and z (t) is the solution to the frac-
tional order differential equation “§5DFZ(t) = g(t, Z(t)), then

B (1-®) 3hd 1-®) ho N
Z(tn+1) - Z(tn) + ( ‘P(QD) + ZKP(Q))g(tn'Zn) + ( LP(QJ) + ka(q)))g(tn—l'zn—l) + (YY)

Where |3 < K.

6. The Fractional Order Mathematical Model of Rabies Transmission and its Numerical Ap-
proach

In this research, we simulate the novel CFFROD for fractional order Rabies illness within the given model
system [Equation (7)] using a recently constructed numerical technique. We first use the calculus basic theorem
to rearrange the model system [Equation (7)] into the following fractional equation in order to estimate the solu-
tion of this model system using numerical iteration with this approach.

1
S:1(6) —5:(0) = (lp(q:.) C’ql(t S (t)) + (o) f Ay (9’51(9))‘10'
1-—®)
E(t)—E(0) = (Lp(q)) le(t E1(t)) + e (D) f CAZ(Q' E1(Q))dQ.
1-® b ]
L(t) —1,(0) = %&(t, L)+ o] f As(o,1,(0))do,
0
1 (0} g
Ry (t) — Ry (0) = (LP(CD)) cﬂ4(t R1(t)) +— V() f ‘H4(Q’ R1(Q))d9,
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(1-®)

CD t
S, (t) — S5,(0) = ch)cﬂs(t' S,(®) + WJ. As(e,S2(0))do,
0

1—-o 0] 1
E,(t) — E;(0) = %qu(t: Ez(t)) + Wf C’qe(Q: Ez(Q))dQ;

(1-9)

B(6) = 1(0) = ~grgy A (t Iz(t))+q,(®) f Ar(e,12(0))de,

(1-9)

Ra(8) = Ry(0) = gy~ As(t, Ra(0) + gy f As (0, R2(0))de.

Therefore, after simplification, we obtain the following Equation (23),

1 (b n+1
S1(tn+1) —51(0) = (lp(q)))dq1(t Sl(tn)) + o (D) f 0‘11(t, 51(t))dt,
CI) n+1
Ei(th+1) — E1(0) = (lp(cb) cﬂz(tn 1(tn)) t (D) f cﬂz(t' E1(t))dt'
1 n+1
I (ty41) — 1;(0) = (lp(q)) d‘l3(t 11(%)) + o= (D) f 3(13 I (t))dt,
1 n+1
Ry(tne1) — R1(0) = (q,(q,)) Ayt R () + Grs V@) f A (t, R (1)) dt,
1 _ n+1
Sy (tn+1) — S2(0) = (‘PW (t Sz(tn)) t+ o (D) f d‘ls(tr Sz(t))dt.
1 n+1
E>(the1) — E2(0) = %cﬂs(t Ez(tn)) +— (D) f cﬂs(t' Ez(t))dt,
tnt1
1 — CI)
tnt1
1-@
Ry (ty41) — R2(0) = (lp(q)))dqg(t Rz(tn)) +555 (D) J dqs(t' Rz(t))dt,
after simplification, we obtain the following Equation (24),
1 ®
S1(tn) — 5:(0) = (w(¢))cﬂ1(tn 151 (tn 1)) + lp(q))f cﬂ1(t,51(t))dt'

1- i
Ey(t,) — By (0) =

Wcﬂz(tn 1 E1(tn- 1)) +lP(d))_f cﬂz(t E1(t))dt,

(23)
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tn

1—-o 0]
( )‘/q3(tn—1'11 (tn—l)) + ch)f 043(’5' 11(t))dt,
0

Li(t,) — 1,(0) = (o)

tn

1-9)
Ri(ty) — R (0) = Wﬂ4(tn 1R (tn- 1)) + lp((b)f c144(15 R1(t))dt 24
(1-®) i
$260) = 55(0) = g A1 52(tn-)) + s f As(t,5,(0)dt,
1-® 3
E,(tn,) — E;(0) = (l_p(cb))dq6(tn 1 Ex(ty- 1)) + ‘P(CD)J- qu(t Ez(t))dt

1-d & [
L (t,) — 1,(0) = %cﬂﬂtn—plz(tn-ﬂ) + mf v‘l7(t' I, (t))dt,

1-90
R,(tn) — Rz(0) = %‘AB(tn 1Ry (tn 1)) +LP((D)J_ dqs(t Rz(t))dt
S1(tne1) = S1(tn) = (llp(q)) {Uq1(t Sl(tn)) c141(tn 1,51 (tn- 1))}+qj(¢)f dq1(t,51(t))dt'
E (tns1) — Ei(ty) = (llp(q)) {U‘Zz(t El(tn)) le(tn 1 B (tn 1))}+qj(¢) f d‘lz(t,[ﬁ(t))dt'
tnt+1
1
I(ths) = 11 (t,) = (q,ﬁ{ﬂg(t () = As(tn-1, I (tn- 1))}+q,(¢) f As(t, L(®)dt,
1 n+1
Ry (tns1) — Ry(tn) = (q,(q)) {Au(tn, R (80)) = Aa(tn-1, Ry (ta- 1))}+q,(¢) f Ay (t, Ry () dt,
1 n+1
Sy (tns1) — S2(tn) = (lp(@) {fﬂs(t Sl(tn)) cﬂs(tn 152 (tn- 1))}+lp(cb)f v‘ls(t'sz(t))dt'
tnt1
1
Ez(tm)—Ez(tn)—(qJ@) {As(tn B2 (tn) = Ao (tn-r, Ea(tn- 1))}+q,(q,) f Aq(t, B2 (D)),
1 n+1
Lo (tne1) = Lo () = (LPW{JW L (tn)) = A (s, Lt 1))}+q,(¢) f Ay (8, 1(0))dt,
1 n+1
Ry(tn+1) — Ry (tn) = (Lp(q)) {qu(t Rz(tn)) d‘lg(tn 1 Ry (- 1))}"‘[},@))[ C’qs(t'Rz(t))dt-
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Where,

tn+ tn+1

f A (£, 5, (0)dt = f {—‘Al(t"’sl”)@—tn_l)—”ql(t”‘”s“"‘”)(t—tn)}dt

h h

tn tn

3h h
_7°A1(tn'51n) c/ql(tn 1:51(11 1))

thya tnyt

f Ay (t, By (D)) dt = f {72“""51")( — tn- 1>—‘AZ(t”‘l’E“"‘”)(t—tn>}dt

h

tn tn

3h h
=7d‘lz(tn’E1n) qu(tn v E1n- 1))

tn+1 tn+1
A (ty, I Az tp—1, lin-
f As(t,1,(0))dt = f {—3(; 1")(t—tn-1>——3(“h“" 1’)(t—tn)}dt
tn tn
3h h
_7d43(tn'11n) ‘/43(tn 1'11(11 1))
tn+1

h h

tn tn

3h h
= 7"44 (tn' Rln) - E‘AAL(tn—l' Rl(n—l))-

thya thta

h h

f Jls(t,Sz(t))dt = J {M (t—t, ) — cﬂs(tn—l; SZ(n—l)) (t — tn)} dt

tn tn

3h h
7‘A5(tn’52n) S(tn 1:SZ(n 1))

tn+1 tnyt

h

f cﬂe(t'Ez(t))dt=f {—‘ﬂﬁ(t’“Ez") (¢~ tyopy - Zollnt Fron) (t—tn)}dt

h

tn tn

3h h
_UQG(tn' EZn) c/‘ls(tn 1:E2(n 1))

2

tnt+1 tnt+1 . L) A ( I )
t ) t -1 -

j c/l7(t’]2(t))dt = f {u( —th_1) _%Z(nl)(t — tn)} dt
tn tn

3h h

=_‘A7(tn112n) c/17(7511 1112(11 1))

tnyt

h h

tn tn

3h h
2 CAS(tnﬂRZn) c/QB(tn 1!R2(n 1))

1—-&
S1(tns1) — S1(tn) = %{dﬂ(tm% (tn)) — Ay (tn—p A (tn—1))}

le(q)) c"ll( n 1n) ZLP(CD) c/ll(tﬂ. 1!51(17. 1))

f Aq(t, Ry (1))dt = f {‘A‘*(tn; Bun) (t—th-1) — Astn-r: Frn-n) (t— t")} dt

.f Ag (t' R, (t))dt - f {Jlg (En Ron) (t—th1) — Ao (tn_l' Rz(n_l)) (t - t")} dt
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1
Ei(the1) — Ei(tn) = (q,(q))){d‘lz(t El(tn)) c"lz(tn 1 E1 (ty- 1))}
3h® b
Z‘P(Cb) ey A2 (tn E1n) — 29 (D) g Az (ta-1, Exn-1))-
1-9)
[1(tn+1) - Il(tn) W{"qﬁ(t Il(tn)) C’QS(tn 1r Il(tn 1))}
b h®
le(q)) CA3( ns ln) ZLP((D) c’q3(t‘n 1 Il(n 1))
1
Ri(tns1) — Ri(tn) = (qj(¢)){cﬂ4(t Rl(tn)) fﬂ4(tn 1 Ry (tn 1))}
3h® b
Z‘P(Cb) s Aa(tn, Rin) — 29 (D) C’q4(tn v Rim- 1))- (25)
1-9)

Sz(tn+1) _Sz(tn) {qu(t Sz(tn)) c/‘ls(tn 1 Sz(tn 1))}

Y(d)

3h® )
+2Lp(q))o‘ls( o San) — qu(q))c/ls(tn 1 S2n— 1))_
1
Ey(tns1) — Ex(ty) = (W(CD)){ Ag(tn E2(t2)) = A (tn1, B2 (ta_1))}
@ hd
+2\P(CD) Ag(tn, E2n) — 29(d) ‘AG(tn 1 Eym- 1))_
(1-9)
L(thsr) — L(t) = @) (A (tn () — A (tnor, L (tn-1))}

3hd h®o
Zl_p(q)) ‘/q'7( n 27’1.) ZIP(CD) "A7(t‘n 1, 12(11 1))
1
Ry(tne1) — Ra(ty) = %{cﬂs(t Rz(tn)) c/‘ls(tn 1 Ra(t- 1))}

cﬂs(tn v Rom- 1))

3hd h
toos CHS( n Zn) Z‘P(CD)

2¥ (D)
From Equation (25):

1-) 3hd

1-®) ho
P@) | 29(D)

)ﬂl(tnrsl(tn)) - < IP(QD) + le(d))) cAl(tn—lt Sl(n—l))’

S1(tns1) = S1(tn) + (

(1-®) 3hd

1-d) hd
(@) T 29()

(
)qu (tn' El(tn)) - < lp((b) + 2W(d>)> c/‘lz(tn—lw El(n—l));

; _ 1-9o) 3hd A ! 1-o) h®o A |
1(tns1) = I1(t,) +< (D) + 2‘~P(CD)> 3(tn, I (t)) _< (D) + Z‘IJ(CD)> 3(tn—1' 1(n—1))'

R _ R 1-9) 3h® R 1-9) h® R
l(tn+1) - 1(tn) + ( ‘p((D) + le(q))>°ﬂ4(tn' 1(tn)) - ( l{l(c[)) + le(q)))ﬂzt(tn—l» 1(n—1)):

Ei(the1) = E1(tn) + (

Z(tn+1) Z(tn) ( 'I'(Cb) 2‘]'([1))) s(tn’ Z(tn)) ( ‘I'(I) 211,(@)) S(tn—ll Z(n—l));
(1 - (D) 3hd (1 — CD) h®
Ez(tn+1) Ez(tn) ( lp(cl)) Zl.p(q)))dlﬁ(tn’EZ(tn)) < lP(CI)) le(cb)>016(tn_1:E2(n_1));
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; _ 1-9) 3h® A ; 1-9) h® A .
2(tns1) = L(tn) +< Y(D) + Z‘P(CI>)> 7(tn, I (tn)) _< YD) +21p(c1>)> 7(tn—1' 2(n—1))'

~ 1-®) 3ho 1-®) hd
Rz(tn+1) - RZ(tn) + ( ‘-IJ((I)) + ZIP(CD)> C’QB(tn' Rz(tn)) - ( ‘P((D) + le(q))>dq'8(tn—1rR2(n—1))-

Applying Theorem 5, we get at

g _g 1-9) 3hd A g 1-9) ho A g 1
1(tne1) = l(tn)+< @) +2q,(¢)) 1 (tn, m)—( V@) +2q,(¢)) 1(tne1, S1n-1)) +158,

£ _ g (1-9) 3hd A E a1-9) hdo A E 2
1(tns1) = E1(tn) +< (D) +2lp(cb)> 2(tn, E1p) _< P (@) + 2‘1—’(@)) z(tn—p 1(n—1))+ Co

(e = 160 + (S + gy ) Ao = (S + 2

V(@) | 2W(P) Y(P) +2‘P(¢)>‘A3(tn—1'11(n—1))+363f>,
(1-®) 3hd 1-®) ho .
Ri(ths+1) = Ri(ty) +< D) + zlp(q,))‘ﬂ‘*(tn' Rin) —< TeD) + le(q)))c/‘l4(tn_1,R1(n_1))+ ¢,

g _g 1-9) 3ho A s 1-o) h® A g 5
Z(t‘l’l+1) - Z(tn) +< kP(CI)) + le(q))) S(tn' 211) _< l{J(CD) + 2‘?(@)) S(t‘n—li 2(n—1))+ S

E —F 1-®) 3ho c 1-®) hd . .
2(tns1) = Ex(ty) +< (D) + le(d)))cﬂe(tn' 2n) _< e + le(q))>cﬂ6(tn—1: 2(n—1))+ S

(1-®) 3hd (1-®) ho o
v@) T qu(cp)) A7 (tn Izn) _< @) T zlp(q,)) A (tn-1, Lagn-1))+758,

L(ther) = L(E) + (

R —p 1-®) 3ho R 1-®) hd . .
2(tns1) = Ra(tn) +< (D) +21p(q>)) Ag(tn, Rop) _< e + le(q))>°ﬂ8(tn—1r 2(n—1))+ Cop-

Where || igg,”w < %(n -DIA"MEK, i=1,2,..,8.

7. Numerical Simulation

We performed a numerical simulation of the system [Equation (6)] using the MATLAB solver and parameter
settings to determine the impact of the general public on the management of the rabies virus. The following values
are considered for the selected parameters to perform a numerical simulation and graphical representation of the
susceptible, exposed, infected, and recovered rabid virus in the environment for dogs and humans:

Results

This section presents the results of numerical simulations for the proposed fractal fractional-order rabies trans-
mission model, including the use of the Adams-Bashforth method. The effects of changing these key fractional parame-
ters on various population compartments will be shown in Figures 1-11. All simulations assume biologically realistic
initial values of the model and parameter values.

Figure 1 plots the time-dependent dynamics of all population compartments (susceptible, exposed, infected, and
recovered) for dogs and humans with a constant fractional order «;. The dynamics for the dog populations
(81, E1, I, Ry) tend to stabilize over time. The human compartments (S, E;, I, R,)also stabilize, which indicates that
the model behaves correctly under these conditions.

Figure 2 examines the exposed population of dogs by looking at E; for [5.53, 3.28, 0.9], the different values of
the fractional order parameter a;. The exposed population of dogs grows faster (stabilized sooner) with larger values
of the fractional order. This demonstrates the memory of fractional derivative processes in disease infection dynamics.

Figure 3 depicts the infected population of dogs I; over time, represented with three different values of the trans-
mission rate §; = [0.75, 0.045, 0.25]. As we expected, a larger 8, had a larger infected population, confirming the
diseased population is sensitive to rates of contact.
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Figure 4 examines the effect of variation in the dog-to-human transmission rate §; = [0.05, 0.53, 1.5] on the
susceptible human population S,. The higher the transmission rate, the smaller the number of susceptible individuals

in the susceptible class, as more people move from the susceptible class into the exposed and infected classes.
Figure 5 shows the recovered dog population R, against different values of recovery rate y; = [0.03, 0.45, 0.76].

Higher recovery rates produce greater accumulation of recovered dogs, showing interventions for recovery are effective.
Figure 6 shows the effect of dog vaccination rate ; = [0.05, 0.5, 3.5] on the susceptible dog population S;. As

vaccination rates increase, the susceptible dog population reaches higher levels, with less infection pressure on the sus-

ceptible dog population.
Figure 7 shows the exposed human population E, for different rates of exposed dog-to-human progression n, =
[0.623, 0.751, 0.862]. The higher n, the fewer exposed humans, which is a sign of better control or contact tracing

protocols.
Figure 8 illustrates the population of recovered humans R, for different values of the human recovery rate 7, =
[0.832, 0.921, 0.753]. Higher human recovery rates can lead to quicker accumulation of recovered infected individu-

als.
Figure 9 illustrates how the number of human susceptible S, changes over time for different values of quarantine
efficiency 6, = [0.832,0.921,0.753]. A higher 6, value, the better the control to keep individuals in the susceptible

class.
Figure 10 shows a bar graph of the total rabies-infected population versus time. The population goes from quick

initial increases to saturation over time, demonstrating the long-term boundedness of the model.
Figure 11 shows a 3D surface plot of rabies over time and index, showing a visual summary of the ebbs and flows

of the total rabies population across different stages of the simulation.

Population Dynamics Over Time
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Figure 1. Time-dependent variation in population density for constant fractional order parameters.

m, = 125321, S; = 50000, E; = 30000, I; = 25321, R, = 20000, a; = 0.9, B, = 0.75, 5, = 0.83,y, = 0.45, 1, = 0.143, y,
0.25, 4 = 0.521, 7, = 232432, S, = 132432, E, = 50000, I, = 40000, R, = 10000, 7, = 0.623, w, = 0.251, T, = 0.432, 6,

0.932.
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Rabies transmission dynamics for varying o, values
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Figure 2. Population variation exposed (dog) over time for a range of fractional order parameters.
m, = 125321, §; = 50000, E; = 30000, [; = 25321, R; = 20000, a; = [5.53,3.28,0.9], B; = 0.75, 6, = 0.83,y, = 0.45, 1, =

0.143, y; = 0.25, u = 0.521, 7, = 232432, S, = 132432, E, = 50000, [, = 40000, R, = 10000, 7, = 0.623, w, = 0.251, 1,
0.432,6, = 0.932.
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Figure 3. Population variation infected (dog) over time for fractional order parameters.
m, = 12532, S, = 5000, E; = 3000, I, = 2532, R, = 2000, a; = 1.5, B; = [0.75,0.045,0.25], 5, = 0.83,y, = 0.45, 1, = 0.143,

g = 0.25, 4 = 0.521, , = 23243, S, = 13243, E, = 5000, I, = 4000, R, = 1000, 7, = 0.623, w, = 0.251, 7, = 0.432, 6, =
0.932.
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Rabies transmission dynamics for varying 61 values
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Figure 4. Population variation susceptible (human) over time for fractional order parameters.
m, = 12532, S; = 50000, E; = 30000, I, = 25321, R, = 20000, ; = 1.5, §; = [0.05,0.53,1.5], 7, = 0.45, 4, = 0.143, yi; =
0.25 u = 0.521, 7, = 232432, S, = 132432, B, = 0.75, 1, = 0.623, E, = 50000, I, = 40000, R, = 10000, w, = 0.251, T,
0.432,0, = 0.932.
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Figure 5. Population variation recovered (dog) over time for fractional order parameters.

m, = 12532, S, = 5000, E; = 3000, I, = 2532, R, = 2000, a; = 1.5, f; = 0.75, 8, = 0.83,y, = [0.03,0.45,0.76], 1, = 0.143,
1y = 0.25, 4 = 0.521, m, = 23243, S, = 13243, E, = 5000, I, = 4000, R, = 1000, 7, = 0.623, w, = 0.251, 7, = 0.432, 6, =
0.932.
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Figure 6. Population variation susceptible (dog) over time for fractional order parameters.

m, = 12532, 5, = 5000, E, = 3000, I, = 2532, R, = 2000, &, = 1.5, 4; = 0.75,8, = 0.83,y; = 0.45, 1, = [0.05,0.5,3.5], 1, =
0.25,1 = 0.521, 7, = 23243,S, = 13243, E, = 5000, I, = 4000, R, = 1000,1, = 0.623, w, = 0.251,7, = 0.432,6, = 0.932.
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Figure 7. Population variation exposed (human) over time for a range of fractional order parameters.

m, = 125321, S, = 50000, E; = 30000, [; = 25321, R, = 20000, ; = 1.5, B; = 0.75, 5, = 0.83,y, = 0.45, 1, = 0.143, i, =
0.25,u = 0.4, m, = 232432, S, = 132432, E, = 50000, I, = 40000, R, = 10000, 7, = [0.623,0.751,0.862], w, = 0.251, T, =

0.432,6, = 0.932.
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Rabies transmission dynamics for varying 7, values
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Figure 8. Population variation recovered (human) over time for fractional order parameters.

m, = 125321, S, = 50000, E; = 30000, [; = 25321, R, = 20000, a; = 1.5, B; = 0.75, 5, = 0.83,y, = 0.45, 1, = 0.143, i, =
025, u=04, m, = 232432, S, = 132432, E, = 50000 , I, = 40000 , R, = 10000 , 1, = 0.623 , w, = 0.251, T, =
[0.832,0.921,0.753], 6, = 0.432.
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Figure 9. Population variation susceptible (human) over time for fractional order parameters.
m, = 125321, S; = 50000, E; = 30000, I, = 25321, R; = 20000, a; = 1.5, B; = 0.75, 6, = 0.83,y, = 0.45, 1, = 0.143, y; =
0.25, 1 = 0.4, m, = 232432, S, = 132432, E, = 50000, I, = 40000, R, = 10000, n, = 0.623, w, = 0.251, 7, = 0.432, 6,
[0.832,0.921,0.753].
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Figure 10. Population variation of Rabies Patients over time for fractional order parameters.

m, = 125321, §; = 50000, E; = 30000, /; = 25321, R; = 20000, a; = 1.5, f; = 0.75,8; = 0.83,y; = 0.45,4; = 0.143, u; =

0.25, u = 0.4, m, = 232432, S, = 132432, E, = 50000, I, = 40000, R, = 10000, n, = 0.623, w, = 0.251, 7, = 0.432, 6,

0.832.

m, = 125321, §; = 50000, E; = 30000, [; = 25321, R, = 20000, a; = 1.5, B, = 0.75, 8, = 0.83,y, = 0.45, 4, = 0.143, u,
0.25, u = 0.4, m, = 232432, S, = 132432, E, = 50000, I, = 40000, R, = 10000, n, = 0.623, w, = 0.251, 7, = 0.432, 6,

0.832.
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Figure 11. Rabies index over time for a range of fractional order parameters.
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8. Discussion

This work introduces a compartmental model for rabies transmission between dogs and humans using both clas-
sical and fractal fractional-order differential equations. The model includes the significant compartments of susceptible,
exposed, infected, and recovered dog and human individuals, and accounts for the impact of contact tracing on the trans-
mission dynamics. As a public health strategy, contact tracing is important for reducing transmission rates by tracking
those who have come into contact with an infected person and checking on them.

The main aim of the study was to explore how the dynamics of the disease change over time with various fractions
of the Caputo-Fabrizio derivative. The numerical simulations were prepared using the Adams-Bashforth method and
compared the results of fractional orders of a; = [5.53, 3.28, 0.9], which is the classical level of analysis.

The numerical simulation results suggest the following: with decreasing fractional order (i.e., moving away from
the classical case), the weight of memory becomes more apparent and is measurable in the additional day(s) until peak
infection and the additional day(s) for the compromised compartments to trend downward. The Infected compartments
for humans and dogs appear to linger longer when memory is factored into the modeling. The memory effect requires
more robust modeling in fractional calculus, and the performance of the results suggests the power and importance of
fractional-order operators in the modeling of epidemiological disease.

The basic reproduction number R, was calculated, and the disease-free and endemic equilibrium points were sym-
bolically determined.

9, Conclusion

The research aims to develop a fractional-order mathematical model for the transmission of rabies in both humans
and dogs by utilising the CFFROD idea and a two-step Adams-Bashforth numerical technique for simulation. The inves-
tigation encompassed susceptible, exposed, infected, and recovered populations as well as the dynamics of viral con-
centration over time for various fractional orders. The developed fractional-order mathematical model sheds light on
the intricate dynamics of rabies transmission, emphasising the importance of early intervention tactics, thorough pop-
ulation dynamics analyses, and well-thought-out control measures in stopping the disease's spread and preserving the
health of both human and animal populations.

Examining equilibrium points for both endemic and disease-free conditions revealed the reproduction num-
ber. Ry.The numerical simulation findings demonstrated that the number of susceptible dogs and humans grows ab-
ruptly and then stabilizes as the public health efficacy parameter values increase. Furthermore, as the number of in-
fected dogs and humans continues to decline, there will be no more infections. This suggests that educating the public
about the administration of vaccinations both before and after exposure, as well as responsible dog ownership, can sig-
nificantly reduce the number of cases of rabies. As such, it is recommended that the public be made aware of rabies
control and elimination to achieve the country's goal of having no rabies cases by 2030.
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