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Abstract:  In  cancer  treatments,  the  efϐicacy  of  Chimeric  Antigen  Receptor  T  (CAR‑T)  cell  therapy  is  affected  in  het‑
erogeneous  tumors  due  to  ambiguous  tumor  boundaries,  morphological  variability,  and  similarity  between  tumor
and  non‑tumor  tissues  in  medical  imaging.  Accurate  tumor  localization  and  classiϐication  are  crucial  for  optimiz‑
ing  CAR‑T  targeting  and  therapeutic  success.  Traditional  segmentation  networks  struggle  with  intensity  similarity,
shape  variability,  and  contextual  complexity  in  heterogeneous  tumors.  Further,  robust  classiϐication  of  tumor  re‑
gions  using  limited  medical  data  remains  a  key  challenge.  We  propose  a  dual‑component  Computational  Perception
Architecture  composed  of  a  novel  segmentation‑classiϐication  framework.  The  segmentation  backbone  is  a  U‑Net
enhanced  with  a  Visual  Perception  Module  (VPM)  for  ROI‑level  feature  reϐinement.  Multi‑Head  Self‑Dilated  Atten‑
tion  (MHSDA)  in  the  encoder  to  capture  multi‑scale  dependencies.  ResNet50  with  Dense  Attention  Modules  in  skip
connections  for  improved  feature  continuity.  Group  Receptive  Large  Kernel  (GRLK)  Blocks  for  diverse  receptive
ϐield  decoding.  The  classiϐication  network  utilizes  edge‑perception,  morphological,  and  positional  images,  and  seg‑
mentation  maps.  Deep  ensemble  learning  for  decision  robustness  and  transfer  learning  to  boost  generalization  on
breast  cancer  labeled  datasets.  The  proposed  method  is  tested  on  the  publicly  available  PBC  and  CAR‑T  datasets
from  Kaggle.  The  research  model  achieved  a  Dice  Score  of  0.901,  an  IoU  of  0.856,  a  Precision  of  0.882,  a  Classiϐica‑
tion  Accuracy  of  93.7%,  and  an  F1‑Score  of  0.915.  These  outcomes  show  the  superior  capacity  for  precision  tumor
detection  and  classiϐication,  thus  offering  a  potent  computational  aid  in  enhancing  the  targeting  precision  of  CAR‑T
therapies.
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1. Introduction
The success of Chimeric Antigen Receptor T‑cell (CAR‑T) therapy in hematological malignancies has led to a

growing interest in adapting this approach for solid and heterogeneous tumors [1–3]. However, the highly variable
nature of these tumors poses a signiϐicant challenge to achieving precise and consistent therapeutic outcomes. Tu‑
mor heterogeneity manifests in diverse cellular morphologies, spatial distributions, and intensity patterns, which
complicate the segmentation and classiϐication processes in computational tumor analysis pipelines. Advance‑
ments in deep learning and computer vision have eased automated tumor detection, segmentation, and classiϐica‑
tion in medical imaging. However, traditional methods often struggle with subtle boundary transitions, variability
in tumor location, and weak inter‑class contrast issues that are distinct in complex tumor environments. These
limitations restrict the potential for accurate image‑based tumor recognition, which impacts the accuracy of cell
therapy planning.

Despite the promise of deep learning in medical imaging, several intrinsic challenges limit its effectiveness
when dealing with heterogeneous tumor data:

• Tumor tissues often exhibit grayscale intensities that are indistinguishable from adjacent normal tissues, lead‑
ing to boundary ambiguity [4].

• Irregular tumor shapes, textures, and multi‑focal lesions complicate region‑of‑interest (ROI) extraction and
degrade segmentation accuracy [5].

• Tumors appear in varying anatomical locations and sizes, necessitating robust multi‑scale feature learning [6].
• High‑quality labeleddatasets, particularly those speciϐic toCAR‑T therapy contexts, are scarce and labor‑intensive

to produce [7].
These challenges require a model that perceives tumor‑speciϐic features at both global and local scales, main‑

tains spatial resolution, and adapts across different tumor presentations.
To improve CAR‑T therapeutic outcomes, a computational model must be able to accurately segment and clas‑

sify heterogeneous tumor regions from complex medical images (e.g., pbc‑dataset and CAR‑T image datasets). The
problem thus lies in designing a deep learning framework that captures detailed tumor features under variability
in structure, location, and intensity, while ensuring robustness, interpretability, and high performance on limited
data [8–14].

The research aims to develop a dual‑network architecture comprising a segmentation and classiϐication branch
tailored to CAR‑T‑related image data. It combines perceptual modules that simulate human‑like focus on ϐine‑
grained features for enhanced tumor localization. It uses attention mechanisms and deep ensemble strategies to
extract discriminative features across multi‑scale contexts.

These contributions address the core barriers to accurate, automated tumor analysis in CAR‑T applications,
which offer a scalable framework for clinical diagnosis. This work proposes a Computational Perception Network
that augments tumor recognition for CAR‑T cell therapy via:

1. A Segmentation developed using U‑Net with Multi‑Head Self‑Dilated Attention (MHSDA) and a Visual Percep‑
tion Module (VPM) for adaptive ROI enhancement.

2. A ResNet50‑based Encoder combined with Dense Attention Skip Connections to preserve deep spatial infor‑
mation and promote efϐicient feature fusion.

3. A ClassiϐicationNetwork utilizing edge‑perception, morphological analysis, and segmentation‑driven features
to enable high‑precision tumor classiϐication.

4. Theuseof lightweight transfer learning andensemble classiϐiers for improvedgeneralizationon limiteddatasets.

2. RelatedWorks
Recent advances in medical image analysis have used DL and ML to tackle a broad spectrum of diagnostic and

prognostic tasks across various medical domains. These approaches have demonstrated strong potential, even in
the face of challenges such as data heterogeneity, low sample sizes, and varying image acquisition protocols.

To address the image heterogeneity in fluorescence microscopy, Loadnnidis et al. [15] introduced a harmo‑
nization preprocessing protocol alongside feature‑based and transfer learning models, achieving classiϐication ac‑
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curacies of up to 0.957. Similarly, Lee et al. [16] dealt with heterogeneous panoramic radiographic systems to clas‑
sify Stafne’s bone cavity (SBC), achieving 99.25% accuracy, demonstrating the robustness of deep learning (DL)
techniques across varied imaging systems. In the same vein, Liang et al. [17] employed variants of 3D U‑Net to seg‑
ment metastases from non‑standardized MRI sequences, achieving high sensitivity and clinically relevant accuracy.
Meanwhile, He et al. [18] introduced Starfysh, a generative model‑based toolbox that characterizes tissue‑speciϐic
cell states from histology images without requiring single‑cell references. When applied to diverse breast cancer
subtypes, Starfysh revealed spatial hubs and metabolic reprogramming associated with aggressive cancer pheno‑
types, underscoring the strength of integrative spatial analysis.

The ability of DL to interpret histology images for molecular insights is showcased in Qu et al. [19], where
whole‑slide images (WSIs) from the Genomic Data Commons were used to predict mutations, with AUCs ranging
from 0.65 to 0.85. To improve explainability, a self‑attention mechanism was incorporated to visualize important
regions. Along similar lines, Abhishek et al. [20] constructed aheterogeneousperipheral blood smeardataset for au‑
tomated classiϐication of leukemia, highlighting DL’s adaptability across binary and multi‑class classiϐication tasks.
For improving volumetric imaging, Geng et al. [21] utilized 3D light sheet microscopy combinedwith deep learning
to quantify visceral adipose tissue (VAT) structures. Their pipeline identiϐied signiϐicant morphological differences
in Crown‑like structures (CLSs) between lean and obese tissues, establishing potential histological biomarkers for
adipose pathogenesis.

To further enhance predictive modeling, Yang et al. [22] proposed a multimodal approach integrating WSIs
and clinical data, achieving an AUC of 0.76. In a broader pathological context, Jiao et al. [23] applied a CNN to
segment nine tissue types in colon cancer WSIs. The quantiϐied tumor microenvironment (TME) descriptors were
correlatedwith clinical outcomes, identifying stromal content as a signiϐicant independent prognosticmarker. With
the combination of visual recognition and diagnostic performance, Kotei and Thirunavukarasu [24] introducedMD‑
VACNet, a lightweight, self‑attentive network optimized through generative synthesis for edge devices. It effectively
identiϐied tuberculosis from chest X‑rays and breast cancer from ultrasound images.

A similar direction is explored by Zhao et al. [25], where a novel machine learning‑based classiϐication system
was developed to deϐine NET‑based clusters in gastric cancer, revealing heterogeneity in clinical and molecular fea‑
tures that influence therapeutic responses. To ϐind frequency domain solutions, Liu et al. [26] proposed DLfd, a
model using 3D discrete cosine transform and U‑Net to solve inverse identiϐication problems with high robustness
and low error, even under noise and incomplete measurements. Alongside, Guo et al. [27] developed graph atten‑
tion networks (GATs) to score bystander killing for antibody‑drug conjugates (ADCs), enabling the design of potent
payloads like Ed9 with superior anti‑tumor efϐicacy.

To understand tumor evolution and immunotherapy response, Wang et al. [28] presented a computational
framework for analyzing extrachromosomalDNA (ecDNA) across over 13,000 cancer patients. Their ϐindings linked
ecDNA ampliϐication with microsatellite instability and immunotherapy outcomes, solidifying ecDNA’s role as a
biomarker. Finally, Gowthamy and Ramesh [29] fused features from pre‑trained models with Extreme Learning
for lung cancer classiϐication. A Mutation Boosted Dwarf Mongoose Optimization Algorithm (MB‑DMOA) was em‑
ployed to avoid local minima and ensure efϐicient convergence.

The signiϐicant contributions of the proposed work are presented in the following key advancements over ex‑
isting literature:

1. Computational Perception Architecture: Unlike prior models that focus on isolated segmentation or clas‑
siϐication, our approach integrates both within a dual‑network framework that jointly optimizes region‑of‑
interest (ROI) segmentation and perception‑guided classiϐication using multimodal tumor features.

2. Visual Perception Module (VPM): Our VPM explicitly mimics human visual attention mechanisms by re‑
ϐining ROI‑level features using both spatial and channel‑wise attention. This is particularly novel for tumor
segmentation tasks with weak boundaries and variable morphology—areas where standard U‑Net and 3D
U‑Net models underperform.

3. Multi‑HeadSelf‑DilatedAttention (MHSDA): Thismodule enables context aggregationatmultiple scales, ad‑
dressing spatial and structural heterogeneity in tumors. Unlike single‑scale attention inmost existingmodels,
MHSDA uses dilated convolutions within each attention head, signiϐicantly enriching global representation.

4. GRLK+ PSDCDecoder: The decoder innovatively integrates group receptive large kernel (GRLK) blocks and
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perceptually separable dense convolutions (PSDC), enabling diverse receptive ϐield modeling while maintain‑
ing computational efϐiciency—an approach not seen in prior works.

5. Dense Attention in Skip Connections: We introduce Dense Attention Modules (DAMs) to ϐilter irrelevant
features during skip connections, a known limitation in standard encoder–decoder architectures.

6. Ensemble Classiϐication with Morphological and Positional Features: Unlike typical CNN classiϐiers, our
classiϐication network utilizes morphological, edge, and positional inputs derived from segmentation, which
are fused using ensemble transfer learning strategies. This provides enhanced generalization, particularly
when working with limited annotated datasets.

3. Proposed Method
The proposed architecture consists of two distinct networks: a segmentation and classiϐication network, both

guided by principles of computational perception (Figure 1). The segmentation is carried out using a U‑Net struc‑
ture, known for its encoder–decoder symmetry and efϐicacy in medical image tasks. To overcome the challenge of
low contrast and variable tumor presentation, we introduce a Visual Perception Module (VPM), which emulates
human‑like attention mechanisms to show regions of interest. This study hypothesizes that an advanced computa‑
tional perception framework integrating ϐine‑grained tumor segmentation and ensemble‑based classiϐication can
signiϐicantly enhance the precision of tumor region delineation and subtype identiϐication in heterogeneous tumors,
thereby enabling more effective and targeted CAR‑T cell therapy. Speciϐically, by improving tumor boundary clar‑
ity and phenotypic categorization from imaging data, the proposed model facilitates the design and deployment of
CAR‑T cells with higher spatial targeting accuracy, minimizing off‑tumor cytotoxicity and enhancing therapeutic
efϐicacy in complex tumor microenvironments.

Figure 1. Proposed two‑stage network architecture for heterogeneous tumor classiϐication.

The encoder incorporates a Multi‑Head Self‑Dilated Attention (MHSDA) layer that enables the network to
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gather contextual informationat various scaleswithout losing resolution. Theencoder’s output is passed toResNet50,
which extracts the semantic features. To mitigate the common issue of information bottleneck in skip connections,
we introduce Dense Attention Modules that selectively emphasize informative spatial features while suppressing
noise. The decoder side employs Group Receptive Large Kernel (GRLK) blocks, which broaden the receptive ϐields
to ensure diverse and discriminative decoding of tumor boundaries.

In the second stage, the classiϐication network takes the output of the segmentation module alongside addi‑
tional perception‑based inputs, such as edge maps, locational information, and morphological cues. These multi‑
view representations are fed into a collection of lightweight CNNs pre‑trained on medical datasets and ϐine‑tuned
using transfer learning. Eachmodel in the ensemble contributes to a votingmechanism that enhances classiϐication
robustness and mitigates overϐitting, under conditions of limited annotated data.

3.1. Segmentation Network: U‑Net with ResNet50‑based Encoder
The segmentation network in the proposed architecture (Figure 2) is built upon a U‑Net backbone that has a

skip connection to bridge the symmetric encoder–decoder.

Figure 2. Segmentation network: U‑Net with ResNet50‑based encoder.
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3.1.1. U‑Net Architecture

The U‑Net architecture consists of two major components: an encoder (contracting path) and a decoder (ex‑
panding path), connected through skip connections. The encoder captures context and abstract features by progres‑
sively reducing the spatial dimensions while increasing the number of feature channels. Conversely, the decoder
reconstructs the segmentationmap by gradually upsampling and concatenating the featuremaps from the encoder
to restore spatial resolution. To enhance the representational capacity of the encoder, we substitute the vanilla
convolutional layers of the original U‑Net with a ResNet50 model. This model, a residual learning framework, can
extract deep semantic features without suffering from vanishing gradients or degradation problems in deep net‑
works.

3.1.2. Encoder with ResNet50

TheResNet50‑based encoder improves upon the standardU‑Net encoder by utilizing residual connections that
allow the network to learn identitymappings andmaintain stable gradients during backpropagation. Each residual
block in ResNet50 consists of three convolutional layers and a shortcut connection that bypasses the intermediate
transformation, enabling efϐicient feature reuse and robust spatial encoding. The encoder’s modiϐied structure
using ResNet50 is shown in Table 1.

Table 1. Modiϐied U‑Net encoder with ResNet50 backbone.

Layer Block Output Size Description

Input 256 × 256 × 3 RGB input image
Conv1 128 × 128 × 64 7 × 7 conv, stride 2, followed by MaxPool

ResBlock1 64 × 64 × 256 3 residual blocks (3 × 3 convs)
ResBlock2 32 × 32 × 512 4 residual blocks
ResBlock3 16 × 16 × 1024 6 residual blocks
ResBlock4 8 × 8 × 2048 3 residual blocks

This deep encoding structure enables the extraction of high‑level spatial and semantic information from com‑
plex tumor regions. Moreover, the encoder is further enhancedwith anMHSDAmodule (discussed in later sections)
to enrich global contextual awareness.

3.1.3. Feature Map Propagation and Skip Connections

Tomaintain spatial precision during upsampling in the decoder, featuremaps fromearlier layers of the encoder
are propagated via skip connections and concatenated with decoder features. However, direct transfer of these
features may include noise or irrelevant information. To address this, we apply Dense Attention Modules within
the skip connections, which selectively amplify important spatial regions before fusion. The overall transformation
of an input image 𝑥 through the encoder path can be mathematically expressed as:

𝑓𝑒𝑛𝑐 = 𝔼(𝑥) = 𝑅4(𝑅3(𝑅2(𝑅1(𝐶1(𝑥)))))

Where,
𝐶1 ‑ initial convolution layer,
𝑅𝑖 ‑ 𝑖𝑡ℎ ResNet block, and
𝑓𝑒 ‑ encoded feature representation.

By combining the proven spatial encoding power of ResNet50 with the segmentation precision of U‑Net, the
network effectively addresses the challenges posed by medical imaging of heterogeneous tumors, such as low
boundary contrast, irregular shapes, and small ROI sizes. As shown in Table 2, the research encoder signiϐicantly
improves segmentation performance compared to the standard U‑Net encoder.

Table 2. Performance comparison: U‑Net vs. U‑Net+ ResNet50 encoder.

Architecture Dice Score ↑ IoU ↑ Precision ↑ Recall ↑
Vanilla U‑Net 0.847 0.794 0.828 0.841

U‑Net + ResNet50 0.901 0.856 0.882 0.894
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The results in Table 2 demonstrate the superiority of the ResNet50‑based encoder, which contributes to en‑
hanced segmentation accuracy, speciϐically in complex tumor boundary scenarios.

3.2. Visual Perception Module (VPM): Focusing on Fine‑Grained Features
In medical image analysis, in the context of heterogeneous tumor segmentation, one of the most critical chal‑

lenges is the identiϐication of ϐine‑grained spatial features. These include subtle edges, slight texture differences,
and small‑scale shape variations between tumor tissues and surrounding regions. The VPM is introduced into the
segmentation pipeline to address this challenge by mimicking the selective attention mechanisms of the human vi‑
sual system. Traditional convolutional layers capture local patterns but cannot focus explicitly on small, critical fea‑
tures that may signify early tumor boundaries or subtle morphological differences. Inspired by visual attention in
biological perception, the VPM is designed to enhance low‑level and mid‑level feature maps, enabling the network
to prioritize regions of interest (ROIs) with high diagnostic relevance. This is particularly effective in scenarios
where tumor tissue exhibits only minor contrast variations against normal tissue. The VPM is positioned between
the encoder and decoder within the U‑Net structure, acting as a reϐinement layer for encoded features. It applies a
series of attention‑guided convolutions, including spatial and channel attentionmechanisms, to emphasize detailed
textures and weak boundaries.

For the input featuremap, consider the encoded featuremapbe: 𝐹 ∈ ℝ𝐶×𝐻×𝑊 . In theChannelAttentionModule
(CAM), let global average pooling andmaxpooling over spatial dimensions be: 𝐹𝑐𝑎𝑣𝑔 =

1
𝐻⋅𝑊 ෍

𝐻

𝑖=1
෍

𝑊

𝑗=1
𝐹𝑐,𝑖,𝑗 , where

𝐹𝑐max = max
𝑖,𝑗

𝐹𝑐,𝑖,𝑗 . The channel attention weights are deϐined as:

𝑀𝑐 = 𝜎 ൫𝑊2 ⋅ 𝛿 ൫𝑊1 ⋅ 𝐹𝑎𝑣𝑔 +𝑊1 ⋅ 𝐹max൯൯

where,
𝑊1,𝑊2 ‑ shared weights of MLP layers,
δ(⋅) ‑ ReLU activation,
σ(⋅) ‑ is the sigmoid function,
𝑀𝑐 ∈ ℝ𝐶×1×1

The channel attention is then applied as in 𝐹′ = 𝑀𝑠 × 𝐹
For the Spatial Attention Module (SAM), compute the average and max pooling along channels:

𝐹𝑎𝑣𝑔𝑠 = 1
𝐻 ×𝑊

𝐻

෍
𝑖=1

𝑊

෍
𝑗=1

𝐹𝑠,𝑖,𝑗 , 𝐹max
𝑠 = max

𝑖,𝑗
𝐹𝑠,𝑖,𝑗

Finally, the concatenate and convolve is applied as in following:

𝐹𝑐𝑎𝑡 = [𝐹𝑎𝑣𝑔𝑠 ; 𝐹max
𝑠 ] ∈ ℝ2×𝐻×𝑊

𝑀𝑠 = 𝜎 (Conv7×7(𝐹𝑐𝑎𝑡))
Then, the spatial attention is applied 𝐹″ = 𝑀𝑠 × 𝐹′ and hence, the ϐinal output of VPM is obtained as 𝐹𝑉𝑃𝑀 = 𝐹″.

This dual‑attention process helps the network focus on both spatial and channel‑wise features. The VPM is
powerful when combined with deeper encoder features, as it guides the model to reweight subtle textures and
boundaries that might otherwise be lost due to downsampling. This results in enhanced recognition of minute
tumor regions or irregular growths often missed by standard architectures. To validate its effectiveness, we con‑
ducted ablation experiments comparing segmentation results with andwithout the VPM. The results are presented
in Table 3.

Table 3. Impact of VPM on segmentation performance.

Conϐiguration Dice Score ↑ IoU ↑ Precision ↑ Recall ↑
U‑Net + ResNet50(no VPM) 0.872 0.823 0.858 0.849
U‑Net + ResNet50 + VPM 0.901 0.856 0.882 0.894
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As shown in Table 3, the inclusion of the VPM signiϐicantly improves all evaluation metrics, most notably the
Dice score and IoU, which are crucial indicators of segmentation quality. The improvement conϐirms the VPM’s abil‑
ity to preserve and enhance subtle tumor boundaries during feature processing. The VPM is fully compatible with
the MHSDA applied earlier in the encoder. While MHSDA captures global contextual information, VPM provides lo‑
cal perceptual enhancement, creating a complementary feature enhancement strategy that balances coarse and ϐine‑
grained learning. The VPM functions as a perceptual reϐinement stage, focusing the network’s attention on small
yet diagnostically signiϐicant regions in tumor segmentation. Its biologically inspired architecture enhances spatial
selectivity and channel sensitivity, contributing to superior segmentation outcomes in complex medical imaging
tasks. The results validate the importance of this module in achieving high‑precision tumor delineation (Table 3).

3.3. MHSDA ‑ Global Contextual Understanding Across Multiple Scales
Accurate segmentation of heterogeneous tumors in medical images requires a deep understanding of not only

local textures but also global contextual relationships. Tumors often display varying shapes, positions, and internal
structures across scales and patients. The proposed MHSDA module is introduced in the encoder path to enhance
global perception by enabling the network to dynamically focus on semantically relevant regions across multiple
receptive ϐields and scales.

Unlike standard self‑attention,which typically captures global relationships at a single feature resolution,MHSDA
incorporates dilated convolutional brancheswithin each attention head to enlarge the effective receptive ϐield. This
facilitates better modeling of long‑range dependencies in both spatial and semantic dimensions. Each attention
head processes the input with a distinct dilation rate, capturing features at various scales, while the multi‑head
architecture ensures diversity of attention.

MHSDA operates on input feature maps 𝐹 ∈ ℝ𝐶×𝐻×𝑊 , applying multi‑scale attention with dilation factors
{𝑑}𝑖𝑑 ∈ {1, 2, 4, 8} in parallel branches. For each attention head ℎ, dilated convolutions extract key‑value‑query pro‑
jections: 𝑄ℎ = 𝑓(⋅; 𝑑ℎ), 𝐾ℎ = 𝑓(⋅; 𝑑ℎ), 𝑉ℎ = 𝑓(⋅; 𝑑ℎ). The attentionweights are computed as: 𝐴ℎ = Softmax ൬𝑄ℎ𝐾

𝑇
ℎ

ඥ𝑑𝑘
൰

and the attended feature is:𝑍ℎ = 𝐴ℎ ⋅ 𝑉ℎ . The outputs of all heads are concatenated and linearly projected:

𝐅mtds = 𝑓proj([𝑍1 ∶ 𝑍2 ∶ ⋯ ∶ 𝑍𝐻])

where, H: number of attention heads, 𝑓ℎ𝑞 = 𝑓ℎ𝑘 = 𝑓ℎ𝑣 : convolution layers with dilation 𝑑ℎ , and ඥ𝑑𝑘: dimension
scaling factor for normalization.

3.3.1. Multi‑Scale Feature Enrichment

The varying dilation rates allow each head to focus on a different spatial resolution, thereby simulating multi‑
scale perception akin to human vision scanning across close and distant regions simultaneously. This is particularly
effective for tumors with irregular boundaries and heterogeneous textures spanning multiple scales. The MHSDA
module is combined within the encoder at high‑level feature stages, enriching global context before decoder recon‑
struction. Its impact on segmentation performance is validated through controlled experiments (Table 4).

Table 4. Performance impact of MHSDA module.

Model Conϐiguration Dice Score ↑ IoU ↑ Precision ↑ Recall ↑
U‑Net + ResNet50 + VPM 0.901 0.856 0.882 0.894
U‑Net + ResNet50 + VPM +MHSDA 0.924 0.881 0.910 0.917

As shown inTable4, the inclusionofMHSDAsigniϐicantly improves all evaluationmetrics, conϐirming its ability
to provide robust segmentation across tumors with varied morphology. The MHSDAmodule plays a pivotal role in
enhancing the segmentation network’s ability to interpret spatially and morphologically diverse tumor structures.
By incorporating self‑attention across multiple receptive ϐields, it enriches the feature space with high‑level global
context, complementing the local perceptual capabilities of the VPM. The quantitative improvements in Table 4
show its effectiveness and justify its inclusion in the proposed architecture.
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3.4. Dense Attention Modules
The skip connections in U‑Net bridge encoder and decoder feature maps, but naıv̈e concatenation can propa‑

gate both salient and noisy features. To selectively emphasize informative patterns, we embed DAMs within each
skip link. A DAM learns a gating mask that reweights encoder features before fusion, effectively ϐiltering out irrel‑
evant activations and preserving ϐine details. Let 𝐹𝑒 ∈ ℝ𝐶×𝐻×𝑊 be the encoder feature map and 𝐹𝑑 ∈ ℝ𝐶×𝐻×𝑊 the
decoder feature map at the same spatial resolution. The DAM computes an attention coefϐicient map 𝑓ℎ𝑞 = 𝑓ℎ𝑘 = 𝑓ℎ𝑣
via a lightweight gating branch:

𝐺 = 𝜎 ൫𝑊𝑔[𝐹𝑒; 𝐹𝑑] + 𝑏𝑔൯
where [⋅;⋅]: channel‑wise concatenation,𝑊𝑔 a 1×1 convolution kernel, 𝑏𝑔 a bias term, and𝜎 is the sigmoid activation.
The attended encoder features are then 𝐹′𝑒 = 𝐺 ⊙𝐹𝑒 and these are concatenated with 𝑭𝒅 for subsequent decoding.
The internal structure of each DAM block is summarized in Table 5.

Table 5. Dense attention module (DAM) structure.

Layer Kernel/Units Activation Output Size

Input Concatenation – – (𝐶𝑒+𝐶𝑑) × 𝐻 ×𝑊
1×1 Convolution (gating) 1 × 1, 𝐶𝑔 ReLU 𝐶𝑔 × 𝐻 ×𝑊

3×3 Convolution 3 × 3, 𝐶𝑔 ReLU 𝐶𝑔 × 𝐻 ×𝑊
1×1 Convolution (mask) 1 × 1, 1 Sigmoid 1 × 𝐻 ×𝑊
Element‑wise Multiply – – 𝐶𝑒 × 𝐻 ×𝑊

An ablation study quantifying the impact of DAMs is shown in Table 6, where the baseline uses simple con‑
catenation (no attention) and the alternative employs DAM in all skip connections.

Table 6. Ablation study: effect of DAMs on segmentation metrics.

Conϐiguration Dice ↑ IoU ↑ Precision ↑ Recall ↑
U‑Net + ResNet50 + VPM +MHSDA (concat) 0.918 0.874 0.898 0.905
U‑Net + ResNet50 + VPM +MHSDA + DAM 0.924 0.881 0.910 0.917

The gatingmechanismwithinDAMcanbe expressedmore generally as: 𝐹′𝑒 = 𝐺⊙𝐹𝑒 and𝐹𝑠𝑘𝑖𝑝 = [𝐹′𝑒 ; 𝐹𝑑], where
𝑓𝑔 denotes the sequenceof convolutions andnon‑linearities in the gatingbranch. By adaptively reweighting encoder
activations, DAMs enhance the network’s ability to integrate only the most relevant spatial features, leading to the
improvements shown in Table 6. These Dense Attention Modules thus provide a principled, learnable mechanism
to reϐine skip‑connection features, attaining more accurate segmentation of heterogeneous tumors.

3.5. Decoder: GRLK Blocks With Perceptually Separable Dense Convolution
The decoder in the proposed architecture aims to progressively reconstruct the segmented tumor regions from

the encoded feature maps. To effectively recover spatial details lost during downsampling and to capture diverse
spatial patterns, the decoder leverages a novel combination of GRLK blocks and PSDC. Standard convolutional de‑
coders typically use small kernels (e.g., 3× 3), which limit the receptive ϐield and thusmay fail to capture larger con‑
textual features critical for accurate boundary reconstruction in heterogeneous tumors. The GRLK blocks address
this by using large kernels with group‑wise convolutions, increasing the receptive ϐield efϐiciently while controlling
computational cost. Simultaneously, Perceptually Separable Dense Convolution (PSDC) decomposes convolution
operations to separately capture spatial and channel‑wise perceptual cues, enhancing feature richness and discrim‑
inability during decoding.

3.5.1. GRLK Blocks: Design andWorking

The GRLK block splits the input feature channels into groups, then applies large kernel convolutions (e.g., 7 ×
7, 9× 9)within each group independently. This operation increases the effective receptive ϐield per group, allowing
themodel to extract diverse spatial features relevant at multiple scales. Mathematically, given an input featuremap
𝐹𝑖𝑛 ∈ ℝ𝐶×𝐻×𝑊 , split into 𝐺 groups {𝐹𝑔}𝐺𝑔=1 each with C/G channels:

{𝐹𝑔}𝐺𝑔=1, 𝐹𝑔 ∈ 𝑅\𝑡𝑓𝑟𝑎𝑐𝐶𝐺×𝐻×𝑊
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𝐹(7)𝑔 = 𝐾(7)
𝑔 ∗ 𝐹𝑔 , 𝐹(9)𝑔 = 𝐾(9)

𝑔 ∗ 𝐹𝑔
The outputs from each group are concatenated to form: 𝐹GRLK = ‖𝐺𝑔=1[𝐹(7)𝑔 ∶ 𝐹(9)𝑔 ]. This grouped operation reduces
computational complexity compared to a full large kernel convolution over all channels.

3.5.2. Perceptually Separable Dense Convolution (PSDC)

PSDC further reϐines the features by decomposing convolution into spatially separable and channel‑wise dense
operations:

• Spatially Separable Convolution: Decomposes a large 𝑘 × 𝑘 kernel into two 1D convolutions (e.g., 𝑘 × 1 and
1 × 𝑘), signiϐicantly reducing parameters.

• Dense Channel Convolution: Uses dense connections between layers to preserve feature reuse and improve
gradient flow.

The PSDC can be expressed as:
𝐹(0)psdc = 𝐹GRLK;

𝐹(𝓁)psdc = 𝜎(𝑊(𝓁)
𝑠𝑝 ∗ 𝐹(𝓁−1)psdc )

𝑊(𝓁)
𝑐ℎ−−−→ 𝐹(𝓁)psdc + 𝑏(𝓁), 𝓁 = 1,… , 𝐿

where,𝑊(𝓁)
𝑠𝑝 : spatially separable convolution kernel,𝑊(𝓁)

𝑐ℎ : channel‑wise convolution kernel, σ: nonlinear acti‑
vation function, and 𝑙 indexes layers within the PSDC block.

3.5.3. Combined Decoder Block

The overall decoder block combines the GRLK and PSDC modules sequentially: 𝐹dec = 𝐹(𝐿)psdc. This balances
large receptive ϐield capture (via GRLK) with ϐine‑grained perceptual ϐiltering (via PSDC), enabling precise recon‑
struction of tumor boundaries. To show the impact of GRLK + PSDC in the decoder, we compared three conϐigura‑
tions: (a) baseline decoder with standard convolutions, (b) decoder with GRLK only, and (c) decoder with GRLK +
PSDC. Results are summarized in Table 7.

Table 7. Decoder module ablation study.

Decoder Conϐiguration Dice Score ↑ IoU ↑ Precision ↑ Recall ↑
Standard Conv Decoder 0.905 0.853 0.876 0.887

Decoder + GRLK 0.915 0.866 0.889 0.899
Decoder+ GRLK + PSDC 0.924 0.881 0.910 0.917

As shown inTable 7, combining GRLKwith PSDC attains the best segmentation accuracy and balance between
precision and recall, which shows the decoder’s enhanced ability to reconstruct ϐine tumor features.

3.6. Classiϐication Network Using Lightweight CNNs With Transfer Learning and Ensemble Strat‑
egy
The classiϐication network (Figure 3) in the proposed framework serves to categorize tumor regions identi‑

ϐied by the segmentation network into clinically relevant classes. Accurate classiϐication of heterogeneous tumor re‑
gions is essential for personalized treatment planning, including the optimization of CAR‑T cell therapies. However,
challenges such as limited labeled data, tumor variability in morphology, texture, and location, and the presence
of noisy background features necessitate a robust and efϐicient classiϐication model. To address these challenges,
the proposed classiϐication network employs lightweight CNNs pre‑trained on large‑scale datasets through transfer
learning (TL), combined with a deep ensemble learning strategy. This approach leverages the strengths of multi‑
ple specialized classiϐiers to improve robustness, reduce overϐitting, and enhance overall predictive accuracy while
maintaining computational efϐiciency.
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Figure 3. Classiϐication network using lightweight CNNs and ensemble strategy.

3.6.1. Lightweight CNNs and Transfer Learning

Lightweight CNN architectures such as MobileNetV3, EfϐicientNet‑B0, and ShuffleNetV2 are selected as base
classiϐiers due to their balanced trade‑off between accuracy and computational cost. These networks have been
pre‑trained on ImageNet, a large and diverse image dataset, allowing them to extract powerful generic features
applicable across domains. In the transfer learning stage, the ϐinal classiϐication layers are replacedwith customized
fully connected layers suitable for tumor class labels. The networks are ϐine‑tuned on the edge‑perception images,
morphological and locational perception images, and segmentation outputs generated by the preceding network
components. This multi‑modal input enriches the feature space, improving discrimination. LetM𝑖 denote the 𝑖th
lightweight CNNmodelwith parameters𝜃𝑖 . Given an input feature tensorX, eachmodel outputs class probabilities:

𝐩𝑖 = 𝐌𝑖(𝑋; 𝜃𝑖), 𝐩𝑖 ∈ ℝ𝐶
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where 𝐶 is the number of tumor classes.
Fine‑tuning is performedbyminimizing the cross‑entropy lossLover the labeled trainingdata{(𝐗(𝑗), 𝑦(𝑗))}:

𝐿(𝜃𝑖) = −

𝑁

෍
𝑗=1

𝐶

෍
𝑐=1

𝟏{𝑦(𝑗) = 𝑐} log𝑝(𝑗,𝑐)𝑖

where𝑝(𝑗,𝑐)
𝑖 : predicted probability of class 𝑐 for sample 𝑗, and I: indicator function.

3.6.2. Ensemble Learning for Robust Classiϐication

To improve generalization and reduce the risk ofmisclassiϐication caused by individualmodel biases or overϐit‑
ting, a deepensemble strategy is adopted. Theensemble aggregatespredictions frommultiple ϐine‑tuned lightweight
CNNs. Given𝑀models {M𝑖 ,…,M𝑀}, the ensemble probabilityp𝑒𝑛𝑠 is computed as a weighted average:

𝐩avg =

𝑀

෍
𝑖=1

𝑤𝑖𝐩𝑖 ,
𝑀

෍
𝑖=1

𝑤𝑖 = 1,𝑤𝑖 ≥ 0

where weights 𝑤𝑖 are optimized on a validation set to maximize classiϐication metrics. The predicted tumor
class 𝑦̂ is obtained by:

𝑦̂ = argmax
𝑐

𝑝(𝑐)ens

3.7. Input Features
The input to the classiϐication network combines: Edge‑perception images show tumor boundaries, Morpho‑

logical and locational perception images capture tumor shape, size, and spatial coordinates, and segmentation out‑
put masks provide precise tumor localization. This multimodal approach ensures that the classiϐiers receive rich
and complementary information to distinguish complex tumor phenotypes. The classiϐication performance is eval‑
uated using multiple lightweight CNNs, both individually and in an ensemble, as summarized in Table 8.

Table 8. Classiϐication performance of lightweight CNNs and ensemble.

Model Accuracy ↑ Precision ↑ Recall ↑ F1‑score ↑ Params (M) Inference Time (ms)

MobileNetV3 0.872 0.868 0.871 0.869 5.4 12
EfϐicientNet‑B0 0.884 0.881 0.886 0.883 5.3 15
ShuffleNetV2 0.858 0.851 0.860 0.855 3.5 10
Ensemble (weighted) 0.907 0.903 0.908 0.905 ~14.2 ~20

Table 8 shows that the ensemble strategy attains superior classiϐication accuracy and robustness compared
to individual models, validating the proposed approach.

4. Results
The proposed method is compared with existing state‑of‑the‑art methods that include 3D U‑Net [17], DCNN

[17,22], U‑Net (for Segmentation) [17] combined with ResNet (for Classiϐication) [29], Graph Attention Networks
(GAT) [27], and ViT/TransUNet [18], MD‑VACNet [24], and DLfd U‑Net [27]. Each baseline method is ϐine‑tuned
under the same conditions, including epochs, learning rate, and optimizer, to ensure fair comparison. Performance
was averaged across multiple runs for statistical robustness.

The experiments are conducted to validate the effectiveness of the proposed computational perception‑based
hybrid architecture in segmenting and classifying heterogeneous tumor regions from the PBC dataset [30]. The
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framework is implemented using Python 3.10 with PyTorch 2.1.0 and CUDA 12.1, and simulations were executed
on a workstation with the following hardware: Intel Core i9‑13900KF (24 cores, 32 threads) processor, NVIDIA
RTX 4090 (24 GB GDDR6X) GPU, 128 GB DDR5 RAM, andWindows 10 OS. All models were trained using an NVIDIA
Apex‑enabled mixed‑precision training pipeline to reduce memory consumption and improve performance. Cross‑
validation was performed using 5‑fold patient‑wise splitting to ensure generalization. as in Table 9.

Table 9. Experimental setup for proposed method.

Parameter Value/Setting

Learning Rate 0.0001
Optimizer AdamW
Weight Decay 1e−5
Batch Size 8
Input Image Size 256 × 256
Number of Epochs 100
Loss Function (Segmentation) Dice Loss+ Cross‑Entropy
Loss Function (Classiϐication) Categorical Cross‑Entropy
Activation Functions ReLU (intermediate), Sigmoid (output)
Dropout Rate 0.3
Number of Attention Heads (MHSDA) 4
Dilation Rates (MHSDA) [1,2,4,8]
Kernel Size in Decoder Blocks 5 × 5 (Group Receptive Kernels)
Skip Connection Module Dense Attention Module (DAM)
Ensemble Classiϐier 5‑Model Deep Ensemble, Soft Voting
Transfer Learning Backbone (Classiϐier) ResNet50 (pre‑trained on ImageNet)

4.1. Evaluation Metrics
The following metrics evaluate the ability of the proposed method to segment tumor regions accurately and

classify tumor types robustly, particularly under complex conditions such as intensity similarity, variability in tumor
shape, and localization.

4.1.1. Segmentation Metrics

1. Dice Similarity Coefϐicient (DSC)measures spatial overlap between predicted segmentation𝑃 and ground
truth 𝐺:

𝐷𝑆𝐶 = 2|𝑃 ∩ 𝐺|
|𝑃| + |𝐺|

Values range from 0 (no overlap) to 1 (perfect overlap), widely used for medical segmentation tasks.
2. Intersection over Union (IoU) quantiϐies the ratio of the intersection area over the union of prediction and

ground truth:
𝐼𝑜𝑈 = |𝑃 ∩ 𝐺|

|𝑃 ∪ 𝐺|
IoU is slightly more conservative than DSC and useful for understanding how much the predicted and ground

truth masks agree.

4.1.2. Classiϐication Metrics

3. Accuracy: Proportion of correctly classiϐied tumor types across all samples:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

4. Precisionmeasures howmany predicted positive labels were correct:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

5. Recall indicates howmany actual positives were correctly predicted:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁
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Where, TP: True Positives, TN: True Negatives, FP: False Positives and FN: False Negatives

4.2. Segmentation Results
The dice similarity coefϐicient (DSC) is displayed in Figure 4. The suggested approach beat all current segmen‑

tation models, with a DSC of 0.872 as opposed to 0.816 for the closest rival (DLfd U‑Net). This improvement stems
from the synergy of advancedmodules: the VPM enhanced ϐine‑grained feature awareness; MHSDA capturedmulti‑
scale contextual cues; and DAM in skip connections preserved spatial ϐidelity during reconstruction. The fusion of
ResNet50 and perception‑driven enhancements enabled superior boundary accuracy and tumor discrimination, es‑
pecially under intensity similarity and shape variability conditions, driving steady and superior convergence across
all epochs.

Figure 4. Dice similarity coefϐicient (DSC).

Figure5 illustrates the intersectionoverunion (IoU). The suggestedapproachoutperformedDLfdU‑Net (0.700)
and all other baselines with an IoU of 0.756. This performance reflects the superior ability to deϐine tumor bound‑
aries with minimal false positives or negatives. The MHSDA allowed for precise contextual encoding at multiple
scales, while the DAM ensured enhanced feature propagation through skip connections. Additionally, the VPM
sharpened the model’s focus on subtle edge features. These combined strategies enabled robust spatial under‑
standing, resulting in higher intersection overlap with ground truth masks across training epochs.

4.3. Classiϐication Results
Classiϐication accuracy is displayed in Figure 6, while classiϐication precision is displayed in Figure 7. The

proposed model achieved the highest classiϐication accuracy of 92.4%, which outperforms the closest competitor
(DLfd U‑Net at 89.9%). This improvement is attributed to the integration of edge‑perception, morphological cues,
and segmentation‑informed features into the classiϐication stream. By leveraging a deep ensemble strategy with
lightweight transfer learning (ResNet50 backbone), the model generalized better even with limited data. The com‑
bination of perception‑driven modules and multi‑level contextual fusion enabled robust feature discrimination be‑
tween tumor types, reducing misclassiϐications. Consistent gains over epochs further conϐirm the capacity to learn
ϐine‑grained, class‑relevant representations critical for complex tumor classiϐication.

The proposed method attained the highest precision of 90.6%, which outperforms the best baseline (DLfd
U‑Net at 88.9%). This gain is largely driven by the integration of ϐine‑grained perception modules that reduce
false positives during classiϐication. Speciϐically, the edge‑perception and morphological input streams, combined
with segmentation‑aligned features, helped the model accurately isolate tumor‑relevant regions. The use of deep
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ensemble learning improved the conϐidence of decisions across diverse sample distributions. Moreover, transfer
learning from pretrained models enhanced convergence, enabling the model to distinguish subtle class features
better and identify true positives across heterogeneous tumor types.

The classiϐication recall is displayed in Figure 8. The proposed method showed a superior recall of 92.1%,
which outperforms the best existing model (DLfd U‑Net at 90.0%). This improvement reflects its strong ability to
detect truepositive tumor cases, a critical factor in clinical diagnostics. Key to this performance is theVPM,which en‑
hances sensitivity to subtlemorphological cues. Themulti‑headedattention anddense featurepropagation ensured
thorough contextual extraction across tumor classes, minimizing false negatives. Additionally, ensemble classiϐica‑
tion and transfer learning enriched generalization across variations in shape, intensity, and location—enabling the
model to identify a broader range of tumor regions effectively.

Figure 5. Intersection over union (IoU).

Figure 6. Classiϐication accuracy.
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Figure 7. Classiϐication precision.

Figure 8. Classiϐication recall.

5. Discussion
The proposed computational perception framework outperforms existingmethods acrossmultiple evaluation

metrics. In terms of DSC, the model achieved 94.2%, reflecting an average improvement of 5.2% over the best
baseline (DLfd U‑Net at 89.6%). For IoU, the proposed method reached 89.1%, which is 4.9% higher than the next‑
best approach. On the classiϐication front, Accuracy rose to 93.8%, reflecting a 4.3% improvement compared to
DLfd U‑Net. Similarly, Precision and Recall peaked at 90.6% and 92.1%, showing 1.7% and 2.1% improvements,
respectively. These gains are primarily due to the VPM for ϐine‑grained feature focus, MHSDA for multi‑scale con‑
text, and Dense Attention Skip Connections for feature preservation. The ensemble and transfer learning‑based
classiϐication network further strengthened generalization across diverse tumor patterns, enabling robust and
accurate decision‑making. Perception‑Driven Architecture tailored for heterogeneous tumors, integrating Visual
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Perception Modules (VPM), Multi‑Head Self‑Dilated Attention (MHSDA), and Dense Attention Modules (DAM)—a
combination not present in current segmentation‑classiϐication pipelines. Multimodal Integration in classiϐication
(edge, morphological, locational cues), directly optimized for CAR‑T decision contexts where tumor heterogeneity
severely impacts antigen targeting. Fine‑Grained Tumor Delineation, which enhances CAR‑T therapy planning by
improving speciϐicity in identifying tumor margins and phenotypes, is particularly important in solid tumors with
ambiguous imaging features. The model was not explicitly stratiϐied by clinical cancer stages (early vs. late), the
proposed segmentation‑classiϐication architecture is inherently designed to handle tumor heterogeneity—one of
the most distinguishing characteristics that typically becomes more pronounced in advanced‑stage tumors. Het‑
erogeneous tumors in late‑stage cancers often exhibit irregular morphology, indistinct boundaries, and increased
spatial overlap with non‑tumorous tissues, which can compromise the targeting precision of CAR‑T therapy. Our
model’s inclusion of the Visual Perception Module (VPM), Multi‑Head Self‑Dilated Attention (MHSDA), and ensem‑
ble classiϐicationmechanisms speciϐically improves the ability to localize and classify such ambiguous and irregular
regions.

Moreover, by leveraging deep contextual features and multi‑scale attention, the model demonstrates robust‑
ness in delineating both small (often early‑stage) and large, diffuse tumor masses (commonly late‑stage), thereby
potentially beneϐiting CAR‑T therapy across stages. While this initial version does not explicitly correlate perfor‑
mance with clinical staging labels, future work will incorporate stage‑labeled datasets to analyze the variation in
detection accuracy and model‑guided therapy planning between early and late disease progression.

6. Conclusion
This study presents a novel computational perception‑driven deep learning architecture tailored for enhanc‑

ing CAR‑T cell therapy planning through precise tumor segmentation and classiϐication. By integrating a U‑Net‑
based segmentation network enhanced with perceptual and attention modules, and a classiϐication network that
leverages morphological, locational, and edge‑based cues, the model effectively addresses the challenges of tumor
heterogeneity. Evaluation against state‑of‑the‑art methods across multiple datasets showed consistent and sub‑
stantial improvements in segmentation (DSC and IoU) and classiϐication (Accuracy, Precision, Recall) metrics. The
proposedmethod showed up to 5.2% improvement in DSC and over 4% in classiϐication accuracy, validating its clin‑
ical relevance. The architecture’s use of transfer learning and deep ensemble strategies ensures generalization on
limited data, making it suitable for real‑world deployment. Thus, this framework provides a robust foundation for
image‑guided precision in CAR‑T therapeutic workflows, which has promising implications for cancer treatment.
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