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Abstract: This article proposes a stochastic model for generation of synthetic seismic ground motions. In the first step, 

the wavelet coefficients of a record are extracted by the dual-tree complex discrete wavelet transform (DT-CDWT) and 

then they are simulated by an optimized Cauchy-Gaussian blend (CGB) model. This model predicts well the energy 

distribution of seismic ground motions, because in this model, the Gaussian distribution simulates smooth peaks and the 

Cauchy distribution is used to simulate impulsive peaks. Also, this model simulates several ascending-descending cycles 

in the time domain, predicts multiple frequency peaks each time, and simulates sequence-type records. 

Keywords: Seismic ground motions; Cauchy-Gaussian blend model; Complex discrete wavelet transform; 

Genetic algorithm; Spectral and temporal nonstationarity 

 

1. Introduction 

The ground motions (GMs) that are recorded from 

past earthquakes, are very valuables, because they con- 

tain important information about the source and mecha- 

nism of earthquake occurrence. Also, the GMs of strong 

earthquakes are important for design engineers, because 

these GMs caused severe damage to existing structures. 

 

For this reason, in areas with high or moderate seismic 

hazard, recorded GMs are used for dynamic analysis and 

design of structures to mitigate seismic risk. The GMs 

that will be used for the design of a structure, should be 

in accordance with the site where that structure will be 

built in the future. These GMs are rare or they do not exist 

for some source and site conditions. It is also proved that 
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the use of scaled GMs from other sites is unrealistic 
[1-3] 

. 

Hence, it’s inevitable to use stochastic models that are 

able to generate realistic synthetic GMs. 

In site-based models, the GMs recorded during previ- 

ous earthquakes are used to extract a model for the simu- 

lation of realistic synthetic GMs for a site. These models 

are attractive because recorded GMs are available to 

seismologists. These models are less time-consuming than 

source-based models, and only require available source 

and site information 
[4]

. The site-based stochastic models 

should be able to simulate the spectral and temporal non- 

stationary characteristics of real records. This is because 

under seismic excitation, the response of structures de- 

pends on their nonstationary characteristics. These models 

should also be parametric and have as less parameters 

as possible to generate synthetic records for the future 

events. For example, the models proposed by Mobar- 

akeh et al. [5], Wen and Gu [6], Zhang and Zhao [7], Zhang 

et al. 
[8]

, and Wang et al. 
[9]  

are aimed to generate synthetic 

GMs with the same nonstationary characteristics with the 

recorded ones, but these models are nonparametric or con- 

tain many parameters. This model was recently by Sabetta 

and Pugliese [10], and Stanford et al. [11], their parameters 

are estimated for the seismic events, but these models un- 

derestimate the uncertainty of real GMs and neglect their 

temporal nonstationary characteristics. 

Rezaeian and Der Kiureghian [4,12,13]  proposed a site- 

based model that has few parameters and considers all 

sources of uncertainty. This model demands high com- 

putational effort and cannot simulate multiple frequency 

peaks. The Rezaeian’s model 
[4]  

was later used by Me- 

del-Vera and Ji 
[14]  

to generate synthetic records for the 

European areas. This model was recently modified by 

Tsioulou et al. [15]  and Vetter et al. [16]  to improve its capa- 

bilities. In the model proposed by Yamamoto and Baker 
[17]

, 

the wavelet packet transform, the exponential distribution, 

and the bivariate lognormal distribution are used to gen- 

erate synthetic records. In a follow-up research, Huang 

and Wang 
[18]  

have developed spatial correlation models 

for the parameters of Yamamoto’s model 
[17]  

to extend it 

to regional-scale applications. Vlachos et al. 
[1 9 , 2 0 ]   

have 

developed a nonstationary version of the Kanai-Tajimi 

model for the simulation of frequency-time distribution of 

real records. Recently, Sharbati et al. 
[21]  

have developed a 

model based on the complex wavelet transform and mix- 

ture distributions. Three other site-based models recently 

developed for the simulation of seismic records, are ex- 

pressed in Dak Hazirbaba and Tezcan [22], Tezcan et al. [23], 

and Wang et al. 
[24] 

. Also, several models were proposed 

to estimate well  the temporal and spectral nonstationary 

characteristics of earthquake ground motions. These meth- 

 

ods overcome some shortcomings of the previous models.  

 Most of the recorded GMs have complex structures. 

Hence simulation of these GMs by the stochastic-para- 

metric models is controversial. The previous models are 

unable to simulate sharp and impulsive peaks, estimate 

accurately the frequency-time distribution of records, and 

simulate the GMs that have several ascending-descending 

cycles in the amplitude or multiple frequency peaks in a 

time. A model based on the dual-tree complex discrete 

wavelet transform (DT-CDWT) and Cauchy-Gaussian 

blend (CGB) distribution is proposed to overcome these 

shortcomings. By using the CGB model, sharp and impul- 

sive peaks are simulated by the Cauchy distribution and 

smooth peaks by the Gaussian one. The simulation results 

are compared with the target records as well as the results 

of the Sharbati’s model 
[21]  

and the Vlachos’s model 
[19] 

. 

Here, the model proposed by Sharbati et al. 
[21]  

is named 

as the GB model. The mathematical basis of CGB model 

is presented in the next section. 

2. Methodology 

In the proposed model, the DT-CDWT extracts wavelet 

coefficients (WCs) of a record and the CGB distribution 

simulates the square of WCs. These two approaches are 

explained in more detail in this section. 

2.1 Dual-tree Complex Discrete Wavelet Transform 

The ordinary discrete wavelet transform (DWT) suf- 

fers from some problems such as lack of shift invariance, 

insufficient accuracy in the feature extraction, and lack 

of directional selectivity. These shortcomings are more 

obvious when modeling the frequency-time distribution of 

GMs. By using DT-CDWT, these shortcomings of DWT 

are improved. The block diagram of DT-CDWT, shown in 

Figure 1, is expressed in Sharbati et al. 
[21]

. The filter bank 

coefficients of Kingsbury 
[25]  

are also used for the analysis 

of records. 

2.2 Cauchy-Gaussian Blend Model 

Modeling and simulation of GMs has been one of the 

major topics in earthquake engineering. The spectral and 

temporal nonstationarity of GMs should be simulated by 

robust stochastic models. In order to develop a parametric 

model for the simulation of records, their temporal am- 

plitude should be simulated by an appropriate Probability 

Density Function (PDF). In practice, the most popular 

distribution used by earthquake engineers is the Gauss- 

ian distribution but this distribution cannot estimate fat 

tails and sharp peaks of GMs. We can use the Cauchy 

distribution to overcome these shortcomings, but it leads 
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Figure 1. The diagram of one-level DT-CDWT. 
 

to over-protection in descending phase of GMs. Because 

of the complex structure of GMs, it is realized that the 

Gaussian and Cauchy distributions are not appropriate for 

estimating the temporal amplitude of GMs, because the 

Gaussian distribution underestimates sharp peaks of GMs 

while the Cauchy distribution often underestimates their 

smooth peaks. 

Among solutions to tackle these problems, we can use 

the Gaussian blend (GB) model, which approximates the 

PDF by a finite number of Gaussian distributions, but this 

model cannot predict sharp peaks and heavy-tailed PDFs. 

Another solution is to fit a Cauchy-Gaussian blend (CGB) 

distribution to a PDF. This mixture distribution controls 

the balance between the Gaussian and the heavy-tailed 

Cauchy. The relations expressing the Cauchy and Gaussi- 

an distributions are given in Equation (1) and Equation (2) 

respectively: 

       (1) 

                                            (2) 

where x0  and γ are the location and scale of the Cauchy 

distribution, μ and σ are the location and variance of the 

Gaussian distribution. Suppose that we want to use a 

CGB model constructed by a Gaussian distribution and a 

Cauchy distribution for simulation of data. The mixture 

model is defined as follows: 

p(x) = αpn (x) + (1 − α)pc (x)                                           (3) 

 Equation (3) has five parameters including two param- 

eters for the Cauchy distribution (x0, γ), two parameters 

 

for the Gaussian distribution (μ, σ) and a weighting coeffi- 

cient (α). In order to fit a mixture of Cauchy and Gaussian 

PDFs to databased on the observation of N samples,  {x1, 

x2,…, xN }, we should estimate the unknown parameters of 

Cauchy and Gaussian PDFs in the characteristic function 

domain, as follows: 

 

                                               (4) 

φ ˆ (ω) = e
jωxn                                                                                                                                                    (5) 

where ω is circular frequency and N is the number 

of actual data. Now, we want to minimize following 

cost function to obtain parameter values that minimize 

differences between the estimation provided by the CGB 

model and the actual data: 

J = ω) − φ ˆ (ω)
2

e − b 2ω2 
dω                                 (6) 

where b is a constant parameter that should be optimized 

for the application of interest. To minimize the above cost 

function and extract appropriate values for the CGB mod- 

el’s parameters, we have used the genetic algorithm. Ge- 

netic algorithm (GA) is a biologically inspired algorithm 

mimicking the genetic process proposed by Holland 
[26]

, 

belonging to Evolutionary Algorithms (EA) 
[27]

. It is a pop- 

ular method for global optimization, imitating the evolu- 

tion of the living beings explained by Charles Darwin. The 

achieved solution after applying GA is an optimal solution 

to the minimization problem in Equation (6). 

Based on the above model, a stochastic-parametric 

model is developed for the simulation of GMs that have 

sharp and impulsive peaks in their time domain, or those 
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that exhibit fatter tails than typical GMs. The previous 

models underestimate the spectral and temporal charac- 

teristics of these GMs. The fundamental steps of the pro- 

posed method are explained in the next section. 

3. Proposed Model 

In the CGB model, it is required to follow three steps: 

1) applying the DT-CDWT and extracting the WCs of a 

record, 2) simulating the coefficients of each level by the 

CGB model and extracting the parameters of the model by 

GA, and 3) generating synthetic WCs for each level and 

applying the inverse DT-CDWT. This algorithm is dis- 

cussed below. 

3.1 Applying Complex Discrete Wavelet Transform 

Low frequency content of seismic motions is richer 

than high frequency one. To get good frequency resolu- 

tion, we need to decompose earthquake GMs into higher 

levels. The results of investigated GMs showed that five or 

six decomposition levels are appropriate for most GMs. In 

Figure 2, the record of Haramachi station observed during 

the 2011; Tohoku earthquake 
[28]

; is decomposed into five 

components using DWT. As can be seen, the details 3 & 

4 and approximation 4 (low frequency components) are 

high energy components. This GM has three sharp peaks 

at its strong motion phase (at t=70 s, 85 s, and 102 s) that 

should be simulated by heavy-tailed distributions such as 

the Cauchy distribution. Also, the Gaussian distribution 

is appropriate for the simulation of its smooth peaks at t= 

36 s, 54 s, 79 s, and 126 s. So, a robust model for this GM 

will be a combination of Cauchy and Gaussian distribu- 

tions, named as the CGB model. The WCs of each level 

are extracted by applying the DT-CDWT. These coeffi- 

cients should be simulated by the CGB model. 

 

Figure 2. Decomposition of the record of Haramachi   

station observed during the 2011 Tohoku earthquake 
[28] 

. 

 

3.2 Modeling the Wavelet Coefficients of Each 
Level 

In the time domain, the amplitude of GMs changes 

significantly with time. Accordingly, the temporal ampli- 

tude of WCs changes similar to that of the target record. 

There are three distinct phases in the wavelet coefficients 

of most GMs: 1) in the first phase, the amplitude increases 

from the zero to a maximum, 2) in stationary phase, the 

amplitude remains approximately constant, and 3) in the 

last phase, the amplitude decreases from the maximum 

to the zero. Such GMs have a rising-descending cycle in 

their amplitude. Even more complicated GMs have two 

or more cycles in their amplitude. Most of the stochastic 

models developed in the previous studies cannot simulate 

these GMs, because in the previous models, single-com- 

ponent distribution functions are applied to simulate the 

temporal amplitude of GMs. The GMS of strong earth- 

quakes have also multiple impulsive peaks in the time do- 

main that make it difficult to be simulated by the previous 

models because in these models the temporal nonstation- 

arity is modeled by short-tailed distributions such as the 

Gaussian distribution. 

In this article, a CGB model is proposed to simulate 

several ascending-descending cycles and impulsive peaks 

in WCs. This model simulates sequence ascending-de- 

scending cycles and impulsive peaks in the time domain. 

This model is a weighted combination of multiple heavy- 

tailed Cauchy distributions and short-tailed Gaussian dis- 

tributions. It also simulates the steps of the instantaneous 

cumulative energy curve of GMs. The absolute values of 

5th level detail coefficients of the Haramachi GM, along 

with estimates provided by the CGB model and the Shar- 

bati’s model (GB model) are shown in Figure 3. Because 

this GM has five ascending-descending cycles and three 

impulsive peaks in its temporal amplitude, a combination 

of three Cauchy distributions and two Gaussian distribu- 

tions is used in the CGB model, and a combination of five 

Gaussian distributions is used in the GB model to simulate 

the absolute values of WCs. As can be seen in the follow- 

ing figure, the GB model provides an inaccurate estimate 

of WCs because of the existence of multiple impulsive 

peaks in the time domain. In contrast, the CGB model 

simulates multiple impulsive peaks and sudden changes in 

the absolute of WCs. 

The following process generates synthetic WCs and 

then synthetic GMs with the same characteristics with the 

target records. 

3.3 Extraction of Synthetic Record 

After simulating the square of wavelet coefficients 
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Figure 4. Algorithm of CGB model. 
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Figure 3. Absolute values of 5th level detail coefficients of the Haramachi GM along with the estimates provided by the 

CGB model and the GB model. 
 

by the CGB model, artificial WCs are generated by the 

proposed model. The real WCs contain both positive and 

negative values, but we can only extract positive values 

by the CGB model, because this model is fitted to abso- 

lute values of WCs. Therefore, a random sign generator 

is used to extract artificial WCs. Therefore, in accordance 

with real wavelet coefficients, any set of synthetic WCs 

can be generated by the CGB model. Then, the inverse 

DT-CDWT is imposed to artificial WCs to extract synthet- 

ic GM. So, this model generates several synthetic GMs 

with the same characteristics as a record. The spectral and 

temporal nonstationarity of synthetic GMs are similar to 

those of the record. This conformity will be shown in the 

time domain, frequency domain, time-frequency domain, 

and also by response spectrum. The Compact Kernel 

Distribution (CKD) estimates the energy distribution of 

GMs. It provides a high resolution image of the energy 

distribution of GMs, because cross-terms are decreased by 

a Compact Kernel [29] . 

The results of CGB model are compared with those 

of site-based models proposed by Sharbati et al. 
[21]   

and 

Vlachos et al. 
[19]

. In the former, the Gaussian blend (GB) 

model is used to simulate WCs. In fact, the GB model is 

one of the robust stochastic models for the simulation of 

records. The latter was recently proposed for the simula- 

tion of temporal power spectrum of GMs. The algorithm 

of the proposed model is summarized in Figure 4. There 

are three sub-blocks in this figure: applying the DT-CDWT 

to a seismic record and simulation of wavelet coefficients 

by the CGB model; generation of artificial WCs and then 

synthetic GM by applying the inverse DT-CDWT; and val- 

idation of the proposed method. Two seismic records are 

 

used for the evaluation of the proposed model. 

4. Simulation Results 

We could use several previous models to validate the 

proposed model, but we want to show important capabil- 

ities of the CGB model. So, the results of CGB model are 

compared with the results of two previous models with 

more precision and capabilities: Sharbati’s model 
[21]  

and 

the Vlachos’s model 
[19] 

. For evaluation, two seismic re- 

cords are used: 

A record of the San Ramon Fires station observed dur- 

ing the 1980 Livermore-01 earthquake 
[30] 

. 

A record of the TCU101 station observed during the 

1999, Chi-Chi earthquake 
[30] 

. 

The former is selected to compare the proposed model 

with the Vlachos model 
[19]  

and the latter to compare with 

the Sharbati’s model 
[21]

. The Livermore GM is classified 

as a narrowband record and the ChiChi GM as a wideband 

one. The capability of the CGB model in the estimation of 

several frequency peaks is evaluated by using the former, 

and the capability of predicting multiple cycles in the time 

domain by using the latter. 

4.1 Comparison with a Previous Model 

Here, the results of the CGB model and Vlachos’s 

model 
[19]  

are compared by using the Livermore GM. In 

order to compare synthetic and real records, 20 synthetic 

motions are extracted by these models and the average of 

their instantaneous cumulative energy curves is compared 

with the target one in Figure 5. Generation of more syn- 

thetic GMs (more than 20 ones) would have no significant 

effect on the mean instantaneous cumulative energy curve 
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predicted by each model. The time integral of the square 

of record is defined as the instantaneous cumulative ener- 

gy. A CGB model that is composed of a Cauchy distribu- 

tion and a Gaussian distribution is used for the simulation 

of this GM. According to the results, the CGB model is 

more accurate than the Vlachos’s model in the prediction 

of this seismic record. 

 

(a) 

 

(b) 

Figure 5. The cumulative energy curve of Livermore 
GM, along with the results of: (a) the CGB model; (b) the 

Vlachos’s model [19] . 

Also, the energy distributions predicted by models are 

shown in Figure 6. Vlachos et al. 
[19]  

extracted the ener- 

gy distribution of records by using a method developed 

by Conte and Peng 
[31]

, while here, it is extracted by the 

CKD. So, the results of two models are compared with the 

target one separately. By examining Figure 6, it is evident 

that the CGB model predicts the target distribution more 

accurately. The energy variations of synthetic motions 

generated by the CGB model are similar to those of real 

record. According to the results, the model of Vlachos 
[19] 

estimates inaccurately the energy distribution of target 

 

GM. This model can only simulate a record that its en- 

ergy is concentrated in a short time duration and narrow 

frequency range. Besides having the capabilities of the 

Vlachos’s model, the CGB model simulates the longtime 

duration and wide-band GMs. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 6. Comparing the energy distribution of synthetic 
and real GMs. (a) and (b) are estimated by the method 

proposed by Conte and Peng 
[31]

, (c) and (d) are estimated 

by the CKD technique 
[29] 

: (a) the Vlachos’s model 
[19]

; 
(b) Target distribution; (c) the CGB model; (d) Target 

distribution. 

 

4.2 Simulation of Impulsive Peaks of Ground 
Motions 

The accuracy of the proposed model (named as the 

CGB model) and the Sharbati’s model 
[21]  

(named as the 

GB model) are compared based on the simulation of Chi- 

Chi record. This record is decomposed into six levels us- 

ing the DT-CDWT, and then the WCs are simulated by the 

CGB model and the GB model. For this GM, the energy 

and frequency band of WCs are given in Table 1. The first 

components of this record have negligible energy, while 

most of the energy is devoted to last components. So, de- 

composition of this record into six levels is the minimum 

number of required decomposition levels. 

Also, a two-component CGB model and a two-compo- 

nent GB model are considered for the simulation of each 

level (e.g., the combination of a Cauchy distribution and a 

Gaussian distribution for the CGB model, and two Gauss- 

ian distributions for the GB model), because this GM has 

two ascending-descending cycles or two global peaks in 

its temporal amplitude. Therefore, the WCs of each level 

are simulated by five parameters including two location 

parameters, two variances and a weighting coefficient. 

The optimal values of model parameters that are extracted 

by the genetic algorithm are given in Table 2 for the CGB 

model. The locations of Gaussian and Cauchy distribu- 

tions (μ and x0)  are in accordance with the locations of 

global peaks of the ChiChi record. 

Figure 7 compares the simulation results of two models 

 

for absolute values of WCs. It is evident that the CGB 

model estimates global and impulsive peaks of WCs more 

accurate than the GB model. This superior performance of 

the CGB model is more pronounced by observing Figure 

7(c andd). According to Figure 7(c), the absolute values 

of 6
th  

level detail coefficients have an impulsive peak at t/ 

Td=0.68. The GB model could not simulate this impulsive 

peak, where the CGB model has done it well. Also, the 

CGB model has provided a more accurate estimate of an- 

other global peak at t/Td=0.37. Even for the approximation 

coefficients of level 6 (Figure 7(d)), the CGB model esti- 

mates more accurately their impulsive peaks at t/Td=0.67, 

0 .4 .  It can be concluded that the GB model provides a 

smooth estimate of WCs by neglecting their impulsive 

peaks, while the CGB model takes into account sharp and 

impulsive peaks of WCs. 

In Figure 8, the average of cumulative energy curves of 

synthetic records generated by two models are compared 

with that of the ChiChi GM. This record has a step in its 

cumulative energy between t=34 s and t=56 s. This step is 

due to two impulsive peaks at t=34 sec, and t=56 sec. If  

a model predicts well the temporal amplitude of ChiChi 

GM, this step will be also taken into account by that mod- 

el. The CGB model has not only simulated the step of 

ChiChi GM,but also provided a more accurate estimate of 

the target cumulative energy curve at all time points. Also, 

the results of two models are evaluated based on the root- 

mean-square error (RMSE). In the estimation of target 

cumulative energy curve, the CGB model has an RMSE 

of 4.8×10
10

, while it is 6.9×10
10  

for the GB model. So, the 

CGB model is 31% more accurate than the GB model. 

To evaluate the CGB model further, the elastic and ine- 

lastic response spectra estimated by the CGB model and the 

GB model are compared with the target ones in Figure 9. At 

all periods, the CGB model estimates target response spec- 

tra more accurate than the GB model, where two models 

have the same number of parameters (e.g., five parameters 

for each level). Based on the inelastic response spectrum, 

the CGB model and the GB model have an RMSE of 0.157 

and 0.234, and based on the elastic response spectrum, 

these two models have an RMSE of 0.250 and 0.376 re- 

spectively. So, the CGB model is 33% more accurate than 

the GB model. It should be noted that the GB model under- 

estimates target response spectra at all periods. 

As it was noted previously, the energy distribution is 

the best criterion for evaluating the accuracy of two mod- 

els. In Figure 10, the energy distribution of synthetic GMs 

generated by the CGB model and the GB model is com- 

pared with that of the ChiChi GM. According to Figure 

10(a), the ChiChi GM has high input energy rates at t=28 s, 

55 s. Accordingly, there are two distinct peaks in the en- 



Prevention and Treatment of Natural Disasters | Volume 01 | Issue 01 | May 2022 

46 

Table 1. The energy and frequency content of WCs, for the Chi-Chi record. 
 
Decomposition level D - 1 D - 2 D - 3 D - 4 D - 5 D - 6 A - 6 

Frequency content 

(Hz) 
25-50 12.5-25 6.25-12.5 3.125-6.25 1.56-3.125 0.78-1.56 0-0.78 

Energy of WCs 0.003e+05 0.054e+05 0.511e+05 2.09e+05 4.53e+05 7.11e+05 7.33 e+05 

D: decomposition, A: approximation 

 

Table 2. Optimal values of the parameters of CGB model, for the simulation of ChiChi record. 
 

CGB model                  
                         Gaussian                                                   Cauchy                                    Weight            

 σ μ Γ x0 α 

D-1 0.0581 0.3097 0.1426 0.6262 0.5146 

D-2 0.1063 0.6420 0.0721 0.3092 0.2364 

D-3 0.2426 0.4651 0.0177 0.3296 0.8307 

D-4 0.2200 0.5268 0.0387 0.3175 0.6502 

D-5 0.2266 0.5373 0.0276 0.3154 0.7058 

D-6 0.0133 0.6815 0.0972 0.3711 0.2072 

A-6 0.1139 0.4007 0.0354 0.6738 0.6237 

D: decomposition, A: approximation 

 

 

(a)                                                                                              (b) 

 

(c)                                                                                              (d) 
Figure 7. Simulation of WCs of the Chi-Chi record by the CGB and GB models: (a) Detail of level 4; (b) Detail of level 

5; (c) Detail of level 6; (d) Approximation of level 6. 
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ergy distribution predicted by the CGB model (Figure 

10(b)) at these times, while the energy distribution pre- 

dicted by the GB model (Figure  10(c)) does not have any 

visible peak. The CGB model provides a more accurate 

estimate of high energy locations of the target energy dis- 

tribution (shown by the red color in energy contour plots) 

by taking into account the sharp and impulsive peaks of 

real GM. Unlike the energy distribution of real GM, the 

energy of synthetic ground motion generated by the GB 

model is distributed in the greater time duration and the 

wider frequency band. 

 

Figure 8. The cumulative energy of Chi-Chi record, along 

with the results of CGB and GB models. 

 

(a) 

 

(b) 
Figure 9. Elastic and inelastic response spectra of the Chi- 
Chi record, along with the results of CGB and GB models: 
a) Inelastic spectrum for 5% damping ratio and ductility 2; 

b) Elastic response spectrum. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Comparing the energy distributions of 

synthetic and real records: (a) ChiChi record; (b) The 

results of CGB model; (c) The results of GB model. 
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5. Conclusions 

Based on the Cauchy-Gaussian blend (CGB) model 

and dual-tree complex discrete wavelet transform (DT- 

CDWT), a stochastic model is proposed for simulation 

of wideband and narrowband ground motions (GMs) . 

In this model,the WCs of a record are extracted by DT- 

CDWT, and then an optimized CGB model is used to 

simulate them. The accuracy of this model depends on the 

decomposition levels, the number of Cauchy and Gauss- 

ian distributions used in the CGB model, and the method 

used for the estimation of model parameters. According 

to the investigated records and previous results, five or 

six decomposition levels are appropriate. The number of 

Cauchy and Gaussian distributions depends on the num- 

ber of global and local peaks in the time domain. Also, the 

genetic algorithm is used to extract the optimal parameters 

of the CGB model for each decomposition level. 

It was observed that the CGB model simulates well 

nonstationary characteristics of real records. The results of 

the CGB model were compared to the results of the Shar- 

bati’s model 
[21]  

and the Vlachos’s model 
[19]

. These mod- 

els cannot simulate sharp and impulsive peaks of GMs, 

while the CGB model overcomes this shortcoming. Two 

appropriate GMs recorded during past sever earthquakes 

were selected for the comparison of the models. The re- 

sults showed that in comparison to previous models, the 

CGB model provides a more accurate estimate of highly 

nonstationary GMs, narrowband and wideband records. 

In this model, the heavy-tailed WCs and impulsive peaks 

are simulated by the Cauchy distribution, and the smooth 

and short-tailed ones by the Gaussian distribution. So, the 

proposed model can well predict concentrated energy dis- 

tributions and visible peaks in the energy distribution of 

GMs. Other important capabilities of the proposed model 

are the simulation of sequence ascending-descending 

cycles in the time domain, the prediction of several domi- 

nant frequency peaks, and the estimation of step and high 

input energy rate in the cumulative energy of records. 

These capabilities of the proposed model guarantee the 

accurate simulation of any type of GM, so this model is 

suitable for extracting predictive equations. 
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