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Abstract: TheTumorMicroenvironment (TME) resists conventional treatments by sending out signals thatweaken
the immune system. Tumor cells vary signiϐicantly, and treatments can lead to resistance. This paper focuses on
constructing an effectivemodule for reprogramming the tumor ecosystemusingComputational Intelligence‑Guided
Nanoplatforms. It hypothesizes that computationally optimized fuzzy deep learning, integratedwith nanoplatform‑
mediated drug delivery, can dynamically reprogram tumor‑inϐiltrating T‑cells to overcome immunosuppression
in the TME, thereby enhancing cytotoxicity and therapeutic response. A novel nanotechnology‑integrated deep
fuzzy learning framework—Seagull Optimized Sugeno Fuzzy Deep Learning (SgOSF‑DL)—is proposed to repro‑
gram T‑cell behavior in real‑time. Multi‑omic data from tumor‑inϐiltrating T‑cells are encoded and analyzed using
fuzzy logic to determine their immune state (suppressed, exhausted, or active), guided by key biomarkers such as
Granzyme B and PD‑1. The optimized model governs the release of IL‑21 and checkpoint inhibitors via nanoplat‑
forms composed of PLGA, gold nanoshells, and iron oxide particles. Fuzzy rules are formulated using optimized
parameters to evaluate the TME. Simulation results conϐirm that the proposed SgOSF‑DL model accurately distin‑
guishes between cancer and healthy cells. It alters cancer behavior by reducing tumor burden, lowering PD‑1, and
boosting Granzyme B expression. The model achieves 96.5% accuracy in classifying T‑cell states, reduces tumor
count by 69.2%, and decreases PD‑1 expression by 61% for active immune function. It also offers faster therapeutic
classiϐication (0.017 seconds) with an activation consistency of 92.8%. Fuzzy logic enables transparent decision‑
making, aiding clinicians in understanding the treatment rationale.
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1. Introduction
The conditions around a tumor strongly inϐluence the results of oncological treatments achieved [1]. The tissue

includes cancer cells, different types of cells, immune cells, blood vessels, signaling molecules, and the extracellu‑
lar matrix in a network. This local environment supports both tumor growth and spread, as the tumor responds
to treatment options [2]. Several oncological therapies, such as chemotherapy, radiotherapy, immunotherapy, and
targeted therapy, often run into difϐiculties as tumors can change and become resistant. Stromal cells protect cancer
cells from being killed by drugs and immune cells in the TME, thereby promoting tumor avoidance and detection
and treatment [3]. Gaining knowledge about the relationships in this ecosystem helps create more effective and
personalized treatments that help overcome the resistance mechanisms patients face. The use of single‑cell se‑
quencing, spatial transcriptomics, and computational modeling now lets us study what is happening in the tumor
ecosystem, making it possible for interventions to suit the tumor’s needs and its microenvironment [4].

The use of nanoplatforms guided by computational intelligence is changing our approach to understanding and
managing the environment around cancer [5]. Nanoplatforms that rely on machine learning, Artiϐicial Intelligence
(AI), anddatamodels are developed to allow for accurate treatment of cancer cells by considering the different inter‑
actions taking place in tumor tissue. Using resources from genomic, proteomic, and imaging studies, computational
intelligence locates the most effective therapies and targets for each patient’s cancer. Together with nanotechnol‑
ogy, this approachmakes it possible to create nanoparticles that can deliver drugs speciϐically, check their effective‑
ness, and respond to changes during treatment [6]. These nanoplatformsmovewithin a tumor’smixed tissue, react
to particular biochemical signs, and deliver their medications in a controlled way, which ensures they are less likely
to harm other organs and more effective [7]. As a consequence, computational intelligence‑driven nanotechnology
supports targeted and ϐlexible cancer treatments that directly match the tumor of each unique patient.

Computational intelligence‑based nanoplatforms havemade an exciting advance in targeted cancer treatments
[8]. Artiϐicial intelligence, machine learning, and data analytics make it possible for these systems to shape smart
nanoscale carriers that precision‑deliver therapeutic agents into the right parts of the body [9]. Specially created,
these nanoplatforms react to known biomarkers and details such as a tumor’s pH, enzymes, and receptors found
in it. Computational models can forecast the actions of a tumor, set the best timing for drug release, and alter treat‑
ments based on what happens in a patient’s body, making cancer therapies safer and work better [10]. In addition,
they are capable of combining diagnosis and treatment, so images from the tumor are made while treatment is
being delivered—known as theranostics. All in all, using computational intelligence in nanoplatforms provides a
way to treat cancer that matches the patient’s needs and works much better than traditional therapies [11–13].
Targeted oncological interventions can now be improved by inϐluencing tumor ecosystems through the use of com‑
putationally powered nanoplatforms. Interactions between the tumor microenvironment, immune cells, stromal
components, and signaling pathways are central to the progression of tumors, resistance to therapy, and escaping
the immune system’s detection [14]. By using computer‑based methods such as machine learning, deep learning,
and predictive modeling, we can create artiϐicial nanoplatforms that respond to changes in the complex ecosystem
[15–19]. Using these nanoplatforms, it is possible to accurately and carefully deliver various cancer treatments
where needed, based on information about tumor variety and the local environment [20–23]. With their ability
to modify immune cells, stromal environment, or tumor‑supporting signals, these systems help turn a cancerous
environment into one that ϐights cancer. By modifying the immune system this way, treatments can improve their
results and introduce customized options that are harder to resist. An approach with computational intelligence
andnanotechnologymakes oncologic treatmentsmore tailored, quick to react, and able to reshape the environment
that helps cancer to form [24,25].

In this paper, wepropose SgOSF‑DL, combining Seagull OptimizationAlgorithmwith Sugeno FuzzyDeep Learn‑
ing, to allow precise reprogramming of T‑cells in tumor areas for oncologic usage. Compared to current approaches,
the model can classify T‑cell states with an accuracy of up to 96.5%which is over 5% higher than prior approaches.
Based on applying PLGA nanospheres and gold nanoshells, the method reduces tumor cell counts by 69.2% and
cuts PD‑1 expression by 61%, which represents a successful return of active immune function. The model makes
therapeutic choices faster by classifying in just 0.017 seconds per instance, which is suitable for instant use. With
a 92.8% rule activation consistency, the fuzzy inference system helps make clear observations for clinical work. As
a result, a strong and clear interface between AI and nanomedicine is built, which supports targeted, adaptive, and
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efϐicient cancer immunotherapy.

2. T‑Cell Reprogramming with Seagull Optimized Sugeno Fuzzy Deep Learning (SgOSF‑
DL)
The proposed reprogramming model SgOSF‑DL model utilizes T‑cell reprogramming with Seagull‑Optimized

Sugeno Fuzzy Deep Learning (SgOSF‑DL) starts by coding the tumor‑inϐiltrating T‑cell’s data 𝑥 ∈ 𝑅𝑑 , passing it
through a Sugeno‑type fuzzy layer that forms 𝑀 rules 𝑅𝑖 ∶ 𝐼𝐹 (𝑥1 𝑖𝑠 𝐴1𝑖 )𝑇𝐻𝐸𝑁 𝑦𝑖 = 𝑎𝑖⊤𝑥 + 𝑏𝑖 . With Gaussian
memberships for 𝜇𝐴𝑖𝑗(𝑥𝑗), the normalized ϐiring strength is 𝜔𝑖 and the deep‑fuzzy prediction for the cytotoxic re‑
programming signal deϐined in Equation (1).

𝑦̂(𝑥; 𝜃) = ∑𝑀
𝑖=1𝜔𝑖 (𝑎𝑖𝑋 + 𝑏𝑖) (1)

where 𝜃 = {𝑐𝑖𝑗 , 𝜎𝑖𝑗 , 𝑎𝑖 , 𝑏𝑖}. Training minimises the composite loss deϐined in Equation (2).

𝐽(𝜃) = 𝛼𝐶𝐸(𝑦̂, 𝑦∗) + 𝛽[1 − 𝐴𝑈𝐶𝐺𝑟𝑎𝑛𝑧𝑦𝑚𝑒𝐵] + 𝛾∥ 𝜃 ∥22 (2)

In Equation (2), the labels 𝑦̂ and 𝑦∗ are unclear, resulting in unclear predictions of cytotoxic potency. Param‑
eters are updated using the Seagull Optimisation Algorithm (SOA) migration at 𝜃(𝑡+

1
2 ) = 𝜃(𝑡) + 𝜂1 𝑟1 (𝜃𝑔 − 𝜃(𝑡)),

where 𝜂1 and 𝑟1 are closure length and uniform sample, and then spiral. Their combination signiϐicantly speeds
up the convergence of improved algorithms compared to GA or PSO when used to ϐine‑tune deep‑fuzzy models, ac‑
cording to MDPI Frontiers. As a result, 𝑦̂ triggers a DNA‑controlled nanoplatform to release IL‑21 mRNA. Because
opening the gate relies on ϐirst‑order kinetics, 𝑅(𝑡) = 𝑘0 exp [−𝑘1, 𝑦̂], more potent pro‑immune signals control
how quickly to release it and prevent a swarm of IL‑21. As the ϐinal step, the framework enhances the way pre‑
dictions connect to in situ ϐluorescence, providing a larger expected tumour‑lysis max𝜃 𝐸𝑥 ∼ 𝐷 [𝜎(𝑦̂(𝑥; 𝜃))]. With
an adaptive loop, SgOSF‑DL teaches inϐiltrating T‑cells and has the nanoagent perform the designed dosing policy,
helping to turn a weak immune microenvironment into one that ampliϐies immunity along with checkpoint block‑
ade and radiotherapy. SgOSF‑DL nanoplatforms for T‑cell reprogramming allow a model for immunotherapy that
constantly adjusts to the host’s needs. Satellite nanoplatforms ϐlow through various sites in the tumor, gathering
ongoing chemical and immune information from T‑cells and their neighbors and relaying it to the SgOSF‑DL engine
without delay. With its biologically inspired Seagull Optimization Algorithm, the fuzzy deep learning approach is
capable of predicting the right reprogramming signals for T‑cells and keeping up with variations in both tumor and
immune system behaviors. With a Sugeno fuzzy system, the model considers that cell behavior can be uncertain
and interact in complex and unpredictable ways, so it deals well with uncontrolled changes. Themodel determines
how chemical changes allow immune‑modulatory compounds such as IL‑21 or checkpoint inhibitors to be released
from nanoplatforms through speciϐic gates. With nanoplatforms, medicines are delivered with pinpoint accuracy
to the tumor, which reduces harmful side effects throughout the body. The system can change its settings, such as
reacting to new or less T‑cell activity, which helps it remain active for longer. This combined approach shows great
possibilities not just to restructure the tumor environment, but also to support personalized, tough, and effective
oncological methods that handle the shortcomings in cancer immunotherapy.

Theentireprocess ofT‑cell reprogramming throughSgOSF‑DLwithin computational intelligence‑basednanoplat‑
forms is designed to ensure precise and adaptive oncological treatments are carried out, as shown in Figure 1. The
process in the proposed model are presented as follows:

1. Data Acquisition and Feature Encoding: Tumor‑inϐiltrating T‑cells are examined using multi‑omics atomic
sensors placed in nanoplatforms to capture their transcriptomic, proteomic, and environmental traits. For
every T‑cell, these inputs are arranged into a feature vector denoted as x.

2. Fuzzy Rule Generation with Sugeno Inference: A Sugeno‑type fuzzy inference system makes rules that
explain how T‑cell features connect with therapeutic outcomes. All the rules add to the output by combining
simple functions in different ways.

3. Deep Learning Integration: The fuzzy rules are integrated into a deep learning structure that supports hier‑
archical extraction of features, resulting in better prediction of T‑cell activity and reorganization signals.
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4. Optimization Using Seagull Optimization Algorithm (SOA): The values in the fuzzy deep learning model
are adjusted automatically, using an approach inspired by gapless seagulls. To get the most accurate results,
it moves between moving forward and searching deep to choose the perfect model parameters.

5. Therapeutic Output Prediction: The model indicates how much immune factor IL‑21 is needed to change
T‑cells so they become either more cytotoxic or longer‑lasting in the tumor microenvironment

6. Nanoplatform‑Driven Drug Release: The nanoplatform takes the model’s ϐindings and releases medicine
when it detects certain signals from cancer cells, such as acidity.

7. Feedback and Continuous Learning: The feedback from immune system changes, namely higher levels of
Granzyme B and changes in T‑cell functions, will be used to adjust themodel so it can treat patients effectively
as time goes on.

Figure 1. Process in SgOSF‑DL.

2.1. SgOSF‑DL for Tumor Ecosystem
The multi‑omic signature from a tumor‑inϐiltrating T‑cell captured in real time by the nanosensors will be de‑

noted as𝑥 ∈ 𝑅𝑑 . A ϐirst‑order Sugeno fuzzy layer generatesMMMrules𝑅𝑖 ∶ 𝐼𝐹 (𝑥1 𝑖𝑠 𝐴𝑖1)∧…∧(𝑥𝑑 𝑖𝑠 𝐴𝑖𝑑)𝑇𝐻𝐸𝑁 𝑧𝑖 =
𝑎𝑖𝑥+𝑏𝑖 , where the Gaussianmembership of input 𝑥𝑗 to fuzzy set 𝐴𝑖𝑗 is 𝜇𝐴𝑖𝑗(𝑥𝑗) = 𝑒𝑥𝑝 ቂ− ൫𝑥𝑗 − 𝑐𝑖𝑗൯

2 / ቀ2𝜎2𝑖𝑗ቁቃ. The
rule’s ϐiring strength is 𝜔𝑖 = ∏𝑑

𝑗=1 𝜇𝐴𝑖𝑗(𝑥𝑗)normalising, 𝜔𝑖 =
𝜔𝑖

∑𝑀𝑘=1𝜔𝑘
. The fuzzy‑deep prediction of the repro‑

gramming signal becomes Migration (global search) computed using Equation (3).

𝜃(𝑡+
1
2 ) = 𝜃(𝑡) + 𝜂1 𝑟1 (𝜃𝑔 − 𝜃(𝑡)) (3)

Spiral attack (local exploitation) stated in Equation (4).

𝜃(𝑡+1) = 𝜃𝑔 + 𝜂2 𝑟2 𝑒𝑏𝜙[𝑐𝑜𝑠(2𝜋𝜙)𝑢 + 𝑠𝑖𝑛(2𝜋𝜙)𝑣] (4)

In thismodel, the global best 𝜃𝑔 is written as 𝑟1,2 ∼ 𝑈(0, 1), 𝑏 helps tomake the algorithm tighter and𝜙 → 0 as
𝑡 → 𝑇max. The nanoplatform links 𝑦̂ to an mRNA‑containing pH‑sensitive gatefor IL‑21 cargos which are found to
enhance immunity by ϐirst‑order kinetics stated in Equation (5).

𝑅(𝑡) = 𝑘0𝑒𝑥𝑝[−𝑘1 𝑦̂ (𝑥(𝑡); 𝜃)] (5)

High levels of predicted immune tone (𝑦̂ being high) hold back cytokine discharge to avoid overstimulation.
Equations (1)–(3) complete a cycle where SgOSF‑DL periodically updates the best T‑cell signals, SOA changes the
deep‑fuzzy structure as biological factors change, and the nanoplatform delivers therapy in a closely controlled
way that helps the body develop lasting immunity against cancer. SgOSF‑DL makes it possible to sense changes
in the tumor ecosystem and use multiple biological features to guide cancer treatment. While the nanoplatform
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travels in the tumor microenvironment presented in Figure 2, it records various changes in tumor cells. These
markers are processed by the fuzzy deep learningmodel. Because the input is dynamic, the system can forecast the
correct cytokine or gene‑editing agent release by changing the release kinetics, R(t), of the stored material in the
nanoparticle. The combined action between the computationalmodel and the nanoplatform results in a closed‑loop
system that ϐights against tumor‑related immunosuppression and increases T‑cell ability to destroy cancer cells. In
addition, the handy fuzzy framework of Sugeno systems allows the model to address the natural differences and
uncertainty in tumor biology, guaranteeing it can still function well even with some missing or ϐlawed data. The
overall architecture for the proposed model is presented in Figure 2. Following a seagull optimization method,
the model efϐiciently reaches the best parameters by dividing the optimization process into phases of searching
and applying the knowledge obtained. In effect, integrating computational intelligence with nanomedicine creates
opportunities for individualized, ϐlexible treatments to target T‑cells and modulate the whole tumor environment
for prolonged removal of tumors and positive patient results.

Figure 2. Architecture of SgOSF‑DL.

3. Nanoplatform EstimationWith SgOSF‑DL for Oncological Interventions
Nanoplatforms in oncological treatments respond to tumormicroenvironmentmessages. The SgOSF‑DL frame‑

work uses a reliable computational intelligence technique to manage, predict, and control the release of therapy in
response to complex biological data. The nanoplatformwill observe themicroenvironment around a tumor at time
𝑡 and store it in x(t), where 𝑥(𝑡) ∈ 𝑅𝑑 can contain pH, enzyme, immune cell and cytokine values. The goal of the
nanoplatform is to predict the best therapeutic output, 𝑦̂, via the use of a Sugeno fuzzy deep learningmodel deϐined
in Equation (6).

𝑦̂ (𝑥(𝑡); 𝜃) = ∑𝑀
𝑖=1𝜔𝑖(𝑋(𝑡)) ൫𝑎𝑇𝑖 𝑋 + 𝑏𝑖൯ (6)

In Equation (6)𝑀 is the number of fuzzy rules, and the normalized ϐiring strength 𝜔𝑖 for rule 𝑖 is deϐined in
Equation (7).

𝜔𝑖 (𝑋(𝑡)) =
𝜔𝑖(𝑋(𝑡))

∑𝑀
𝑘=1𝜔𝑘 (𝑥(𝑡))

, 𝜔𝑖 (𝑋(𝑡)) = ∏𝑑
𝑗=1 𝜇𝐴𝑖𝑗 ൫𝑋𝑗(𝑡)൯ (7)

In Equation (7)with Gaussian membership functions deϐined as in Equation (8).

𝜇𝐴𝑖𝑗 ൫𝑥𝑗(𝑡)൯ = 𝑒𝑥𝑝 ቎−
൫𝑥𝑗(𝑡) − 𝑐𝑖𝑗൯

2

2𝜎2𝑖𝑗
቏ (8)
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In Equation (8) parameters 𝜃 consist of 𝑐𝑖𝑗 , 𝜎2𝑖𝑗 supplier locations 𝑎𝑖and failure probabilities 𝑏𝑖 consists of
𝑐𝑖𝑗 , 𝜎2𝑖𝑗 , positions of each supplier 𝑎𝑖 and probabilities of failure 𝑏𝑖 . To set these parameters correctly without in‑
terference from variability and noise, SOA iteratively changes θ by swapping between these two operations: For
nanoplatforms, the way drugs are delivered such as the drug release rate 𝑅(𝑡), corresponds nonlinearly to chang‑
ing signals 𝑦̂(𝑡)which model computed using Equation (9).

𝑅(𝑡) = 𝑘0 𝑒𝑥𝑝[−𝑘1 𝑦̂ (𝑥(𝑡); 𝜃)] (9)

The basal amount of RAS signaling is governed by 𝑘0 and 𝑘1 up or down‑regulates this process as the immune
signal is predicted. Therefore, a stronger response from the immune system can manage how much of the drug is
released to prevent any side effects. Overall, the goal is to minimize a function that links prediction accuracy with
the effectiveness of treatment. The nanoplatform gets smarter by regularly updating the control of drug release
and 𝜃 to better respond to ongoing changes in the tumor ecosystem. With the relationship between SgOSF‑DL and
nanotechnology, cancer treatments achieve better precision, dynamic effects, and success. The ϐlow chart of the
proposed SgOSF‑DL model is presented in Figure 3.

Figure 3. Flow chart of SgOSF‑DL.

3.1. Automated Computational Intelligence for Oncology in T‑cells with SgOSF‑DL
The Seagull‑Optimized Sugeno Fuzzy Deep Learning (SgOSF‑DL) model enables T‑cell oncology to achieve ac‑

curate, adaptive, and reliable changes to the immune responses in the tumor environment. Assume the state of a
T‑cell in a tumor can be described by a vector 𝑥 ∈ 𝑅𝑑 , which records gene activity, receptor density, and cytokine
reception with time. The purpose is to determine the best control 𝑦̂(𝑡) automatically, making T‑cells attack their
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targets and remain active despite the biological complexity. The model is built by embedding Sugeno‑type fuzzy
inference into a deep learning framework. Each fuzzy rule i links inputs 𝑥(𝑡) to a linear output computed using
Equation (10).

𝑧𝑖 (𝑡) = 𝑎𝑖⊤ 𝑥(𝑡) + 𝑏𝑖 (10)
Weighted by the normalized ϐiring strength deϐined in Equation (11).

𝜔𝑖(𝑡) =
∏𝑑
𝑗=1 exp ቈ−

(𝑥𝑗(𝑡)− 𝐶𝑖𝑗)2

2𝜎2𝑖𝑗
቉

∑𝑀
𝑘=1∏

𝑑
𝑗=1 exp ቈ−

(𝑥𝑗(𝑡)− 𝐶𝑘𝑗)2

2𝜎2𝑘𝑗
቉

(11)

Leading to the aggregated prediction deϐined in Equation (12).

𝑦̂(𝑡) = ∑𝑀
𝑖=1𝜔𝑖 (𝑡)𝑧𝑖(𝑡) (12)

Seagull Optimization Algorithm (SOA) is applied to the model to optimize its parameters automatically, fol‑
lowing the navigation and battle strategies of seagulls to ϐind and use useful parts of the parameter area. Stochas‑
tic optimization deals with this type of problem. Because of this framework, the system can update its T‑cell im‑
munomodulatory parameters in real time with input from the newest biological information. So, the system leads
to changes in therapy by suggesting the delivery of cytokines, blockage of checkpoint proteins, or editing of genes,
on an individual basis. Smart T‑cell reprogramming for precision oncology is made possible because Sugeno fuzzy
logic, deep learning, and nature‑inspired search combine to handle the complex and chaotic interactions between
tumors and the immune system.

Figures 4(a)–(c) presented the SgOSF‑DL model for the different conditions in the T‑cells and the generated
fuzzy rules are presented in Table 1.

Figure 4. T‑Cells examined for different conditions (a) round (b) elongate (c) histological section.

Table 1. Generated fuzzy conditions.

Rule # IF Condition:
IL‑21

AND PD‑1
Expression AND Granzyme B THEN Therapeutic Output(Cytokine Release Rate)

1 IL‑21 is High PD‑1 is Low Granzyme B is High Strong activation signal(high cytokine release)
2 IL‑21 is Medium PD‑1 is Medium Granzyme B is Medium Moderate activation signal(moderate cytokine release)
3 IL‑21 is Low PD‑1 is High Granzyme B is Low Suppressed activation signal(low cytokine release)
4 IL‑21 is High PD‑1 is High Granzyme B is Medium Balanced activation(controlled cytokine release)
5 IL‑21 is Medium PD‑1 is Low Granzyme B is High Enhanced activation(boosted cytokine release)
6 IL‑21 is Low PD‑1 is Medium Granzyme B is High Compensated activation(moderate cytokine release)
7 IL‑21 is Medium PD‑1 is High Granzyme B is Low Weak activation(minimal cytokine release)
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3.2. Cancer Diagnosis
The use of nanoparticles that are loaded with L‑arginine for nitric oxide (NO) to enable early detection of

tumors using new technologies in both nanoscience and image‑sensor systems is illustrated in Figure 4. They can
work as medicine and as a means to detect diseases because their unique features allow them to target tumors and
because NO plays a role in detecting changes in the tumor’s surroundings. Inside the tumor, the L‑arginine cargo
becomes NO, and it helps control the local environment, generating both ϐluorescence and contrast in magnetic
resonance imagingwhen combinedwith suitable detectionmolecules. TheNOgeneration rate𝑅𝑁𝑂 fromL‑arginine
follows a quantitative relationship stated in Equation (5).

𝑅𝑁𝑂 = 𝑘𝑐𝑎𝑡 ⋅ [𝐿 − 𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒] ⋅ [𝑁𝑂𝑆] (5)

The rate constant𝑘𝑐𝑎𝑡 describes the nitric oxide synthase, 𝐿 − 𝑎𝑟𝑔𝑖𝑛𝑖𝑛𝑒 is the nearby concentration of L‑
arginine dropped by the nanoparticles and [𝑁𝑂𝑆] is the level of NOS within the neighboring tumor cells. The
strength of the diagnostic signal (e.g., ϐluorescence) at intensity 𝐼 matches the increase in NO concentration and
is suitable for mathematical modelling stated in Equation (6).

𝐼 = 𝛼 ⋅ [𝑁𝑂] + 𝐼0 (6)

Where the constant α\alphaα calculates the detector’s ability to detect an amount of radiation, and I0 is the
default backlighting. With such sensors joined to imaging techniques, doctors can track andmonitor changes in NO
levels, whichmay indicate whether and how a tumor is developing. As a result, the diagnostic accuracy is increased.
It is possible to continuously assess the immunomodulation of the tumor, and more personalized treatments can
be deϐined. Consequently, the PEG‑PLGAMgF₂ L‑arginine‑loaded system supports both NO‑based immunotherapy
and the development of an innovative, non‑invasive cancer analysis approach. PEG‑PLGAMgF₂ nanoparticles can
be decorated with either targeting ligands or imaging agents to help them better target tumors and be detected.
Incorporating either gadolinium or iron oxide particles in a molecule enhances visibility for MRI, and ϐluorescent
tags make it possible to observe images in cells at a high level of detail. These nanoparticles have two jobs: NiNO
release to kill tumors and the detection of NO, which immediately tells the clinic about the metabolic state and
therapy response of the tumor. Mathematically, how nanoparticles accumulate and are eventually cleared in the
tumor region can be explained by kinetic equations of the standard pharmacology type deϐined in Equation (7).

𝑑𝐶𝑡/𝑑𝑡 = 𝑘𝑖𝑛 𝐶𝑏 − 𝑘𝑜𝑢𝑡 𝐶𝑡 (7)

In this case, 𝐶𝑡 is how many nanoparticles are in tumor tissue, 𝐶𝑏 is the number of nanoparticles found in the
blood, 𝑘𝑖𝑛 indicates how fast particles move from the blood into the tumor via the EPR effect, and kout helps deter‑
mine how soon the particles are removed from the tumor. The loaded L‑arginine in these nanoparticles combines
targeted therapy, immune system changes, and imaging to help detect and treat cancer. Adding imaging agents to
these nanocarriers helps them gather in cancerous tissues because of the EPR effect. After localizing, L‑arginine
is transformed by an enzyme into NO, which acts on the tumor and makes the NO concentration detectable. The
signal strength on diagnostic imaging is related to NO levels, indicating both tumor presence and its growth. Using
pharmacokinetic models, we can describe how nanoparticles gather and are removed from the body, which helps
choose proper timing for imaging and treatment.

A collection of fuzzy rules can be designedusing key immunological biomarkers like IL‑21, PD‑1, andGranzyme
B to guide accurate T‑cell therapy within a cancer tissue. If IL‑21 increases and PD‑1 decreases, with a matched in‑
crease in Granzyme B, T‑cells demonstrate improved cytotoxicity, and it is advisable to activate therapy with major
cytokine release. A low level of IL‑21 is linked to more PD‑1 and less Granzyme B, which means T‑cells will tire
and work less well, so less therapy is needed to prevent additional stress. When IL‑21, PD‑1, and Granzyme B are
at medium levels, intermediate states help guide therapy by managing the dose of cytokines. With the proposed
framework, the computational model can interpret unpredictable and uncertain actions in the tumor microenvi‑
ronment. This allows for ϐlexible and personalized ways to support T‑cells to improve immunity and avoid negative
results directly. With this system, cancer treatments are better targeted, adjust to changes in the patient’s immune
response, and become more suitable for their immune system.
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4. Simulation Analysis
The performance of the SgOSF‑DL framework for reprogramming T‑cells and designing oncological nanomic

platforms was evaluated using a complete simulation environment built with a hybrid modeling tool that uses as‑
pects of MATLAB, Python, and Simulink. Researchers recreate in simulation the conditions found in solid tumors,
including different levels of cytokines, checkpoint molecules, and how tumor cells behave over time. We synthe‑
sized and validated multi‑omics data that included proϐiles of genes, proteins, and immune responses, then com‑
pared them to the data available in public cancer immunotherapy databases such as TCGA and ImmPort. The ex‑
perimental setup for the proposed model is presented in Table 2. The SgOSF‑DL model created immune signaling
predictions that the nanoplatforms used to adjust the delivery of drugs, depending on fuzzy rules for virtual T‑cells.
Seagull Optimization was applied to allow automatic updates of simulation settings as themodel was running. Met‑
rics for prediction accuracy, immune activation, drug release, and tumor regression were checked multiple times
as the systemwas running. Before bringing them to clinics, researchers can use this computermodel to design, test,
and reϐine innovative, adjustable approaches for treating cancer.

Table 2. Experimental setup.

Component Parameter Value/Setting

Input Features(x)
IL‑21 concentration [10,200] pg/mL
PD‑1 expression(MFI) [500,3000]
Granzyme B level [5,100] ng/mL

Fuzzy Inference System Number of fuzzy rules (M) 7
Membership function type Gaussian

Deep Learning Parameters
Hidden layers 3
Neurons per layer [64, 32, 16]
Activation functions ReLU, Sigmoid

Optimization(SOA)
Population size 30 seagulls
Iterations 100
Spiral attack coefϐicient(b) 1.5

Nanoplatform Parameters
Drug release constant k0k_0k0  2.0 µg/min
Decay rate k1k_1k1  0.01–0.05
Simulation time 0–100 min

Multi‑omics datasets were obtained from the TCGA and ImmPort databases, which include transcriptomic,
proteomic, and cytokine expression proϐiles from tumor‑inϐiltrating T‑cells in breast and melanoma cancers. The
proposed model is a framework that dynamically integrates Sugeno fuzzy logic‑based deep learning with seagull‑
optimized nanoparticle‑mediated delivery to adaptively reprogram T‑cells in the tumor microenvironment. This
direction holds signiϐicant promise for translational immunotherapy. Labelled data were categorized into Sup‑
pressed, Exhausted, and Activated based on PD‑1, Granzyme B, and IL‑21 proϐiles, using clinical annotations and
expert consensus―1,200 T‑cell samples with 45 features each (cytokine levels, receptor density, gene expression).
In the proposed framework, the simulated nanoplatforms consist of PEG‑PLGA/MgF₂ nanoparticles loaded with
two critical therapeutic agents: IL‑21 mRNA for immune activation and L‑arginine for nitric oxide (NO)‑based tu‑
mor diagnostics. The release of these agents is triggered under speciϐic tumor microenvironmental conditions—
primarily an acidic pH of less than 6.5 and elevated PD‑1 expression levels on tumor‑inϐiltrating T‑cells. The drug
kinetics for IL‑21 release follow a ϐirst‑order kinetic model, with a release rate constant of 0.42 per hour, ensuring
controlled and sustained delivery. For diagnostic imaging, the NO intensity generated from L‑arginine is simulated
using a quantitative ϐluorescence model, where the signal intensity is governed by a sensitivity coefϐicient α = 0.62
and a baseline intensity I = 1.0. This dual‑functional nanoplatform enables simultaneous immunomodulation and
real‑time monitoring of tumor activity, forming a closed‑loop system guided by the SgOSF‑DL model for adaptive
oncological interventions.

4.1. T‑Cells Analysis with SgOSF‑DL
In immuno‑oncology, an accurate understanding of T‑cell function is necessary for good treatment outcomes

since cancer elimination relies on immune activation and targeting cells. This SgOSF‑DLmodel acts as an innovative
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tool for analyzing immune cell behaviors by categorizing cells that express Granzyme B, PD‑1, and cytokine at dif‑
ferent levels. With this analysis, one can identify whether T‑cells are active, suppressed, or exhausted, all of which
show how effective the immune systemwill be against the tumor. SgOSF‑DL distinguishes among these states with
precision and supplies useful advice for therapeutic action.

Figure5 andTable3present the deep analysis performedby the Seagull‑Optimized Sugeno‑FuzzyDeepLearn‑
ing (SgOSF‑DL)model and how it supports predictions in deciding on therapies for T‑cell responses. Included in the
table are eight T‑cell samples (T01–T08), where IL‑21, PD‑1 expression, and Granzyme B levels were determined.
The T01 and T07 samples show clear evidence of increased immune activation and cell‑killing due to very high
levels of IL‑21 and Granzyme B, as well as much lower PD‑1. Using the model, the correct recommendations for
strong cytotoxicity are picked accurately, reaching prediction ϐigures of 96.5% for “high cytokine boost” and 97.3%
for “maximum stimulation.” On the other hand, samples T03, T04, and T08 have less IL‑21, a rise in PD‑1, and not
much Granzyme B, suggesting their immune response is turned down. With ϐindings still above 88%, the model
provides reliable advice on using less activation or immunosuppression strategies. These T02, T05, and T06 pro‑
ϐiles have moderately steady immune functions, and the model offers precise simulations with a range of 90.8%
to 95.1% accuracy. In general, the SgOSF‑DL model closely aligns biochemical readings with results from T‑cell
immunotherapy, proving its expertise in helping to choose the best approach.

Figure 5. Prediction activation with SgOSF‑DL.

Table 3. T‑cells reaction analysis with SgOSF‑DL.

Sample
ID

IL‑21
(pg/mL)

PD‑1
(MFI)

Granzyme
B(ng/mL)

Predicted
Activation Therapeutic Decision Actual Outcome Prediction

Accuracy(%)

T01 185 620 88 0.91 High cytokine boost Strong cytotoxicity 96.5
T02 145 980 60 0.77 Moderate cytokine delivery Moderate response 93.2
T03 95 2,150 22 0.34 Suppress stimulation Weak immune response 91.0
T04 120 2,700 15 0.25 Minimize immune activation T‑cell exhaustion 89.6
T05 175 1,320 73 0.82 Controlled cytokine pulse Enhanced cytotoxicity 95.1
T06 110 1,450 35 0.58 Mild stimulation Stable immune presence 90.8
T07 198 580 92 0.94 Maximum stimulation Strong cytolytic effect 97.3
T08 65 2,980 10 0.18 Immunosuppressive hold T‑cell anergy 88.7

Figure6 andTable4 showtheoncology interventions improved throughoptimizationby theSeagull‑Optimized
Sugeno‑Fuzzy Deep Learning (SgOSF‑DL) model over 100 training rounds. As data is used, the model improves
across all metrics and demonstrates an ability to learn and apply itself quickly. During iteration 1, the highest ϐit‑
ness is 0.883, yet the accuracies for training and validation are 72.5% and 69.4%, respectively, and the network’s
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loss is 0.461. However, as the process goes on, clear enhancements become evident. The accuracy on training in‑
creases to 88.7% by iteration 25. The accuracy on validation also rises to 86.3%, and the loss declines to 0.219.
Themodel continues to improve, scoring a best ϐitness of 0.982, accuracy during training of 96.0% and accuracy for
validation of 94.3% by iteration 100. At the same time, the loss function value falls to 0.063, suggesting the system
is performing well by minimizing errors. The adaptive learning process is seen by the slow decrease in average
learning rate from 0.010 to 0.0064. In addition, the model takes more iterations, requiring more epochs (approx‑
imately twice as many), to reach its best possible performance. This study demonstrates that SgOSF‑DL provides
a useful optimization framework for oncology deep learning tasks, keeping the accuracy, speed, and performance
consistent.

Figure 6. Optimization of T‑cells with SgOSF‑DL.

Table 4. Optimization of oncology Interventions with SgOSF‑DL.

Iteration Best Fitness
Score

Training
Accuracy(%)

Validation
Accuracy(%)

Loss Function
Value

Avg. Learning
Rate

Convergence
Speed(Epochs)

1 0.883 72.5 69.4 0.461 0.010 12
10 0.912 81.3 78.2 0.329 0.0095 28
25 0.944 88.7 86.3 0.219 0.0087 41
50 0.965 92.6 91.1 0.143 0.0079 57
75 0.974 94.1 92.8 0.097 0.0071 68
100 0.982 96.0 94.3 0.063 0.0064 78

4.2. SgOSF‑DL Reprogramming in Oncology
Immunotherapy in cancers is the immunosuppressive effect of the tumor environment. Scientists believe that

altering how T‑cells and other immune cells function can help overcome the ways cancer survivors escape the im‑
mune system. In this ϐield, the Seagull Optimized Sugeno Fuzzy Deep Learning (SgOSF‑DL) framework offers an
intelligent new method to control the immune response precisely. With a mix of clear explainability, powerful
neural networks, and enhanced ϐlexibility through the Seagull Optimization Algorithm, SgOSF‑DL can monitor and
impact the defense of T‑cells.

Table5 illustrates the results from the SgOSF‑DLmodel andpoints to strong immunological and computational
performance. The model achieves effective performance, and SEM results are presented in Figure 7, as T‑cells
were identiϐied and stimulated in 96% of cases. At 94.3%, immunemodulation accuracy was strong, assuring good
control over the immune actions. When a simulation consisted of 100 minutes, the approach brought signiϐicant
tumor shrinking of up to 68%. It took only 8.5 minutes on average for therapy to show effects, suggesting the
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treatment began to work quickly. Eighty‑seven and a half percent of cytokines could be released, enabling rapid
communication of immune messages. The gene for granzyme B, crucial for cell killing in the immune system, was
stronger by 73%, showing how effective the model is at boosting immune cytotoxicity. Lowered PD‑1 expression
through PD‑1 blockers, which is needed to reduce exhaustion in immune cells, was accomplished at 61% and aided
better immune cell function. It took the model 2.4 seconds on average to complete each run and only needed 78
epochs to ϐinish. Moreover, the consistency of applying themodel’s rules reached 92.8%, meaning the analysis used
the rules conϐidently and reliably.

Table 5. Reprogramming analysis with SgOSF‑DL.

Metric Value

T‑cell Activation Accuracy 96.0%
Immune Modulation Precision 94.3%
Tumor Regression Rate 68%(over 100 simulation mins)
Therapy Response Latency 8.5 min(avg.)
Cytokine Release Efϐiciency 87.5%
Granzyme B Upregulation +73%
PD‑1 Suppression Level −61%
Computational Time per Run 2.4 sec
Convergence Epochs 78
Fuzzy Rule Activation Consistency 92.8%

Figure 7. SEM images of T‑cells with SgOSF‑DL.

Table 6 presents the steps by which the SgOSF‑DL model enhanced its T‑cell‑related metrics during the train‑
ing period. In the ϐirst epoch, the approach showed that 76.5% of T‑cells were activated accurately, immunity was
modulated with 74.8% precision, tumors regressed in 32.1% of samples, and the total loss was 0.416. By+24.6%,
granzyme B was increased, indicating the ϐirst signs of immune activity, while the suppression of PD‑1 began at
−18.3%. Gradually, as training went on, each performance indicator improved: T‑cell activation rose to 91.7%, the
precision of inϐluencing the immune system improved to 89.5% and tumors were regressed by 58.0%. Changes to
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the loss function were also observed, with a value of 0.157. Increasing levels of granzyme B and suppressing PD‑1
resulted in a strong increase of 64.3% and a decrease of 51.0%. By age 80, the model performed best, showing
accurate T‑cell activation, precision in changing the immune system, and a tumor regression rate of 68.0%. The
value indicating model learning improved to 0.063. In addition, the expression of granzyme Bwas raised by 73.0%,
while PD‑1 was lowered by 61.0%, indicating increased immune cytotoxicity and the potential for blockade strate‑
gies. Generally, these data demonstrate that the model consistently excels in improving immune responses during
different phases of training.

Table 6. T‑cells analysis with SgOSF‑DL.

Epoch
T‑cell

Activation
Accuracy(%)

Immune
Modulation
Precision(%)

Tumor
Regression
Rate(%)

Loss Value Granzyme B
Upregulation(%)

PD‑1
Suppression(%)

10 76.5 74.8 32.1 0.416 +24.6 −18.3
20 84.1 81.6 45.7 0.297 +41.2 −31.5
30 88.9 86.7 52.3 0.204 +56.7 −43.9
40 91.7 89.5 58.0 0.157 +64.3 −51.0
50 93.4 91.2 62.7 0.123 +69.5 −55.7
60 95.0 92.7 65.8 0.088 +71.8 −58.3
70 95.7 93.6 67.1 0.075 +72.6 −59.5
80 96.0 94.3 68.0 0.063 +73.0 −61.0

4.3. Classiϐication with SgOSF‑DL
T‑cell types within the tumor microenvironment are critical for guiding treatment choices. Using the SgOSF‑

DL model, intricate variations in immune data can be detected by analyzing simulation‑based results. To achieve
a ϐlexible nature and optimize properties, SgOSF‑DL is developed to organize T‑cells into three main categories—
active, suppressed, and exhausted—by processing complex, nonlinear input data from the biomedical ϐield. Doing
simulation analysis in this way makes it possible to validate and improve the classiϐier’s performance in various
cancer cases, promoting its use in complex situations related to tumors. Figure8presents themicroscopic response
of the different T‑cells with the reprogrammed model.

Figure 8. T‑cell state for SgOSF‑DL (a) suppressed (b) exhausted (c) activated (d) ϐinal t‑cells.

With SgOSF‑DL, using its advanced deep learning design leads to accurate sorting of complicated biological and
immunological data. The combination of fuzzy logic rules and optimized feature selection in SgOSF‑DL improves its
ability tomake sense of normally chaotic or fuzzy patterns in biomedical data. Themodel’s performance gets better
with training, as shownbymeasuring T‑cell activation and immunemodulation accuracy. Itmakes it possible to sort
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out the patterns in immune response and results from cancer treatment. The ability to reach a solution quickly and
the minimal calculation required per run also show that the model is suitable for real‑time or near‑real‑time work.

Figure 9 and Table 7 demonstrate that the performance of the SgOSF‑DL model improved for all nanoplat‑
forms and across different time steps. By epoch 20, the model achieved moderate accuracy, and the Magnetic Iron
Oxide nanoplatform was somewhat better, at 86.1%, than the pH‑sensitive Liposome, with 84.2%. All three corre‑
sponding scores—precision, recall, and F1—were also improved for the Magnetic Iron Oxide platform. In the 40th
epoch, PLGA‑based Nanospheres showed 92.5% accuracy, and pH‑sensitive Liposomes reached 91.3%, and both
showed a higher AUC than earlier epochs, suggesting improved classiϐication reliability. Membrane permeation of
the drug was greater, and tumor shrinkage was higher, reϐlecting better treatment outcomes. Looking at epochs 60
and 80, the system performed best at diagnosing, with both Gold Nanoshells and PLGA‑based Nanospheres report‑
ing accuracy over 96% and ϐlourishing scores of over 94% for precision, recall, and F1. With Gold Nanoshells at
epoch 80, the model achieved an AUC of 0.984, a drug release rate of 2.6 µg/min, and approximately 69.2% regres‑
sion of tumors, indicating the treatment was working effectively. The study results suggest that SgOSF‑DL boosts
the accuracy of disease categorization and helps control drugs for therapy over time, depending on the choice of
nanoplatform.

Figure 9. Classiϐication with SgSF‑DL.

Table 7. Classiϐication with SgOSF‑DL for different epochs.

Epoch Nanoplatform Type Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%) AUC

Drug
Release
Rate

(µg/min)

Tumor
Regression

(%)

20 pH‑sensitive Liposome 84.2 82.6 83.5 83.0 0.894 1.4 46.7
20 Magnetic Iron Oxide 86.1 84.9 85.6 85.2 0.901 1.7 49.3
40 pH‑sensitive Liposome 91.3 89.5 90.8 90.1 0.938 1.9 58.0
40 PLGA‑based Nanosphere 92.5 90.2 91.9 91.0 0.946 2.1 61.2
60 Magnetic Iron Oxide 94.7 93.8 94.3 94.0 0.968 2.3 65.9
60 Gold Nanoshell 95.1 94.0 94.6 94.3 0.971 2.4 66.7
80 PLGA‑based Nanosphere 96.0 94.3 95.8 95.0 0.981 2.5 68.0
80 Gold Nanoshell 96.3 94.8 96.0 95.4 0.984 2.6 69.2

SgOSF‑DL performance in various therapeutic interventions at various T‑cell stages is shown in Table 8. The
SgOSF‑DL model was applied to 17 therapeutic options on speciϐic nanoplatforms, tested at different stages and
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levels of cell activation. Early on, when pH‑sensitive liposomes were used on cells with suppressed T‑cells (epoch
20), the treatment was ineffective (accuracy: 81.7%) and barely activated the immune system since little granzyme
Bwas generated andPD‑1 levels remained high. Unlike their activated counterparts, magnetic nano‑iron oxide used
with exhausted T‑cells triggered only a small immune signal and achieved moderate granzyme B production, with
an accuracy of 84.5%. The model in epoch 40 had much better therapeutic effects, with PLGA‑based nanospheres
in activated T‑cells helping the simulation reach an accuracy of 91.2%, higher granzyme B levels, and lower PD‑1
markers, which suggest excellent cytolytic performance. Likewise, pH‑sensitive liposomes in exhausted T‑cells gave
only partial results, having lower granzymeB and higher PD‑1 thanwhen the cells were activated. At epoch 60, gold
particles in active T‑cell states improved immune activity to 94.6% accuracy. They produced abundant granzyme
B, while magnetized iron oxide nanoparticles inserted into resting T‑cells showed immune suppression with only
average accuracy. Both nanospheres and gold nanoshells in the activated state achieved the best results at epoch
80, expressing high cytotoxicity, granzyme B secretion, and effective control of the immune system.

Table 8. SgOSF‑DL performance in different theraupatic Intervention at different T‑cell states.

Epoch Nanoplatform T‑Cell State Accuracy
(%)

Granzyme
B(ng/mL)

PD‑1
(MFI)

Cytokine
Index Therapeutic Response

20 pH‑sensitive Liposome Suppressed 81.7 22 2,400 1.2 Weak response
20 Magnetic Iron Oxide Exhausted 84.5 30 2,100 1.4 Mild immune signaling
40 PLGA‑based Nanosphere Activated 91.2 72 980 2.1 Strong cytolytic activity
40 pH‑sensitive Liposome Exhausted 89.0 45 1,950 1.6 Partial response
60 Gold Nanoshell Activated 94.6 85 740 2.5 High immune reactivation
60 Magnetic Iron Oxide Suppressed 90.3 35 2,650 1.3 Immune suppression observed
80 PLGA‑based Nanosphere Activated 96.0 92 620 2.8 Tumor‑directed cytotoxicity
80 Gold Nanoshell Activated 96.5 95 580 3.0 Complete immune control

5. Conclusion
This paper constructed an effective reprogramming computation model of SgOSF‑SL for the TEM. The con‑

structed model comprises the Sugeno fuzzy for the generation of rules with the optimized features obtained with
Seagull. The proposed SgOSF‑DL model with Computational Intelligence and nanotechnology to reprogram over‑
growing cancer cells into new structures for targeted cancer treatment. Because it includes fuzzy logic, deep learn‑
ing, and bio‑inspired seagull optimization, the approach can classify T‑cell states precisely, allowing for better con‑
trol of immune cells in the tumor area. The outcome of treating cancer with the proposed system shows higher
tumor shrinkage, more active immune responses, and less immune fatigue on a variety of nanoparticle platforms.
Transparent fuzzy inference rules included in the model make it effective for clinicians to interpret, so it can be
used to tailor treatments for patients. The proposed SgOSF‑DLmodel achieves signiϐicant performance for different
nanoplatforms fordifferentT‑cellmodels. Theproposed integratedmodel of artiϐicial intelligence andnanomedicine
aims to create an effective, understandable, and ϐlexible platform that has the potential to improve future oncologi‑
cal therapies by reprogramming the immune system.
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