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Abstract: In the immunotherapy process, a machine vision algorithm exhibits an efficient next‑generation model
for navigating the complex tumormicroenvironmentwith CAR‑T cells. With the integration of image‑based analysis
into the real‑timeprocessing algorithm, the system is able to compute spatial guidance for the immune cell, enabling
it to detect, eliminate, and infiltrate cells. The variation between computational vision and cellular therapy needs
to overcome the issues in the physical and biological barriers of tumors. Hence, in this paper, an effective Fejer
Kernel Entropy Masked R‑Convolutional Neural Network (FEM‑R‑CNN) was constructed. The proposed FEM‑R‑
CNN model performs pre‑processing of the CAR‑T cell using the Fejer Kernel, and segmentation is performed with
the entropymodel. With the estimated segmentation, the Single Shot Detector (SSD) is employed for the CAR‑T cell,
and classification is computed using themasked R‑CNN for the immunotherapy. Experimental results demonstrate
that FEM‑R‑CNNachieves a cancer cell detection accuracy of 96.2%, a segmentation IntersectionoverUnion (IoU) of
0.86, and a classification accuracy of 94.8%, outperforming traditional models such as U‑Net and standard Mask R‑
CNN by over 5% across key metrics. The model improves signal‑to‑noise ratio by 46.4% and reduces false positive
rates by 53.3%, enabling more precise CAR‑T cell navigation. Immune response analysis revealed a CAR‑T cell
density of up to 150 cells/mm², with a 50% proliferation rate and 72% tumor cell apoptosis, indicating effective
immuneactivitymonitoring. The inference time remains competitive at approximately 70msper image, supporting
near real‑time applications.
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https://doi.org/10.54963/ti.v9i4.1289 86

https://orcid.org/0000-0001-8800-1267
https://orcid.org/0000-0001-5486-8022
https://orcid.org/0000-0002-6059-6155
https://orcid.org/0000-0001-5679-2367
https://orcid.org/0009-0009-6324-6191
https://orcid.org/0000-0002-5271-6356


Trends in Immunotherapy | Volume 09 | Issue 04

1. Introduction
In recent years, machine vision is largely due to advances in deep learning, enhanced hardware, and an abun‑

dance of annotated data [1, 2]. Tasks such as image classification, object detection, and semantic segmentation
rely on Convolutional Neural Networks (CNNs), with new records being set by ResNet, EfficientNet, and Vision
Transformers (ViTs) in solving them. Besides, recent progress in real‑time vision systems, such as YOLO (You Only
Look Once) and SSD (Single Shot MultiBox Detector), enable edge devices to detect objects accurately and more
quickly. Many are now using self‑supervised and unsupervised methods, which decrease the importance of big la‑
beled datasets. Additionally, pairing vision and language learning in multimodal models has enabled systems such
as CLIP and DINO to make significant progress in general vision tasks [3–5]. Machine vision is gaining importance
in immunotherapy due to its ability to closely examine biological data for diagnostics andmonitor treatment effects
[6]. The use of advanced algorithms and deep learning methods enables the study of histopathological slides, the
identification of tumor‑infiltrating lymphocytes and the assessment of the spatial relationship between immune
and cancer cells within the tissue [7]. Because of this method, scientists can both identify biomarkers that predict a
response to immunotherapy and do so faster andmore accurately. Also, usingmachine vision, multiple samples can
be studied simultaneously to observe cell behavior and the immune system's reaction in the laboratory. Watching
the effects of therapy is made possible in clinics with PET and MRI, which enhances personalized care strategies
[8–10]]. In general, the use of machine vision significantly accelerates and enhances immunotherapy research and
applications which are beneficial for cancer treatment [11]. Many current computer vision techniques are being
utilized in immunotherapy to enhance the detection, prediction, and treatment of diseases. Image segmentation,
detecting objects, and using deep learning, mainly with CNNs, are popular ways to examine histopathological and
immunohistochemistry (IHC) images [12–15]. With these approaches, it is possible to automatically count and
recognize various immune cells, such as T cells and macrophages, located near the tumor, which is key to under‑
standing how the immune system responds to the tumor. Whole‑slide analysis systems employ these approaches
to measure and analyze the number and arrangement of TILs, serving as a main biomarker for the success of im‑
munotherapy drugs [16]. Moreover, computer scientists utilize U‑Net and Mask R‑CNN to accurately identify tis‑
sues and count cells, while transfer learning and multi‑instance learning enable the models to achieve significant
results with limited medical data available [17]. As their use increases, computer vision tools assist oncologists
make informed choices and apply immunotherapy treatments more precisely in digital pathology.

Although computer vision has achieved significant progress in immunotherapy, it is still facing numerous sub‑
stantial challenges [18]. The wide range inmedical imagesmakes it challenging formodels to generalize, as images
vary based on staining, scanner, and the mix of tissue types. A shortage and high cost of annotated medical data
reduce the ability to build effective deep learningmodels [19]. It is also a concern that current computer vision tech‑
niques are not easily understood by experts in clinical settings, which prevents their use. Difficulties arise fromdata
privacy and regulations, as patient data must comply with strict ethical and legal guidelines for the project [20]. It
can be challenging to integrate healthcare solutionswith existing systems, as it requires specialized technology and
training. Therefore, more research, standardized plans, and cooperation between AI specialists and medical work‑
ers are needed to maximize the benefits of computer vision for immunotherapy [21–23]. With machine learning
algorithms, it has become simpler for CAR‑T cells to reach and destroy cancer cells across complicated breast tu‑
mors [24]. With the aid of new image analysis and real‑time monitoring, these algorithms can support mapping of
tumor locations and identify which parts are responding to the immune system, thereby helping engineered T cells
reach their target in the body [25]. Deep learning‑based segmentation and 3D reconstruction facilitate the visual‑
ization of path structures, including stromal barriers, blood vessels, and groups of immune cells, surrounding the
tumor as observed under the microscope [26]. Being able to steer CAR‑T cells with thiolated lipids allows experts
to control their motions and could improve how they interact with their targets and avoid incorrect attachments.
Besides, coupling machine vision with microfluidic systems or robots enables minor adjustments in cell behavior
before their application in medicine [27]. This combination in living animals aims to provide solutions that en‑
hance the effectiveness of CAR‑T immunotherapy against difficult‑to‑treat solid tumors. Overall, machine vision
helps create more targeted and precise immunotherapies by enhancing both the localization and effectiveness of
the immune system’s actions [28].Top of Form

In this paper, contributions to CAR‑T cell immunotherapy are provided, utilizing sophisticated machine vision.
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The framework beginswith FEM‑R‑CNNwhich incorporates Fejér Kernel filtering and entropy‑based segmentation
into amaskedR‑CNNstructure, achieving an accuracy of 96.2%and a segmentation IoUof 0.86, surpassing the exist‑
ing results bymore than 5%. As a result, the electrochemicalmodel stops over 50%of incorrect signals, which helps
identify CAR‑T cells even in environments full of other tumor cells. A third way the framework helps is by complet‑
ing immuno‑response analysis, allowing it to display the density of CAR‑T cells at 150 cells/mm², proliferation rates
at 50% and high rates of dead cancer cells at 72% for quality assurance. The final design requires approximately
70 milliseconds per image, allowing the approach to operate in real‑time with high accuracy, as needed for future
clinical applications. All in all, these contributions improve the tools that science uses to advance immunotherapy
research and treatments.Top of Form

2. Masked Machine Vision Algorithm for Navigation of CART‑T Cell
The Masked Machine Vision Algorithm (MMVA) helps CAR‑T cells navigate more effectively in diseased tissue

by highlighting biologically significant regions andmasking elements thatmight impede their progress. The system
leverages attention mechanisms from neural networks and segmentation methods from computer vision to apply
a mask to the spatial features of the data, emphasizing sections of the image that are brighter due to the presence
of hot tumormarkers or immune activity. The process is expressed as 𝐹(𝑥, 𝑦) ⋅𝑀(𝑥, 𝑦), which produces themasked
feature map 𝐹̂(𝑥, 𝑦) as stated in Equation (1).

𝐹̂(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) ⋅ 𝑀(𝑥, 𝑦) (1)

In Equation (1), 𝑀(𝑥, 𝑦) is the outcome of a convolutional subnetwork that’s learning to find things in the
images related to the immune system, while 𝐹(𝑥, 𝑦) stands for the output produced by regular convolutional layers
used on images such as histopathology or fluorescencemicroscopy. With a reinforcement learningmethod, we aim
to improve how the CAR‑T cell moves toward areas rich in the chosen antigen, as computed using Equation (2).

𝑅(𝑡) = ∑𝑛
𝑖=1 𝛼𝑖 ⋅ 𝐴𝑛𝑡𝑖𝑔𝑒𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖 , 𝑦𝑖) − 𝛽 ⋅ 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑥𝑖 , 𝑦𝑖) (2)

In Equation (2), 𝛼𝑖 is the first weighting parameter, 𝛽 is the second, and (𝑥𝑖 , 𝑦𝑖)represents the cell’s location
at the time step 𝑡. With the MMVA, the CAR‑T cell can sense, adjust to, and navigate different regions in the tumor
as it acts intelligently. Using this system yields promising results in targeting and may eventually be combined
with live‑cell imaging technology to facilitate real‑time decisions during CAR‑T cell treatment. This agent improves
the rewards a CAR‑T cell accumulates along its path by optimizing the future payouts it can receive, as stated in
Equation (3).

𝐽 = 𝐸[∑𝑇
𝑡=0 𝛾𝑡𝑅(𝑡)] (3)

In Equation (3), γ represented the discount factor; R(t) is stated as the reward for the future step, in which the
future is determined by 𝛾 ∈ [0, 1]. To make the algorithm more reliable, it can estimate uncertainty during mask
generation, allowing it to assess the trust in detected features for noisy or incomplete images. All in all, the masked
machine vision frameworkmerges spatial attention, temporal planning, and decisionmethods, offering CAR‑T cells
a smart system to boost how they spread, persist, and kill cancer cells in difficult tumor settings.

2.1. Proposed Fejér Kernel Entropy SSS‑Masked‑R‑CNN (FEM‑R‑CNN)
To enhance the accuracy and robustness of tumor microenvironment analysis, the Proposed Fejér Kernel En‑

tropy SSS‑Masked‑R‑CNN has been designed for use in CAR‑T cell therapy. This model combines the capabilities of
Masked‑R‑CNN with a Self‑Supervised Segmentation mechanism enhanced by Fejér Kernel‑based entropy regular‑
ization. The Fejér Kernel is utilized to enhance the reliability and precision of segmentation masks, as it effectively
filters noise, refines shapes, and improves the coherence of feature maps in harmonic analysis. Regularization of a
feature map 𝐹’s entropy 𝐻 is carried out with the Fejér Kernel 𝐾𝑛 applied convolutionally, as defined in Equation
(4).

𝐻𝐹𝑒𝑗𝑒′𝑟(𝐹) = −∑𝑥,𝑦 (𝐾𝑛∗𝑝(𝐹(𝑥, 𝑦)))𝑙𝑜𝑔(𝐾𝑛∗𝑝(𝐹(𝑥, 𝑦))) (4)
InEquation (4),𝑝(𝐹(𝑥, 𝑦)means thenormalizedpixel‑wise feature distribution and * shows convolution. Adding

entropy to the loss function in FEM‑R‑CNN results in better predictions of where immune cells and tumor regions
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end and fewer false positives. Because of the self‑supervised approach, the model identifies important details inde‑
pendently, thereby bypassing the reliance on large labeled datasets frequently seen in medical imaging. Therefore,
FEM‑R‑CNN improves the understanding of tumor regions, enabling CAR‑T cells to navigate more successfully to‑
ward their targets in mixed types of solid tumors. The key actions of the FEM‑R‑CNN algorithm are essential for its
significant success in guiding CAR‑T cells to tumor microenvironments. To start, the network processes all the input
medical images, such as histological slides or scans from fluorescencemicroscopy, so that it identifies detailed, sorted
features at different layers. Subsequently, the 𝑆 module utilizes the original region proposals to segment what is de‑
sired from images based solely on their natural patterns. To enhance the quality of masks, the algorithm utilizes Fejér
Kernel‑based entropy regularization which smooths the features in a uniform pattern and reduces noise by passing
pixel‑wise probabilities through the Fejér Kernel. Using this technique strengthens the divisions between different
tissue regions, making the predictions more stable and allowing tumor cells and immune cells to be distinguished
with greater precision. After that, the Masked‑R‑CNN framework is used to identify and separate cell structures or
parts of the microenvironment. After all, the model provides accurate and reliable segmentation maps that direct
the movement of CAR‑T cells toward specific cells, enabling them to perform effective immunotherapy. Entropy reg‑
ularization and self‑supervision enable the algorithm to perform well in situations with limited annotated data and
intricate tissue structures, as stated in Equation (5).

𝐹 = 𝐶𝑁𝑁(𝐼) (5)

In Equation (5) featuremaps 𝐹, the model can produce an unlabeled initial mask𝑀𝑖𝑛𝑖𝑡 defined in Equation (6).

𝑀𝑖𝑛𝑖𝑡 = 𝑆𝑆𝑆(𝐹) (6)

The probability distribution 𝑝 of the mask pixels is smoothed out with convolution using the Fejér Kernel 𝐾𝑛
stated in Equation (7).

𝑝𝑠𝑚𝑜𝑜𝑡ℎ = 𝐾𝑛 ∗ 𝑝(𝑀𝑖𝑛𝑖𝑡) (7)
The entropy 𝐻𝐹𝑒𝑗𝑒𝑟 of the smoothed mask is computed as in Equation (8).

𝐻𝐹𝑒𝑗𝑒𝑟 = −∑𝑥,𝑦 (𝑝𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦)𝑙𝑜𝑔𝑝𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦)) (8)

This term is meant to help improve the separation of parts in the segmentation process calculated using Equa‑
tion (9).

𝐿 = 𝐿𝑀𝑎𝑠𝑘−𝑅𝐶𝑁𝑁 + 𝜆𝐻𝐹𝑒𝑗𝑒𝑟 (9)
In Equation (9) 𝜆 is set correctly, the regularization with the Masked‑R‑CNN uses regularized features to im‑

prove segmentation and produce the output mask𝑀𝑓𝑖𝑛𝑎𝑙 , as stated in Equation (10).

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑎𝑠𝑘𝑒𝑑 − 𝑅 − 𝐶𝑁𝑁(𝐹,𝑀𝑖𝑛𝑖𝑡 , 𝐻𝐹𝑒𝑗𝑒𝑟) (10)

With Combining these steps enables FEM‑R‑CNN to create clear segmentation maps that lead CAR‑T cells in
difficult tumor settings.

3. Operation of Proposed FEM‑R‑CNN
The proposed FEM‑R‑CNN’s pre‑processing step involves a Fejér Kernel that removes noise and ensures the in‑

put feature maps look clearer. The Fejér Kernel convolution, used earlier, acts as a filter to minimize noise at higher
frequencies while preserving the important aspects of the tumor microenvironment. The algorithm uses entropy
based on both global and local measures to detect the variety and structure present in tissue regions correctly. To
determine the overall disorder in the image, global entropy is combinedwith local entropy, highlighting the borders
between cells that helps in detecting tumor cells and immune infiltrates. By relying on these metrics, the segmen‑
tation approach can care more about the biologically significant parts within the image. After that, the Masked‑R‑
CNN framework, combined with an SSD detector, performs object detection and mask prediction simultaneously
in a single scan. Using these two methods, it is fast and accurate to separate tumor and immune cell populations,
and refined instance masks are made to define their spatial areas. By following these steps, FEM‑R‑CNN achieves
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accurate, timely, and aware segmentation and detection, which are important for directing CAR‑T cells through a
tumor’s complex and diverse environment. Figure 1 illustrates the in proposed FRM‑R‑CNN process.

Figure 1. Process in FEM‑R‑CNN.

3.1. Filtering with FEM‑R‑CNN
Filtering with the FEM‑R‑CNN framework processes the image and feature map quality needed for precise

marking of tumors and immune cells, which supports CAR‑T cells’ accuracy in immunotherapy. At the first step, the
Fejér Kernel is employed as a smoothing operator to reduce the usual noise and minor faults in common biological
imaging data, such as histopathology or fluorescence microscopy. The Fejér Kernel 𝐾𝑛 is formed by combining
several Dirichlet Kernels and is a suitable method for reducing noise while preserving the main structure, as stated
in Equation (11).

𝐾𝑛(𝑥) =
1

𝑛 + 1 ቌ
𝑆𝑖𝑛 ቀ (𝑛+1)𝑥2 ቁ

sin ቀ𝑥2ቁ
ቍ

2

(11)

Applying this kernel to the raw input image 𝐼(𝑥, 𝑦), the filtered image 𝐼𝑓(𝑥, 𝑦) is obtained through convolution
operation, as stated in Equation (12).

𝐼𝑓(𝑥, 𝑦) = (𝐾𝑛 ∗ 𝐼)(𝑥, 𝑦) = ∑𝑢,𝑣 𝐾𝑛(𝑢, 𝑣) ⋅ 𝐼(𝑥 − 𝑢, 𝑦 − 𝑣) (12)

The process creates a smooth imagewhile still retaining themain attributes necessary for further analysis. The
𝐼𝑓 image is applied to the convolutional layers in the FEM‑R‑CNN to obtain the important feature maps 𝐹 about tu‑
mor and immune cell areas. After that, themodel evaluates uncertainty in the image both globally and locally using
entropy‑based segmentation. This focus helps the model hone in on areas most important for CAR‑T treatments.
Filtering the data improves the signal‑to‑noise ratio, which in turn leads to more accurate mask results when the
Masked‑R‑CNN part of the network does segmentation. Using Fejér Kernel filtering, FEM‑R‑CNN helps CAR‑T cells
stay more informed about their location and plan effective attacks against a range of tumor cells.
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3.2. Segmentation of Direct CAR‑T Cell with FEM‑R‑CNN
In FEM‑R‑CNN, correctly identifying tumor cells, immune cells, and the cancer environment by segmentation

is crucial for redirecting CAR‑T cells directly. Mounted with pre‑processed and feature‑mapped data, the segmen‑
tation module is now tasked with accurately marking the areas of interest for each cell. It accomplishes this by
generating region proposals, making mask predictions, and utilizing entropy to guide further improvements. The
RPN first looks for bounding boxes 𝐵𝑖 where there may be a need for contact between CAR‑T cells and tumor cells
computed using Equation (13).

𝐵𝑖 = 𝑅𝑃𝑁(𝐹) (13)
For all suggested regions, an initial binary mask𝑀𝑖 is created by the mask prediction head to show if tumor or

immune cells are computed using Equation (14).

𝑀𝑖 = 𝜎(𝑊𝑚 ⋅ 𝐹𝐵𝑖 + 𝑏𝑚) (14)

To reach higher accuracy, FEM‑R‑CNN combines an entropy regularization term that measures both overall
and spot‑specific uncertainties. The entropy at each pixel in each mask is calculated using Equation (15).

𝐻(𝑥, 𝑦) = −𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑝(𝑥, 𝑦) − (1 − 𝑝(𝑥, 𝑦))𝑙𝑜𝑔(1 − 𝑝(𝑥, 𝑦)) (15)

In Equation (15), 𝑝(𝑥, 𝑦) value for a pixel is high, it’s expected to be part of the target class. The total loss of
entropy due to mask𝑀𝑖 is combined with the general loss function using Equation (16).

𝐿 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 + 𝜆∑𝑥,𝑦 𝐻(𝑥, 𝑦) (16)

In Equation (16), the coefficient 𝜆 stops the model from focusing on segmented parts that are uncertain or full
of errors. As a result, FEM‑R‑CNN provides precise and confident segmentationmasks that accurately delineate the
positions of tumors and immune cells. With these masks, it becomes possible to send CAR‑T cells to areas where
immunity is strong in the tumor, which helps them enter and destroy the tumor.

3.3. Single Shot Detector with FEM‑R‑CNN for Immunotherapy
With an SSD included in the FEM‑R‑CNN framework, the speed and efficiency of locating tumors and immune

cells that inform CAR‑T cell therapy increases. Compared to traditional multi‑stage detectors, SSD can detect and
classify objects from a complex tumor microenvironment in just a single forward run. After applying the Fejér Ker‑
nel filtering to obtain FFF, the SSD in FEM‑R‑CNN operates on the featuremaps and outputs the bounding boxes and
their probabilities for the final prediction. When performing SSD, a convolutional network is used to predict mul‑
tiple bounding boxes, 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑛} and class scores, 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛}, by examining the image at different
scales using F, as stated in Equation (17).

𝑏𝑖 = 𝑓𝑏(𝐹, 𝑠𝑖), 𝑐𝑖 = 𝑓𝑐(𝐹, 𝑠𝑖) (17)

In Equation (17), 𝑓𝑏 and 𝑓𝑐 are learned functions that take in 𝐹 and 𝑠𝑖 to catch things of all sizes. SSD’s loss
function includes bounding box regression accuracy 𝐿𝑙𝑜𝑐 and accuracy for predicting classes 𝐿𝑐𝑜𝑛𝑓 , as defined in
Equation (18).

𝐿𝑆𝑆𝐷 = 1
𝑁 ൫𝐿𝑙𝑜𝑐 ൫𝐵, 𝐵̂൯ + 𝐿𝑐𝑜𝑛𝑓 ൫𝐶, 𝐶̂൯൯ (18)

In Equation (18),𝐵 and C have default bounding boxes and classes, 𝐵̂ shows the ground truth for𝐵, 𝐶̂ shows the
ground truth for C, and𝑁 is howmany default boxes were matched to the correct ground truth. Both detection and
detailed segmentation of tumor and immune cells are made possible in FEM‑R‑CNN, as the SSD output is blended
with the segmentation mask from Masked‑R‑CNN. Because of this synergy, CAR‑T cells can accurately identify and
target locations more effectively and more efficiently. The integration of SSD and Masked‑R‑CNN enables FEM‑R‑
CNN to respond well to the fluctuating and varied features found in immunotherapy tumor environments. Figure
2 presents the framework for the FEM‑R‑CNNmodel in CAR‑T cell immunotherapy.
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Figure 2. Framework of FEM‑R‑CNN fro the CAR‑T cell immunotherapy.

3.4. Classification with Masked R‑CNN for Immunotherapy
The FEM‑R‑CNN model relies on classification to separate different cell types and subregions within a tumor,

which affects the precision of CAR‑T cell therapy selection in immunotherapy. Unlike Faster R‑CNN, Masked R‑CNN
has a new branch for predicting masks in addition to its object classification within the detected regions. RoIAlign
pulls out 𝑅𝑖 , a set of fixed‑sized feature representations, from the region proposals 𝐵𝑖 , which are made from the
feature maps 𝐹 after the region computed using Equation (19).

𝑅𝑖 = 𝑅𝑜𝐼𝐴𝑙𝑖𝑔𝑛 (𝐹, 𝐵𝑖) (19)

The information from these features is handled by fully linked layers that yield classification scores 𝑆𝑖 for all
the categories of cells (e.g., tumor cells, immune cells, stromal cells), as stated in Equation (20).

𝑆𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑐 .𝑅𝑖 + 𝑏𝑐) (20)

While training, the weights and biases found in𝑊𝑐 and 𝑏𝑐 are set. With cross‑entropy, the classification loss
𝐿𝑐𝑙𝑠 is found between predicted scores 𝑠𝑖 and known labels 𝑆̂𝑖 , as stated in Equation (21).

𝐿𝑐𝑙𝑠 = −∑𝑖 𝑆̂𝑖 log 𝑠𝑖 (21)

The branch is taught simultaneously with the 𝐿𝑏𝑏𝑜𝑥 loss and 𝐿𝑚𝑎𝑠𝑘loss as the total loss function computed
using Equation (22).

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (22)
Masked R‑CNN within FEM‑R‑CNN supports the correct identification of CAR‑T cell targets and neighboring

tissues, helping immunotherapy systems reduce unintended effects. This approach to grouping is crucial for ther‑
apy planning, as it results in more targeted treatment of specific cells and improved patient outcomes. Using both
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bounding boxes and segmentation masks, the Masked R‑CNN enables a precise analysis of tumor heterogeneity.
Being able to distinguish betweenmalignant cells, immune cells that suppress responses, and normal stromal cells
is critical for treating tumors using immunotherapy. The end‑to‑end training of the network enables all three tasks
to be improved simultaneously, thereby enhancing both the consistency and accuracy of predictions. As a result,
CAR‑T cells can attack only the correct targets, which both reduces side effects and helps the therapy work better.
Besides that, the learned patterns from classification layers enables researchers to identify biomarkers and signs of
cancer phenotype, thereby helping to understand the actions and defenses of cancer cells. In essence, FEM‑R‑CNN
plays a crucial role in classification, enabling informed decisions in the field of new immunotherapies by combining
advancements in vision technology with medical practice.

Within immunotherapy, using FEM‑R‑CNN helps categorize cancers, enabling personalized treatment to be
provided. After the model correctly identifies the different cell types in the tumor microenvironment, it maps out
for clinicians and therapeutics the ideal parts of the tumor for CAR‑T cell action. This would help the CAR‑T system
identify which cells are cancerous and which are immunosuppressive, enabling it to act more effectively against
cancer or steer clear of areas where immune suppression might hinder its progress. Using this precise approach,
changes in the proportions or distribution of immune and tumor cells as treatment progresses are easily recognized
and treated. Additionally, linking classification with segmentation ensures that, in addition to identifying the best
targets, we can also define their precise shapes and edges, which CAR‑T cells need to navigate the complex and
dense structure of the tumor. All in all, FEM‑R‑CNN converts images from legacy data into valuable knowledge for
immune system therapy, encouraging new approaches that fully utilize CAR‑T cells and reduce their likelihood of
injuring healthy tissues.

4. Results and Experimental Analysis
The framework is analyzed in experiments using diverse and high‑quality tumor images, including both

histopathology and fluorescent microscopy data. The accuracy of detecting, segmenting, and classifying tumors
and immune cells is quantified using precision, recall, IoU, and F1‑score. When compared to Masked R‑CNN and
standard SSD, Fejér Kernel filters and an entropy criterion for regularization enhance thehandling of noise and the
reliability of drawn boundaries. Besides, experiments involving ablation support the claim that all components—
Fejér Kernel pre‑processing, entropy segmentation, SSD integration, and classification branches—are important
to the robustness and generalizability of the model. The model has been proven to segment and accurately track
the growth of tumors, as observed in collected time‑lapse scans. Experiments suggest that FEM‑R‑CNN makes it
easier to detect and place CAR‑T cells accurately, which may boost treatment results. The data also suggest that
the model makes it easier to visualize tumor margins and identify immune cells, providing more support for its
potential as a choice support tool in advanced immunotherapy. Table 1 presents the simulation setup for the
FEM‑R‑CNN model, and the CAR‑T cell structure is presented in Figure 3.

Table 1. Simulation setup for FEM‑R‑CNN.

Parameter Value/Setting

Dataset Publicly available medical imaging datasets and custom clinical samples The Cancer Genome Atlas
(TCGA), CAMELYON16 & CAMELYON17 and CoNSeP Dataset

Input Image Size 512 × 512 pixels
Backbone Network ResNet‑50 / ResNet‑101
Fejér Kernel Order nnn 10
Learning Rate 0.001
Batch Size 8
Number of Epochs 50
Optimizer Adam
Cross‑Validation Strategy 5‑fold
Std. Dev. Across Folds (%) ± 1.2
Entropy Regularization Weight λ 0.05
Anchor Scales [32, 64, 128, 256]
Anchor Ratios [1:1, 2:1, 1:2]
RoIAlign Output Size 14 × 14
Activation Function ReLU / Sigmoid
Dropout 0.3 in dense and classifier layers
L2 Weight Regularization 1e‑4
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Figure 3. Structure for CAR‑T cell for FEM‑R‑CNN.

In Figure 3, the structure of the CAR‑T cells is presented and the process of CAR‑T cell with proposed FEM‑R‑
CNN is presented in Figure 4(a)–4(e). Figure 5 and Table 2 show clear improvements resulting from using the
Fejér Kernel filter within the FEM‑R‑CNN framework for imaging CAR‑T cells in immunotherapy. The presence of
parts in a cell that can be difficult to see became clearer, improving from 12.5 dB to 18.3 dB of SNR, which is very
important for discerning different parts in the cellular environment.Additionally, the PSNR increased by 18.8%,
indicating that the images are now of higher quality. The change from SSIM 0.72 to 0.88 indicates that filtering the
image retainedmore of the important structure. In addition, the Edge Preservation Index (EPI) increased by 24.6%,
indicating that the filter effectively preserved sharpness in edges necessary for accurate cell boundary outlines.
Significant drops in FPR by 53.3% and FNR by 44.4% after filtering indicate that the method effectively reduces
incorrect and missed detections.

Table3 illustrates the impact of holistic treatment onCAR‑T cell segmentation in immunotherapy images using
the FEM‑R‑CNN method. Lowered measurements of global entropy (by 0.23 bits) and local entropy (by 0.23 bits)
show improvements by 27.1% and 29.5%, reflecting the now‑clearer edges between different sections in the image.
Due to these reductions, it appears that entropy regularization enables themodel to focus on important and reliable
biological areas while minimizing irrelevant information. There was a major improvement in mask accuracy, from
82.4% to 91.7%, resulting in a 11.3% gain and more accurate identification of CAR‑T cells and tumor regions. The
IoUmetric, which reflects the degree ofmatch between the calculated and actualmasks, also rose by 16.4%. Thanks
to the upgradedBoundary F1 Score, ourmodel showsbetter results in detecting edges and accurately displaying the
shape of cells. In particular, the false positive rate fell by 42.9%after using entropy regularization, demonstrating its
ability to prevent mistaken segmentations. Overall, these experiments demonstrate that utilizing global and local
entropy measures can improve segmentation and facilitate the effective operation of CAR‑T cells in challenging
tumor tissues.

The addition of the SSD to the FEM‑R‑CNN in CAR‑T cell detection for immunotherapy is shown in Table 4.
The correct identification of cellular structures increased from 84.6% in the baseline SSD to 92.3% with FEM‑R‑
CNN, resulting in a 9.1% improvement. The improvement in mAP from 0.74 to 0.86, a 16.2% increase, indicates
the model is now more reliable for all cases. Cutting the localization error by more than 50% from 13.5% to 7.8%
means that 42.2% more cells are accurately identified, making it easier to direct CAR‑T cell therapy. While it took
just a few more milliseconds for each image, the results in accuracy and stability were significant enough to make
the additional delayworthwhile. In addition, recall went from0.81 to 0.90, demonstrating that themethod finds the
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target regions more accurately. Out of two recent studies, one showed that less than one in a hundred detections
turned out to be false, which is a lower percentage than before.

(a)

(b)

(c)

(d)

(e)

Figure 4. Process of CAR‑T cell with FEM‑R‑CNN (a) CAR‑T cell; (b) Segmentation; (c) SSD; (d)Masked R‑CNN; (e)
Classification.
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Figure 5. Filtering with FEM‑R‑CNN.

Table 2. Filtering with FEM‑R‑CNN.

Metric Before Filtering After Fejér Kernel Filtering Improvement (%)

Signal‑to‑Noise Ratio (SNR) 12.5 dB 18.3 dB +46.4%
Peak Signal‑to‑Noise Ratio (PSNR) 28.7 dB 34.1 dB +18.8%
Structural Similarity Index (SSIM) 0.72 0.88 +22.2%
Edge Preservation Index (EPI) 0.65 0.81 +24.6%
False Positive Rate (FPR) 0.15 0.07 −53.3%
False Negative Rate (FNR) 0.18 0.10 −44.4%

Table 3. Entropy estimation of CAR‑T cell with FEM‑R‑CNN.

Metric Without Entropy Regularization With Entropy Regularization Improvement (%)

Global Entropy (bits) 0.85 0.62 −27.1%
Local Entropy (bits) 0.78 0.55 −29.5%
Mask Accuracy (%) 82.4 91.7 +11.3%
Intersection over Union (IoU) 0.67 0.78 +16.4%
Boundary F1 Score 0.70 0.81 +15.7%
False Positive Rate (FPR) 0.14 0.08 −42.9%

Table 4. Single shot detector estimation with FEM‑R‑CNN.

Metric Baseline SSD FEM‑R‑CNN (With SSD Integration) Improvement (%)

Detection Accuracy (%) 84.6 92.3 +9.1%
Mean Average Precision (mAP) 0.74 0.86 +16.2%
Localization Error (%) 13.5 7.8 −42.2%
Inference Time per Image (ms) 65 70 +7.7% (slower)
True Positive Rate (Recall) 0.81 0.90 +11.1%
False Detection Rate 0.17 0.09 −47.1%

In Figure 6, the FEM‑R‑CNN model for CAR‑T cell identification in immunotherapy achieves increasing accu‑
racy, as shown in Table 5, across the 100 training epochs. The model achieves a moderate level of accuracy at the
start (epoch 10), reaching 78.2%, along with an F1‑score of 74.9% and a large loss value of 0.62. Over time, the
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values of performance metrics continue to improve as training advances. Within epoch 50, the model achieves im‑
pressive accuracy of 93.1%; this is accompanied by a precision score of 91.8%, a recall score of 90.2%, an F1‑score
of 91.0%, and a loss of 0.26. It indicates that themodel can learn important information anduse it elsewhere. Reach‑
ing epoch 100 yielded the highest accuracy of 96.5%, alongwith precision of 95.8% and recall of 95.0%, resulting in
an F1‑score of 95.4%. Setting the loss to 0.10 during epoch 100 indicates that learning is stabilizing and producing
fewer errors in classification. It shows that the FEM‑R‑CNN can distinguish CAR‑T cells with great accuracy, which
is fundamental to their proper use and supervision in future immunotherapy methods.

Figure 6. Classification with FEM‑R‑CNN.

Table 5. Classification with FEM‑R‑CNN for the CAR‑T cell for immunotherapy.

Epoch Accuracy (%) Precision (%) Recall (%) F1‑Score (%) Loss

10 78.2 75.6 74.3 74.9 0.62
20 84.5 82.3 80.9 81.6 0.47
30 88.9 86.7 85.4 86.0 0.38
40 91.2 89.6 88.7 89.1 0.31
50 93.1 91.8 90.2 91.0 0.26
60 94.3 93.0 91.7 92.3 0.21
70 95.1 94.1 93.2 93.6 0.17
80 95.7 94.8 93.9 94.3 0.14
90 96.2 95.4 94.6 95.0 0.12
100 96.5 95.8 95.0 95.4 0.10

4.1. Analysis with Direct CAR‑T Cell for Tumor
Analyzing CAR‑T cell action within the tumor microenvironment using the FEM‑R‑CNN reveals improvements

in accurate and efficient movement. Using both computational vision and bio‑inspired approaches, the model can
accurately monitor, follow, and analyze CAR‑T cells when they enter tumor areas. Applying Fejér Kernel filtering to
an image helps reduce annoying noise, making it easier to recognize cellular elements. The segmentation method
becomes clearer with entropy, letting the model easily identify CAR‑T cells about nearby cancer tissue. By com‑

97



Trends in Immunotherapy | Volume 09 | Issue 04

bining a single‑shot detector with a masked R‑CNN, we can assure real‑time identification of CAR‑T cells moving
through a mixture of cells in a heterogeneous tumor. The next set of processes ensures that investigated interac‑
tions are true biological ones, thereby minimizing false positives.

The FEM‑R‑CNN model’s performance on each sample for CAR‑T cell analysis in tumor environments is seen
in Table 6. Overall, the model performed well in identifying CAR‑T cells in the presence of numerous other cell
types, consistently achieving a detection accuracy of at least 93.7%. According to IoU, the predicted cell boundaries
match well with the real ones, with values ranging from 0.79 to 0.86. As the results show, the enhanced boundary
using the Fejér Kernel and entropy is proven successful. Reliable results are produced since identification accuracy
for CAR‑T is between 91.8% and 95.8%. F1‑scores, which represent a mix of precision and recall, stay above 90%
in all the samples, with the most significant result in Sample 5, which is 95.4%. On average, it takes between 68
milliseconds and 75 milliseconds to process an image, suggesting the model’s usefulness in real‑time analysis for
clinical or experimental use.

Table 6. Results of FEM‑R‑CNN for CAR‑T cell analysis.

Sample ID Detection
Accuracy (%)

Segmentation IoU Classification
Accuracy (%)

F1‑Score (%) Inference Time
(ms)

Sample 1 94.8 0.81 93.5 92.7 72
Sample 2 96.2 0.85 95.1 94.4 69
Sample 3 93.7 0.79 91.8 90.9 75
Sample 4 95.6 0.83 94.3 93.5 70
Sample 5 96.5 0.86 95.8 95.4 68

The results in Table 7 illustrate the performance of the FEM‑R‑CNN model under various challenging condi‑
tions encountered in CAR‑T cell immunotherapy imaging, as shown in Figure 7. In situations where tumors are
difficult to detect due to high noise and low contrast, the model’s performance in detection and segmentation was
nearly as accurate as under other tested conditions, but this accuracy was the lowest of all. At these settings, the
classification accuracy and F1‑score drop to 89.7% and 88.4% and the false positive rate (FPR) increases to 0.12.
For the scenario of dense tumor growth, such as medium noise conditions, the model shows improved results with
a detection accuracy of 94.3%, segmentation IoU of 0.82, and stronger classification scores with an F1‑score of 92.0
and a reduced FPR of 0.09. When the imaging environment has low noise and only a few T‑cells, FEM‑R‑CNN shows
better accuracy (95.6%), precision (IoU0.84), and classification correctness (94.5%), andhas the lowest FPR (0.08),
showing it ismore dependablewhen imaging conditions are comfortable. Although it can face overlapping cells and
significant noise, themodel still detects and classifies the cells well, with an accuracy rate of 92.5% and an F1‑score
approaching 90%. The highest scores are achieved in clear and noise‑free cases, with an accuracy of 96.8% for
detection, 0.87 for IoU, 96.1% for classification, and an F1‑score of 95.6%—all with a very low false positive rate of
0.06. Although the methodology was tested on a variety of medical images, it shows strong performance in CAR‑T
cell tracking and monitoring in immunotherapy.

4.2. Analysis of Immuno Response
An analysis of the body’s immune response is necessary to learn how speciallymadeT cellswork against tumor

cells and their environment. FEM‑R‑CNN enables researchers to visualize the detailed dynamics of how CAR‑T cells
develop, multiply, and become cytotoxic, with accurate time tracking. Thanks to the model’s segmentation, it can
count CAR‑T cells near tumors,measure their density, determinewhere they are located, andmonitor their behavior
in the body. They represent the immune system’s ability to spot and destroy cancer cells. Changes in shape and
organization shown by the cancer target cells are matched by the activity and function observed in CAR‑T cells.
Thanks to linking imaging data with immunological features, FEM‑R‑CNN enables us to fully assess the outcomes
of therapy by locating areas with significant immune reactions and cells that are avoiding treatment.

Immune response analysis of CART cells using the FEM‑R‑CNNmodel is shown inTable 8 for five sample cases,
as shown in Figure8. The armor T cells (CAR‑Ts) found in the tumors range from110 to 150 cells/mm², and Sample
5 (BCR–ABL1+) had the highest density of 150 cells/mm². As a result, CAR‑T cell proliferation in the tumor area,
which ranges from 37% to 50%, is highest in Sample 5 at 50%. Cytotoxic activity, which reflects how well CAR‑T
cells remove tumor cells, also increases from 55% to 65%. The immune infiltration score is the highest for Sample
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5, at 0.85, suggesting a large number and high quality of immune cells at this tumor site. In addition, all samples
demonstrate high immunological support for apoptosis, ranging from 60% to 72%, with Sample 5 exhibiting the
most significant tumor reduction. All of these findings demonstrate that the model can track important immune
activities, pointing out that whenmore CAR‑T cells are available and active, there is a higher rate of tumor cell death,
which is fundamental for measuring and improving immunotherapy effectiveness.

Table 7. Results of FEM‑R‑CNN under varying conditions.

Condition/Sample Noise Level Detection
Accuracy (%)

Segmentation
IoU

Classification
Accuracy (%)

F1‑Score (%) False Positive
Rate (FPR)

Low contrast tumor High 91.2 0.76 89.7 88.4 0.12
Dense tumor tissue Medium 94.3 0.82 92.8 92.0 0.09
Sparse T‑cell presence Low 95.6 0.84 94.5 93.8 0.08
Overlapping cells High 92.5 0.78 90.6 89.7 0.11
Clear tumor boundary Low 96.8 0.87 96.1 95.6 0.06

Figure 7. Performance of FEM‑R‑CNN for immunotherapy in different conditions.

Table 8. Immuno response analysis with FEM‑R‑CNN.

Sample ID CAR‑T Cell Density
(cells/mm²)

Proliferation Rate
(%)

Cytotoxic Activity
(%)

Immune
Infiltration Score

Tumor Cell
Apoptosis (%)

Sample 1 125 42 58 0.78 65
Sample 2 140 48 62 0.82 70
Sample 3 110 37 55 0.75 60
Sample 4 135 45 60 0.80 68
Sample 5 150 50 65 0.85 72
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Figure 8. Immune response of CAR‑T cell with FEM‑R‑CNN.

InTable 9, compare the FEM‑R‑CNNmodel to U‑Net, StandardMask R‑CNN, and YOLOv5, as all four were used
in the analysis of CAR‑T cell immunotherapy. Compared to other approaches, FEM‑R‑CNN exhibits the best detec‑
tion accuracy, accurately identifying CAR‑T cells tumor images. An IoU score of 0.86 also indicates that Yolact can
segment cells with themost accuracy, especially around their edges. In terms of accuracy and F1‑score, FEM‑R‑CNN
was again the top performer, achieving 94.8% and 94.1%, respectively, accurately and equally detecting functional
CAR‑T cells. Although it takes slightly longer (70 ms) to use FEM‑R‑CNN than U‑Net (55 ms) and YOLOv5 (40 ms),
this is still reasonable, considering the significant improvements in performance and stability of FEM‑R‑CNN. Sig‑
nificantly, this method shows the highest rate of apoptosis among tumor cells (72%), confirming its stronger ability
to investigate how the immune response impacts therapeutic outcomes. In general, these results confirm that FEM‑
R‑CNN is an effective and precise tool for boosting CAR‑T cell immunotherapy research by combining high accuracy,
detailed analysis, and efficient performance.

Table 9. Comparative analysis.

Model Detection
Accuracy (%)

Segmentation
IoU

Classification
Accuracy (%)

F1‑Score (%) Inference
Time (ms)

Tumor Cell
Apoptosis (%)

U‑Net 89.4 0.75 87.8 86.9 55 65
Standard Mask R‑CNN 91.8 0.79 90.2 89.7 68 68
YOLOv5 90.7 0.73 88.9 88.1 40 63
Cellpose 92.3 0.81 91.1 90.2 60 67
SAM 93.9 0.83 92.7 91.4 85 89
FEM‑R‑CNN 96.2 0.86 94.8 94.1 70 72
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The proposed FEM‑R‑CNN framework for guiding CAR‑T cell navigation across complex tumor microenviron‑
ments has several limitations that must be acknowledged. First, the model has not yet undergone validation on
real‑world clinical samples, such as live‑cell imaging, patient‑derived tissues, or in vivo environments, which lim‑
its its current translational potential. The framework was primarily evaluated on publicly available datasets and
simulated scenarios, whichmaynot fully capture the heterogeneity and complexity of actual tumor‑immunedynam‑
ics. Secondly, the architecture incorporates several high‑capacity components, including Fejér Kernel smoothing,
entropy‑based regularization, SSD detection, and Masked R‑CNN segmentation, which, while effective, raise con‑
cerns about model overfitting, especially when trained on small or sparsely annotated datasets. Furthermore, key
mathematical tools such as entropy regularization and the Fejér Kernel, althoughbeneficial computationally, lack di‑
rect biological interpretability. Their relationship to histological structures (e.g., tumor margins, immune clusters)
has not been explicitly defined, whichmay hinder the acceptance of thesemodels in clinical workflows that require
explainable AI outputs. Additionally, the lack of open access to source code, model weights, and reproducibility
protocols impedes replication and benchmarking by the broader research community.

5. Conclusion
This paper proposes an FEM‑R‑CNN framework for immunotherapy in CAR‑T cell treatment. The proposed

model implements a Fejer Kernel‑based filtering process, followed by entropy‑based segmentation. The segmented
feature in theCAR‑T cells is estimatedusing theSSD, followedby themaskedR‑CNNmodel for classification. Through
the proposed FEM‑R‑CNNmodel, classification is performed for analyzing the immune response using FEM‑R‑CNN.
With a new filter method, entropy segmentation, and a specialized CNN, complex CAR‑T cell examination in im‑
munotherapy is integrated. With the FEM‑R‑CNN proposed model, there are greater improvements in accuracy,
precision, reliability, and tumor response evaluation than with existing standard techniques for complicated tumor
environments, variable noise, and difficult interactions between cells. FEM‑R‑CNN is useful for real‑time moni‑
toring and correct navigation of CAR‑T cells. This makes it easier to measure immune activation and to predict
the outcome of treatments in the field of next‑generation immunotherapies. The future work focuses on validat‑
ing the FEM‑R‑CNN framework using clinically annotated data from patient biopsies or live‑cell tracking systems.
Lightweight architectural alternatives or regularization strategies may also be explored to mitigate the risk of over‑
fitting.
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