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Abstract: The service life of equipment is generally linked to degradation factors depending on its operating condi‑
tions, including the rate of use and the frequency of the switching modes. The novel operating mode management
proposed in this paper takes into account equipment lifetime in addition to all the previously mentioned require‑
ments. This algorithm does not rely only on real‑time data, as is traditionally presented in the literature, but also
integrates predictive operating data. Therefore, it can be considered as a hybrid operating mode management as it
embeds both predictive and event data, which yields improved results with respect to traditional event‑drivenman‑
agement. This allows to optimize a criterion over a ϐinite horizon, and, hence, an optimal sequence of the switching
times of the different components of an energy system are generated. While the proposed approach is considered
to be generic, it is illustrated by the production of green hydrogen from renewable sources. In order to ensure the
operating safety and energy efϐiciency of the system, the objective is tomaximize the life duration of the electrolyzer
and the batteries by avoiding excessive stored quantities. Simulations using data obtained from a laboratory plat‑
form which replicates the process at a smaller scale highlight the effectiveness of the proposed approach.
Keywords: Operating Modes Management; Hybrid‑Driven; Remaining Useful Lifetime; Optimization; Degradation
Capacity; Green Hydrogen Production Stations

1. Introduction
From a general point of view, an industrial system is designed to fulϐill several missions. The missions associ‑

ated with a green energy production system, for example, aim to guarantee the availability of energy, while ensur‑
ing the safety of the system, the environment, and users. These missions are based on the services provided by the
components that make up the system. For example, the mission to deliver energy, provided by the green energy
production system, requires an energy harvesting service and an energy storage service. In turn, each sub‑service
calls on other lower‑level services, such as transforming solar energy into electrical energy, and so on, according
to a top‑down functional decomposition. The highest level of this decomposition corresponds to the missions per‑
formedby the system itself, and the lowest level corresponds to the elementary services providedby the elementary
components making up the system [1].

To avoid the situation where a service can no longer be performed when a hardware resource fails or when
input data is unavailable, several versions can be implemented to perform the same service [2]. The surplus energy
produced by a photovoltaic (PV) panel, for example, can be stored in electrical form in a battery, or as hydrogen form
via an electrolyzer. Another example is the use of a wind turbine as an alternative solution to the PV panel when
there is insufϐicient sunlight. Each version is characterized by a distinct set of hardware resources and consumed
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data. Versions are ordered by the designer according to criteria such as reliability, precision, and safety. In a non‑
faulty situation, the nominal version of the service, i.e. the version with the highest level in the order of preference,
is executed. In a faulty situation, the eligibility of each degraded version is evaluated according to the predeϐined
order of preference [3]. If no version can be executed, the service becomes unavailable. The existence of these
multiple versions increases the resilience of the system to hardware failures and external disturbances. A failure
occurswhen a component or group of components can no longer perform its function [4]. Itmanifests itself through
a number of effects, called defects, faults, or symptoms, corresponding to a discrepancy between the actual value
of a physical quantity and the value predicted by a normal behavior model. Evaluating the availability of a service
requires two types of algorithms. The ϐirst type involves Fault Detection and Isolation (FDI) algorithms, which
detect the discrepancy between the observed behavior and the predicted behavior, and can possibly identify the
erroneous data [5]. The second type encompasses diagnostic algorithms, which enable the origin of the fault to be
traced, the availability of the hardware resources used to provide the service to be assessed, and the list of services
provided by each component to be updated [3, 6–8]. It can even lead to the introduction of backup components to
fulϐil the services when a fault occurs [9].

According to the phase of the life in which it is used and the external conditions of its use, a component, what‑
ever its level of decomposition, has one or more well‑deϐined objectives to achieve. An electrolyzer, for example,
can only start producing hydrogen (production phase) once its internal pressure has reached a certain value (prepa‑
ration phase). In the same way that a software application is decomposed into coherent menus, the set of services
provided by a component is structured into Operating Modes (OM) [2, 4]. Each OM groups the services required
to achieve the OM objectives. The conditions for switching from one mode to another are clearly deϐined. They are
based on the evaluation of the values of the system inputs, the values of the desired system outputs, the state of the
system represented by inner variables, and the results of the FDI and diagnosis algorithms. A hybrid automaton
is commonly used to manage the different OM and their transitions. It allows encompassing the discrete behavior
of the system linked to the switching between OM and the continuous part where, within a mode, the state vari‑
ables, modiϐied by the execution of the services belonging to the mode, follow a continuous temporal evolution
[10]. Transitions of this automaton are classically triggered by Boolean functions of Boolean variables [11]. The
Boolean variables involved in these transitions are themselves obtained, more or less directly, from the measured
output and the users’ system operating requirements. The OMmanagement is considered to be event‑driven since
it relies on instantaneous data. For a renewable energy system, examples of events are (i) the wind speed being
higher than a predeϐined threshold, and in this case, the wind turbine must be stopped for safety reasons, (ii) the
state of charge of the battery indicating that this last is full, (iii) the required production is between two predeϐined
values, and so on.

The new idea developed in this paper is to deϐinemode change conditions not only based on real‑time data but
also based on predictive data, using OM formalism. The used predictive data are relative to the system operating
conditions. These include quantitative estimates of the input and output ϐlows of the system, in other words, the
data that are consumed and produced by the system. From these predictive data, a predictive temporal sequence of
OM changes can be deϐined by an optimization algorithm. The new idea is to add the remaining useful lifetime of the
components as a constraint for the optimization algorithm, to the existing constraints relating to system reliability
and safety. It is known, for example, that too frequent switching, or an excessive rate of use, can accelerate the
degradation of a component. The ϐinal goal, is to maximize the operational lifespan of the system and reduce its
overall operating cost by selecting appropriately the switching times. The proposedmethod and the corresponding
optimization algorithm are a way of managing dynamically the preferred order of the different versions which was
previously deϐined once and for all at the system design stage. Therefore, the operating modemanagement (OMM),
as it leans on a predictive time temporal sequence and real‑time events, becomes a Hybrid‑Driven Operating Mode
Management, hence extending the Event‑drivenmethod developed in [9]. One of themain difϐiculties is to formalize
the optimization problem corresponding to the management of switchings between the operating modes.

The remainder is structured as follows. In Section 2 the Green Hydrogen Production Station (GHPS) is used to
illustrate the theoretical notions that are developed all along the paper. In Section 3, a hybrid dynamical model to
represent the continuous and discrete parts of a hybrid dynamical system structured into OM is proposed. The new
concept of Hybrid‑Driven Operating Mode Management is then presented. Its advantages, compared with those of
the Event‑Driven method, are highlighted. Section 4 deϐines the optimization problem and its constraints, ϐirst in
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a general form and then applied to the speciϐic case of the GHPS. Section 5 gives and analyses the obtained results.
Section 6 provides the conclusions.

2. Green Hydrogen Production Station
The GreenHydrogen Production Station (GHPS) presented in Figure 1 serves as an application to illustrate the

scientiϐic contributions developed in this paper. GHPSs are an answer to climate change and thenecessity to develop
solutions to produce clean energy. Indeed, the current ecological transition requires the maximum exploitation of
renewable energies. However, unlike generation of hydrogen using nuclear power [12], the disadvantage of some
sources such as solar and wind is their intermittency. In order to guarantee a given level of service, it is therefore
necessary to store the surplus production and release it when the production conditions no longer cover consump‑
tion needs [13]. As a GHPS is built from multiple components presenting different OM, that need to be managed
according to the production conditions and the safety measures, it can be considered as a Hybrid Dynamical Sys‑
tem. The behavior of a GHPS evolves continuouslywith respect to the time inside anOMand discontinuously during
the OM switching, because of the numerous multi‑operating mode possibilities between the variety of sources and
storage units. Moreover, one of the biggest impediments to green hydrogen dissemination, aside the cost of the
electrolyzer, is its lifetime that depend on materials, but also operation modes, (starts and stops, cycling, etc.) [14].
Morever, ref. [15] shows the inϐluence of the capacity loss of the components, due to degradation, on the overall per‑
formance, and demonstrates that it can be critical. Hence, this paper focuses on the issue of extending equipment
lifespan by employing optimal management of operating modes.

Figure 1. Green Hydrogen Production Station.

The proposed standalone GHPS, shown in Figure 1 includes four photovoltaic panels (PV), a battery (Batt), an
electrolyzer (EL), and a storage tank. These components may all be connected or disconnected to a DC bus. Only
PV panels are used as renewable sources to facilitate the expression of futuremathematical optimization problems.
The PV panels have all the same characteristics and produce the same power P𝑃𝑉𝑖 if they are submitted to the same
solar irradiation G and temperature T. The potential surplus of energy produced by the PV can be stored in the form
of hydrogen via the electrolyzer or in the form of electricity via the battery. Note that the battery not only plays
the role of an energy storage element but is also required to maintain a constant power input to the electrolyzer
since the latter cannot physically follow a renewable electricity production proϐile. In what follows, P𝐸𝐿 denotes the
power at the input of the electrolyzer. n𝐻2,𝐸𝐿 is the quantity of hydrogen generated by the electrolyzer, n𝐻2,𝐿𝑜𝑎𝑑 is
the quantity of hydrogen required by the user. P𝐵𝑎𝑡𝑡 is the power at the input or the output of the battery (according
to its positive or negative sign).
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3. Operating Mode Management
3.1. Hybrid Dynamical SystemModeling

Hybrid Dynamical Systems (HDS) represent a multifaceted class of mathematical models that ϐind wide appli‑
cations in various domains, including engineering, economics, biology, and control theory [10]. Depending on the
nature of the discrete phenomena that govern them, several subcategories of HDS exist, among which are the jump
linear systems, the mixed logical dynamical systems, and the switching systems. HDS studied here change from
one discrete state to another when a Boolean condition is veriϐied. They therefore belong to the class of switching
systems [11, 16]. Many representations exist to describe the behavior of a switching system such as the Hybrid
Neural Network, the Hybrid Bond Graph, and the hybrid automaton [10, 11, 16, 17]. As the optimization problem
thatwill be exposed in the following requires amathematical formulation of the continuous part of HDS, amodeling
based on the hybrid automaton is chosen (Equation (1)).

It is deϐined by the structure SS = (A, S, H),where A is a deterministic automaton,

𝐴 = (𝑀, 𝑇, 𝑂𝑀0) (1)

A includes a ϐinite set of discrete states or operating modes,M = {OM0, OM1,..., OM𝑚} = {OM𝑖 , i ∈ I𝑚}. Each OM
corresponds to a state (vertex) of the automaton. T = {t𝑖𝑗 ,(i,j) ∈ I𝑚} describes a set of transitions, each of which is
deϐined by t𝑖𝑗= {OM𝑖 , OM𝑗 , c𝑖𝑗}, where OM𝑖 is the origin mode, OM𝑗 is the destination mode, and c𝑖𝑗 symbolizes the
ϐiring condition. OM0 is the initial mode where the system is located, the ϐirst time it is put into service.

S = {s𝑖 , i∈ I𝑚} is a set of continuousmodels, describing the time evolution of the system in eachmode (Equation
(2)):

𝑠𝑖 = ቊ �̇� = 𝑓𝑖 (𝑥, 𝑢, 𝑤)
𝑦 = ℎ𝑖 (𝑥, 𝑢, 𝑤)

(2)

where 𝑥 = {𝑥1, ⋯ 𝑥𝑛} 𝜖ℝ𝑛 designs the continuous state space, 𝑢 = ൛𝑢1, ⋯ 𝑢𝑝ൟ 𝜖ℝ𝑝 represents the continuous con‑
trollable inputs, 𝑤 = {𝑤1, ⋯𝑤𝑙} 𝜖ℝ𝑙 represents the continuous uncontrollable inputs, 𝑦 = ൛𝑦1, ⋯ 𝑦𝑞ൟ 𝜖ℝ𝑞 corre‑
sponds to the system outputs. 𝑓𝑖𝜖 {𝑓1, ⋯ 𝑓𝑚} and ℎ𝑖𝜖 {ℎ1, ⋯ ℎ𝑚} represent a set of vector ϐields deϐining the continu‑
ous dynamics of the system.

H is a hybrid bijective map that associates a continuous model to each OM, deϐined in Equation (3):

𝐻 ∶ 𝑀 → 𝑆
𝑂𝑀𝑖→ 𝑠𝑖

(3)

in which each OM𝑖∈ M is associated to a model s𝑖∈ S. In addition, Init(OM𝑖) , deϐined in Equation (4), deϐines the
value of the vector x appearing in s𝑖 , when the system reaches for the ϐirst time the mode OM𝑖 .

𝐼𝑛𝑖𝑡 (𝑂𝑀𝑖) ∶ 𝑂𝑀𝑖 → 𝑥0 = ൛𝑥01 ⋯𝑥0𝑛ൟ (4)

The domain mode D(OM𝑖) speciϐies the limits of the variables, as shown in Equation (5):

𝐷 (𝑂𝑀𝑖) ∶ 𝑂𝑀𝑖 → ൛𝑥𝑖𝑛𝑓 , 𝑥𝑠𝑢𝑝ൟ (5)

where 𝑥𝑖𝑛𝑓 = ቄ𝑥𝑖𝑛𝑓1 ⋯𝑥𝑖𝑛𝑓𝑛 ቅ  and 𝑥𝑠𝑢𝑝 = ൛𝑥𝑠𝑢𝑝1 ⋯𝑥𝑠𝑢𝑝𝑛 ൟ   represent respectively the minimal and maximal values
that the state variables can take when the system is in the OM𝑖 operating mode. The system stays in OM𝑖 while the
values of the state variables remain in D(OM𝑖) and switches to OM𝑗 when the state variables enter domain D(OM𝑗).

3.2. Operating Mode Management
An operatingmode refers to a discrete state where the system operates according to a speciϐic set of objectives

using a speciϐic subset of elementary components. Elementary components which are not in use are in the OFF
mode.

Let 𝐶 = {𝑐1, ⋯ 𝑐𝑛} be the set of the elementary components of the system S (n is the number of components).
Let𝑀 (𝑐𝑖) = ൛𝑂𝑀1 (𝑐𝑖)⋯𝑂𝑀𝑗 (𝑐𝑖)ൟ  be the set of the operating modes of component c𝑖∈ C (j is the number of oper‑
atingmodes for the component c𝑖). The parallel composition of the operatingmodes of the elementary components
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displays all the theoretical possiblemodes of the system S. Each one is represented by a vector:, deϐined in equation
(6)

𝑂𝑀𝑖 (𝑆) = {𝑂𝑀𝑖 (𝑐1)⋯𝑂𝑀𝑖 (𝑐𝑛)} (6)
named systemmode and noted β in the following. However, some of themwill never be reached as they do not have
a meaningful purpose. Let𝑀 (𝑆) denote the set of possible OM for the system S. Two primary design paradigms for
OMM control systems exist, which are Event‑Driven and Time‑Driven. First, the Event‑Driven design paradigm
is characterized by its capacity to respond to events in real‑time, which makes it ideal for managing with asyn‑
chronous external stimulation. Indeed, an Event‑Driven OMM reacts each time the occurrence of a new event is
detected. Events are related to uncontrolled inputs that exceed threshold values, to deliberate human actions (user
requirements), or to the occurrence of faults (State of Health). This is only at the time of the event occurrences, that
the system mode β can be modiϐied (see Figure 2). The operating mode for each elementary component is then
updated. Faulty components are turned to safe or OFF mode. This corresponds to the management of the discrete
part of the system. Once the OM of the elementary components is determined, control signals to bring the system
into the desired state can be generated using the continuous models s𝑖 (Equation (2)) associated with each mode
OM𝑖[18, 19].

Figure 2. OMM Event‑Driven Systems.

The Time‑Driven design paradigm, on the other hand, is more like a predictive approach. The temporal evo‑
lution of the data consumed and produced by the system is assumed to be more or less known in advance. It then
becomes possible to determine in advance the instants at which the OM switching must be performed so that the
system follows the pre‑deϐined trajectories. Instead of being a system reacting to asynchronous events whose ar‑
rival times are totally unknown, the system becomes a time‑driven system since its evolution can be totally planned.
The temporal and synchronous properties of a time‑driven model serve to ensure a deterministic and predictable
behavior. Manufacturing processes where objectives of production are well deϐined in advance or scheduling sys‑
tems for public transportation are examples for which the Time‑Driven OM is a convenient approach.

To achieve efϐicient system performance, a Hybrid‑Driven approach to govern the OM of a Hybrid Dynamical
System is proposed in this paper. Indeed, the behaviour of a system is never totally predictable or unknown. The
missions that the system must fulϐill, the environmental conditions in which it operates, and the expected perfor‑
mances are deϐined in the speciϐications that precede its realization. This deϐines the predictable side. The inde‑
terminate side is linked to hardware failures or external disturbances such as a change in production targets or
environmental conditions.

Figure 3 summarizes the principle of a Hybrid‑DrivenOMM. Using predictive system inputs and outputs, given
on time windows of length H, the temporal sequence:

𝛽𝐻 = ቄ𝛽𝑡1 , ⋯𝛽𝑡𝑖 , ⋯𝛽𝑡𝑝ቅ 𝑤𝑖𝑡ℎ 𝑡𝑖 ∈ [𝑡0⋯𝑡0 + 𝐻] (7)

of the systemmodes, that maximizes the pre‑deϐined systemKey Performance Indicators (KPI) is elaborated by the
Time‑Driven part of the OMM. This optimal temporal sequence is then used as an input by the Event‑Driven part to
be adjusted according to the value of the real data and the unpredictable asynchronous events.
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Figure 3. Hybrid‑Driven OMM of a GHPS hydrogen.

More precisely, in Equation (7), t𝑖 represents a time where an OM switching occurs and β𝑡𝑖 is the value of β
at time t𝑖 . That means that 𝛽𝑡𝑖 is different from β𝑡𝑖−1 and from β𝑡𝑖+1. Assume now, that at the time t ∈ [t𝑖−1, t𝑖],
the system operates according to the mode deϐined by β𝑡𝑖−1, the Event‑Driven part checks that all the conditions
deϐined by the energy and safety constraints are satisϐied for the system to work at time t𝑖 in the mode deϐined by
β𝑡𝑖 .

3.3. Application to the Green Hydrogen Production System
In the speciϐic case of the system described in Figure 1, elementary components are of 3 types: Photovoltaic

Panels, electrolyzer, and battery. Each of them displays several OM. The complete OMM automaton for the EL is
given by Figure 4. Starting from the OFF mode and receiving a Start of use signal (external event), the EL goes
through a pressurization step until the internal pressure pres𝐻2 value reaches a predeϐined value (inner event).
The EL is then in the Standby OM until it receives an order for production, and so on.

Figure 4. OM automaton for the electrolyzer.
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In the remainder of the paper, the GHPS is assumed to be in the production mode. That means that only a
subpart of the OM of the elementary components is considered. They are listed as follows with their associated
missions.

• OM(PV ) = {ON, OFF}. In the OFFmode, the PV is disconnected from the DC bus and its mission is not to generate
electricity (P𝑃𝑉= 0). In the ONmode, the PV is connected to the DC bus and its mission is to produce P𝑃𝑉= f (T,G)
as deϐined by the continuous behaviour model associated with this OM.

• OM(EL) = {Standby, ON}. In the productionOMof the system, the EL is assumed to be under the required pressure
to produce hydrogen. In the Standby OM, the associated mission is not to produce hydrogen (n𝐻2,𝐸𝐿= 0). In the
ON mode, the mission is to generate n𝐻2,𝐸𝐿= f (P𝐸𝐿) (cf. Figure 1).

• OM(Batt) = {Charge, Discharge}. The battery is always connected to the DC bus. It is required to maintain a quite
stable power at the input of the EL. In the Charge OM, themission is to increase the battery state of charge (SOC).
In the Discharge OM, the mission is to use a part of the stored charge, and the SOC value consequently decreases.

3.3.1. Event‑Driven OMM

Using the services provided by these elementary components the system missions, in the production mode,
can be fulϐilled. In the case of an Event‑Driven OMM, these consist essentially of ensuring the energetic balance,
guaranteeing there is no disruption in the energy supply for the ϐinal users, andmaintaining the safety of the system
[13]. In the paper [13] a basic Bond‑Graph multiphysics modelling of a power cell with an electrolyzer, based on
power ϐlows in the system, is given, and extended later in [20, 21] for diagnosis purposes. The Event‑Driven OMM
introduced in [13] is a one step ahead algorithm, depending on an event (e.g., sudden change of solar power, change
in the load) whereas the current paper deals about predictive management based on weather or load predictions.
The results are, indeed, fundamentally different, and, in the case study, the EV OMM could let the number of solar
panels constant (if no change is triggered).

As representedbyFigure5, theEventDrivenOMMconsists indetermining the global systemOM β𝑡𝑖= (OM(PV1),
OM(PV2), OM(PV3), OM(PV4), OM(Batt), OM(EL)) according to:

• The instantaneous multi‑sources harvesting capability, represented by P𝑃𝑉= PPV1+ PPV2+ PPV3+ PPV4.
• The instantaneous energy request, represented by n𝐻2,𝐿𝑜𝑎𝑑 .
• The instantaneous quantity of energy stored in the battery and in the hydrogen tank, represented respectively,
by the state of charge SOC of the battery and the pressure pres𝐻2 in the hydrogen tank.

• The state of health (SoH) given by FDI algorithms.

As previously said, once the system OM is determined, control algorithms are used to give the system outputs
the values deϐined by the reference signals.

Figure 5. Event‑Driven OMM of the GHPS.
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3.3.2. Hybrid‑Driven OMM

For a such system as the considered GHPS, proϐiles of the energy to produce and of the collectible energy, on a
given time horizon, can be obtained from historical real‑time data of consummation and weather forecasts.

The original idea developed in this paper is then, to use these predictable data to generate the optimal se‑
quence of OM switching to ensure the previously deϐined system objectives (energy efϐiciency, system safety) while
minimizing the system degradation. Indeed, switching between the different OM too often, or staying in a mode for
a too long time, can shorten the lifespan of a component and consequently increase the overall system operating
cost.

As explained by Figure 6, using predictive power data of the sources �̂�𝑃𝑉 and predictive load �̂�𝐻2,𝐿𝑜𝑎𝑑 given
on the time horizon H, the OMM Time‑driven part of the Hybrid‑Driven OMM generates the optimal sequence of
systemmode switchingwhichmaximizes theKPI. The lifetime of the storage components (battery and electrolyzer),
which can be thought of as the most expensive system devices, is included in these KPIs. The Remaining Useful
Life (RUL) of these components is estimated in real‑time from the performance evaluation algorithms, including
FDI and prognosis [11, 22] and compared to a reference frame. The Event‑Driven OMM receives the optimal OM
switching sequence β𝐻 and checks using the real instantaneous data n𝐻2,𝑙𝑜𝑎𝑑 , P𝑃𝑉 and the detected faults that the
next predictive system OM β𝑡𝑖+1 is consistent with the actual system behaviour. Note that faults are not taken into
account in the following.

Figure 6. Hybrid‑Driven OMM of the GHPS.

4. Optimal Hybrid‑Driven Operating Mode Management
4.1. Predictive Optimization Problem Formulation

A standard optimization problem can be deϐined in Equation (8):

𝐽 = min𝑓 (𝑥)
𝑥 ∈ 𝕏

subject to 𝑆 = {𝑥 ∈ X ∶ ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, 𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏}
(8)

where the decision variables that can be controlled are represented by the symbol x and where 𝕏 is their feasible
region space. The equality constraints are represented by the function h, while the inequality constraints are de‑
ϐined by the function g. lb and ub represent the lower and upper bounds of x respectively. For a switching system
deϐined by the structure given by Equation (1), the decision variables are the operating modes OM𝑖 and the control
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inputs u of continuous models s𝑖 associated with each OM𝑖 (Equation (2)).
In the case where the objective is to extend the remaining lifetime of a system, i.e., to minimize the degrada‑

tion of each of its fragile components, the optimization problem becomes a multi‑objective optimization problem
(MOOP) [23]. Several approaches exist for simplifying aMOOP into a single‑objective problem, e.g., [24]. TheWeight
Sum Method (WSM), which allows the transformation of a MOOP to a linear weighted sum of various objectives is
well known [25, 26] and chosen in this case. The weight of an objective is given based on its importance compared
to other objectives. The optimization problem, in Equation (9) becomes:

𝐽 = min𝐹 (𝑥) = min〈𝑓1⋯𝑓𝑀〉 = ∑𝑀
𝑖=1 𝜌𝑖𝑓𝑖

𝑥 ∈ 𝕏 (9)

where ∑𝑀
𝑖=1 𝜌𝑖 = 1,  𝜌𝑖 ≥ 0, F(.) represents the total degradation of the system and 𝑓𝑖(.) the degradation of the

component 𝑐𝑖 .

4.2. Application to the Green Hydrogen Production System
In the case of GHPSwhich serves as an application to illustrate the proposed approach, the degradation of both

the battery and the electrolyzer are considered.
Several factors affect the lifetime of a battery, among them the number of partial cycles, the current ϐlow, the

cell voltage, the depth of charge‑discharge cycles [27–29].
The following formula, Equation (10), proposed by Schiffer [30] is used to compute the degradation capacity

C𝑑𝑒𝑔,𝐵𝑎𝑡𝑡 of a battery:

𝐶𝑑𝑒𝑔,𝑏𝑎𝑡𝑡 (𝑡) = 𝐶𝑑𝑒𝑔,𝑙𝑖𝑚𝑖𝑡𝑒
−𝑐𝑥൬1−

𝑍𝑤(𝑡)
1.62𝑍𝐼𝐸𝐶

൰ (10)
where C𝑑𝑒𝑔,𝑙𝑖𝑚𝑖𝑡 is the degradation capacity at the end of the life (i.e., 80%of the nominal capacity), Z𝐼𝐸𝐶 is the num‑
ber of charge‑discharge cycles ϐixed by the International Electro‑technical Commission (IEC) at which the battery
is considered to have a remaining capacity of 80% compared to its nominal capacity (given by the datasheet), c𝑧
represents a constant parameter equivalent to 5 and where Z𝑊(t) is given by Equation (11):

𝑍𝑊 (𝑡) = 1
𝐶𝑁

න
𝑡

0
𝐼𝑑𝑐ℎ (𝜏) 𝑓𝑆𝑂𝐶 (𝜏) 𝑓𝑎𝑐𝑖𝑑 (𝜏) 𝑑𝜏 (11)

In Equation (11), C𝑁 is the nominal capacity of the battery, I𝑑𝑐ℎ is the current of discharge, f 𝑎𝑐𝑖𝑑 denotes the
impact of acid stratiϐication, it would be considered as constant, and f 𝑆𝑂𝐶 is a weighted sum of three degradation
parameters, which are [31]:

1. The amount of bad recharges. This might have an impact on active mass degradation. A recharge is considered
unsuccessful if the value of SOC attained at the end of a ϐilling exceeds the value of the completely charged state
(SOC > SOC𝑙𝑖𝑚𝑖𝑡).

2. The time since the previous full recharge. Indeed, to increase battery life, regular full battery recharges are
required.

3. The minimum value of SOC since the last full recharge. When the value of SOC of the battery since its recent full
recharge approaches zero, the concentration of acid stratiϐication rises, causing the electrolyte to deteriorate.

Degradation models of electrolyzers are more difϐicult to obtain, because of the complexity both of the system
and complicated phenomena including chemical reactions withmaterials and impurities [32]. In the literature, life‑
time (in particular for electrolyzers) are estimated from statistical methods using real data provided by users (e.g.,
MTBF) [3]. Finally, the lifetime of an equipment can be estimated from the different components, using reliability
models such as fault‑tree analysis. Another promising method relies on data and prediction with machine learning
methods, but it requires a lot of experimental data for training [33]. Experimental studies, in general, are donewith
steady operating conditions, or accelerated stress tests that do not correspond to the operation of EL powered by
renewables. Therefore, it is barely impossible to perform comparison with existing degradation studies, and the
aforementioned methods cannot be applied directly to the presented system because of the lack of data.
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There are very few model based estimates of electrolyzers State of Health, the most complete being supplied
in [34] , which, however, should be calibrated by the concentration in ferrous ions of water, generally unknown, and
does not take start‑stops into account which are of importance as demonstrated only qualitatively in [35].

As shown by Equation (12), it is proposed to calculate C𝑑𝑒𝑔,𝐸𝐿(t) by taking into account the cumulative produc‑
tion times and the number of switching between the EL modes.

𝐶𝑑𝑒𝑔,𝐸𝐿 (𝑡) = 𝐶𝑑𝑒𝑔,𝐸𝐿 (𝑡𝑖−1) + 𝛼1𝑂𝑀𝑡𝑖 (𝐸𝐿) + 𝛼2 ൫𝑂𝑀𝑡𝑖 (𝐸𝐿) − 𝑂𝑀𝑡𝑖−1 (𝐸𝐿)൯ (12)

where α1 and α2 are two constants (α1≤ α2), 𝑂𝑀𝑡𝑖−1  is a binary representing the mode of the EL at the previous
switching time t𝑖−1 and 𝑂𝑀𝑡𝑖 (𝐸𝐿) describes the new mode of at time t𝑖 . It is computed as proposed by Equation
(13).

𝑂𝑀 (𝐸𝐿) = ቊ 0 𝑖𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑚𝑜𝑑𝑒
1 𝑖𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 𝑖𝑠 𝑂𝑁 (13)

Using these degradation models, the optimization problem can now be formulated. Over a time window H, it
predicts the optimal times for the mode changes and the value of the modes that minimize the total system degra‑
dation. It is expressed by Equation (14).

min𝐶𝑑𝑒𝑔,𝑇𝑜𝑡
𝛽 ∈ 𝕄(𝑆) (14)

where 𝐶𝑑𝑒𝑔,𝑇𝑜𝑡 = 𝑤1𝐶𝑑𝑒𝑔,𝑏𝑎𝑡𝑡 (𝐻)+(1 − 𝑤1) 𝐶𝑑𝑒𝑔,𝐸𝐿 (𝐻), subjected to constraints given by relations fromEquation
(15) to Equation (21).

The energy balance equation is:

𝑛𝑃𝑉�̂�𝑃𝑉 (𝑡) + 𝑃𝑏𝑎𝑡𝑡𝑟𝑒𝑓 (𝑡) − 𝑃𝐸𝐿 (𝑡) = 0 (15)

The value �̂�𝑃𝑉 (𝑡) represents the PV predictive power. It is obtained from the weather forecast. P𝐸𝐿 represents
the power of the electrolyzer. It can be calculated from the EL datasheet as shown by Equation (16):

𝑃𝐸𝐿 = ቊ 𝑃𝐸𝐿,𝑆𝑡𝑎𝑛𝑑𝑏𝑦 if electrolyzer is on Standby mode
𝑃𝐸𝐿,𝑂𝑁 if electrolyzer is ON (16)

P𝐵𝑎𝑡𝑡𝑟𝑒𝑓(t) is ϐixed by the PI controller that controls the input current I𝐵𝑎𝑡𝑡 at each time [36].
Batteries manufacturers generally specify two variables in the data sheet of the battery: 𝐼𝐶,𝑚𝑎𝑥

𝐵𝑎𝑡𝑡 and 𝐼𝑑,𝑚𝑎𝑥
𝐵𝑎𝑡𝑡 ,

which represent the maximum battery charging and discharging currents respectively. These two values entail
constraints given by Equation (17).

𝐼𝐵𝑎𝑡𝑡 (𝑡) ≤ 𝐼𝐶,𝑚𝑎𝑥
𝐵𝑎𝑡𝑡 while the battery is being recharged

𝐼𝐵𝑎𝑡𝑡 (𝑡) ≤ 𝐼𝑑,𝑚𝑎𝑥
𝐵𝑎𝑡𝑡 while the battery is being discharged (17)

Constraints are given by Equation (18) state that there must be a minimum time between two mode changes
for the PV and EL. Too frequent switching could damage these components. OM𝑡𝑖−1is the OM at t𝑖−1, OM𝑡𝑖 is the
OM at t𝑖 and ∆T𝑚𝑖𝑛,. is the minimal time between two switchings.

𝑡𝑖−1 ൫𝑂𝑀𝑡𝑖−1 (𝑃𝑉𝑥)൯ + Δ𝑇𝑚𝑖𝑛,𝑃𝑉𝑥 ≤ 𝑡𝑖 ൫𝑂𝑀𝑡𝑖 (𝑃𝑉𝑥)൯
𝑡𝑖−1 ൫𝑂𝑀𝑡𝑖−1 (𝐸𝐿)൯ + Δ𝑇𝑚𝑖𝑛,𝐸𝐿 ≤ 𝑡𝑖 ൫𝑂𝑀𝑡𝑖 (𝐸𝐿)൯

(18)

Note that determining the modes of each PV is equivalent to determining the number of PV electrically con‑
nected to a DC bus. Therefore, the constraint given by Equation (19) expresses that the number of PV n𝑃𝑉 that can
be connected to the DC bus is between lb and ub.

𝑙𝑏 ≤ 𝑛𝑃𝑉 ≤ 𝑢𝑏 (19)

Constraints given by Equation (20) and Equation (21) express the physical limitations enforced by storage
components. SOC limits and pressure in the hydrogen storage tank pres𝐻2are considered.

𝑆𝑂𝐶min,limit ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶max,limit (20)
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presH2,min ≤ presH2 ≤ presH2,max (21)
The optimization problem can therefore be formulated with a ϐinite number of variables n𝑣 , given by Equation

(22):
𝑛𝑣 ≤

𝐻
Δ𝑇𝑚𝑖𝑛,𝑃𝑉𝑥

𝑢𝑏 +
𝐻

Δ𝑇𝑚𝑖𝑛,𝐸𝐿
(22)

As the optimization program is non‑convex and involves integer/binary variables, it is solved using a genetic
algorithm [37], provided by the Matlab/Simulink software.

5. Results and Discussion
The numerical values used for the simulation are collected from the platform located in Laboratory CRIStAL at

Ecole Polytechnique Lille, which replicates a real system on a smaller scale [32]. The PV proϐile was collected from
actual values (Figure 7a), and the electrolyzer demand side was consistent with the hydrogen output.

(a) (b)

Figure 7. Predictive renewable power and hydrogen demand. (a) Predictive power produced by one PV; (b) Pre‑
dictive quantity of demanded hydrogen.

The number of PV panels is n𝑃𝑉= 4. All of them have equal production power when they are turned on. The
electrolyzer has a rated power of P𝐸𝐿,𝑂𝑁= 300 W and a standby power of P𝐸𝐿,𝑆𝑡𝑎𝑛𝑑𝑏𝑦= 70 W. When turned on, it
produces hydrogen at a ϐlow rate of n𝐻2,𝑟𝑎𝑡𝑒𝑑= 0.6 moles/hour at 11 bar. The hydrogen tank has a storage capac‑
ity of V = 0.015 m3, and the operating pressure ranges from a minimum of pres𝐻2,𝑚𝑖𝑛= 1.5 bar to a maximum of
pres𝐻2,𝑚𝑎𝑥= 11 bar. The tank operates at a temperature of T = 333 K. The nominal capacity of the battery is C𝑁=
100 Ah. To avoid assuming an ideal scenario where the initial SOC is set to 1, the initial SOC of the battery is set
to 0.6. The weight assigned to the battery degradation (w1) is 0.3, while the weight assigned to the electrolyzer
degradation (1 −w1) is 0.7. This is because the cost of replacing or repairing the electrolyzer due to degradation is
higher than the cost of addressing the degradation of the battery. The length of the time window H is equal to 60
minutes. The minimal time between two switchings is ∆T𝑚𝑖𝑛,.= 15 min for both the EL and the PV. To demonstrate
the relevance of the proposed approach, Hybrid‑Driven OMMand Event‑Driven OMMare compared. For bothmeth‑
ods, the same characteristics and input data are used. In event‑driven OMM, n𝑃𝑉 remains constant and equals two
during the time window H. Figure 7a and b depict the predictive power generated by a single PV panel �̂�𝑃𝑉 and
the expected amount of hydrogen required by ϐinal user �̂�𝐻2,𝐿𝑜𝑎𝑑 over time, respectively. Based on the simulation
results of the Hybrid‑driven OMM, it can be shown in Figure 8a that EL is turned ON at t = 5 min, coinciding with
the start of hydrogen demand by the load, and it remains ON until t = 51 min even if the load continues to request
hydrogen until t = 55 min. The power of the EL is directly proportional to the hydrogen demand. It is interesting to
note that there is only one start and one stop for both strategies, but the hybrid driven is different because it aims,
in general, at a better allocation of resources in order to minimize the degradation.

For the remaining 4min, instead of keeping the ELON, the hydrogen stored in the hydrogen tank can be utilized
since the pressure at t = 51 min is 4.23 bar as it is shown in Figure 9a, which is above the minimum pressure
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requirement of pres𝐻2,𝑚𝑖𝑛 . On the other hand, in the Event‑driven OMM scenario, EL is turned ON at t = 5.5 min
and remained ON until t = 59 min as illustrated by Figure 8b. EL does not switch to Standby mode before this time
because the switching threshold in Event‑driven OMM is determined by the limits set in Equation (18).

(a) (b) (c)

Figure 8. Comparison of hydrogen ϐlows. (a) Produced and consumed 𝑛𝐻2 in hybrid driven OMM; (b) and in event‑
driven OMM; (c) EL Power for hybrid driven.

(a) (b)

Figure 9. Comparison of storage tank pressures. (a) Pressure in the storage tank, Hybrid‑driven OMM; (b) and in
event‑driven OMM.

When the pressure of hydrogen in the hydrogen tank reaches a limit bound, EL switches modes. This behavior
can be observed in Figure 9b, where the pressure of hydrogen in the hydrogen tank reaches 1.5 bar, causing EL to
turn ON and remain ON until the pressure reaches the upper limit. Figure 10a gives the proϐile of n𝑃𝑉 determined
by the genetic algorithm in the case of Hybrid‑driven OMM. It can be shown that at t = 2 min, two PV panels were
turned ON and remained active until t = 22 min when two additional PV panels were activated.

Comparing this proϐile with Figure 7a, it is obvious that therewas a signiϐicant drop in P𝑃𝑉 to around 40Wper
panel between t = 22 min and t = 24 min, which explains the subsequent increase in n𝑃𝑉 to 4. As the power output
of a single PV panel increased over time, the value of n𝑃𝑉 changed accordingly. At t = 24 min, n𝑃𝑉 decreased to 3,
and then to 2 at t = 26min. From then on, n𝑃𝑉 remained constant until t = H, in compliance with Equations (18) and
(19). When one PV panel was turned off at t = 24 min, the switch was executed using Equation (18) because the
time interval ∆t = 24 − 2 = 22 min was greater than the minimum time interval ∆t𝑚𝑖𝑛,𝑃𝑉𝑥= 15 min, and the number
of PV panels turned off (in this case one PV is turned OFF) was lower than the n𝑃𝑉 that was ON at t = 2 min (n𝑃𝑉 = 2
at t = 2 min). The same process was applied to the second PV panel that was turned off at t = 26 min. In addition,
the n𝑃𝑉 varied between the lower bound lb = 0 and the upper bound ub = 4 as speciϐied in Equation (19).
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(a) (b)

Figure 10. Comparison of solar panel proϐiles. (a) Proϐile 𝑛𝑃𝑉 in Hybrid‑driven OMM; (b) Proϐile 𝑛𝑃𝑉 in Event‑
driven OMM.

Figure 11 illustrates the global power generated by the PV panels connected to the system, along with the
power requested by the electrolyzer over a time period of H in both scenarios. At times, the total power generated
by the PV panels (n𝑃𝑉×P𝑃𝑉)may exceed the power produced by EL (P𝐸𝐿). In such cases, the surplus energy is stored
in the battery, increasing the SOC of the battery. Conversely, there may be times when the power generated by the
PV panels is lower than P𝐸𝐿 , and in such cases, the battery can be utilized as a source of power to bridge the gap
between n𝑃𝑉× P𝑃𝑉 and P𝐸𝐿 . The SOC of the battery was observed to start at 0.6 in both scenarios and ϐluctuate over
time as it is shown in Figure 12. SOC values were affected by surplus energy, which led to an increase, as well as by
deϐicit energy scenarios or self‑discharge, which caused a decrease.

To compare the results, Table 1 displays the capacity degradation for the battery, electrolyzer, and total degra‑
dation capacity calculated using Equation (14). Table 1 shows that at time t = H, the degradation capacity of both
devices in Hybrid‑driven OMM is lower than that in Event‑driven OMM, indicating that the RUL of each device is
maximized using hybrid‑driven OMM. Therefore, the proposedmethod leads to a 14.35% improvement in the over‑
all degradation of the system.

(a) (b)

Figure 11. Comparison of power proϐiles. (a) The global proϐile of powers in Hybrid driven OMM; (b) in event
driven OMM.
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(a) (b)

Figure 12. Comparison of SOC. (a) SOC of the battery in Hybrid driven OMM; (b) and in Event‑driven OMM.

Table 1. Comparing storage devices degradation capacity at t = H between Event‑Driven and Hybrid‑Driven OMM.

Capacity of Degradation Event‑Driven Hybrid‑Driven

Cdeg,Batt(H) 0.1428 0.1423
Cdeg,EL(H) 55.57 47.59
Cdeg,Tot(H) 38.9419 33.35

Themethod itself proves that the lifetime of a systemcan be signiϐicantly extended by aHybrid‑DrivenOMman‑
agement rather than an Event‑Driven one as it is conventionally implemented. Indeed, throughout the proposed
application, a series of approximations have been done, ranging from the estimation of the EL degradation factor, to
the selection of weight values (w1, w2, etc.), and ϐinally to the choice of the ∆t𝑚𝑖𝑛,𝑃𝑉𝑥 and ∆t𝑚𝑖𝑛,𝐸𝐿 . These delibera‑
tions, though demanding, played a decisive role in shaping the ϐinal result. Themain strength of themethod is that it
can be extended tomore complicated systemswithmany different OM. One of the limitations of the study is that the
inputs should be close to the predictions, which means that the method is valid for reasobaly short time windows.
An extension would be to consider a stochastic prediction error, obtained from experiments, and compute service
rates or probabilities of degradation level.

When closely looking at the degradation factors for hybrid driven OMM, in Figure 13, one can see that the
EL proϐile is better balanced, there are also two starts and stops, but the duration of the stand‑by phase is more
important, which allows to extend the lifetime. Regarding the battery, the overall degradation is much smaller than
that of the EL. The most important difference of degradation factor with the Event driven strategy, in this case, is
mainly due to the evolution of the SOC𝑚𝑖𝑛 which is marginally better as shown in Figure 13b.

(a) (b) (c)

Figure 13. Hybrid Driven OMM (a) EL degradation; (b) Schiffer factors; (c) Battery degradation.
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Hence, the strategy proposed in this paper is able to offer an extension of the remaining useful life that can
be higher than 10%. Of course these results could be confronted with real data, and with membrane post‑mortem
analysis, allowing to calibrate the real life duration of the devices, and use such statistics as MTBF (mean time
between failures) or other indicators as proposed in [3]. However, this requires a very heavy experimental work,
which is beyond the topic of the paper.

6. Conclusions
A dynamic hybrid system is characterised by several operating modes. Each operating mode groups together

a set of services provided by a subset of system components, enabling the achievement of the objectives associated
to themodes. Several factors canmodify the behaviour of the system over time. There are at least three. The ϐirst is
a voluntary modiϐication by the user of the objectives to be achieved by the system. This results in the deϐinition of
new values for the systemoutputs. The second is related to an uncontrolledmodiϐication of the values of the system
inputs. The trajectoriesmust then be adapted to guarantee the non‑modiϐication of the expected outputs. The third
is linked to the modiϐication of a physical law associated with a component following the total or partial failure of
that component. This modiϐication must be compensated by using other components. In this case, reconϐiguration
solutions must exist.

To take into account these multiple operating possibilities, Event‑Driven operating mode management is gen‑
erally proposed. This method is based on instantaneous data and ensures that the system fulϐills its mission with
the required quality, in complete safety.

The new approach developed in this paper is based on the principle that even if there is a degree of indetermi‑
nacy concerning the environment in which the system operates, the temporal evolution of its inputs and outputs is
never totally unknown. In many cases, it can be predicted. It then becomes possible to propose a management of
operating modes based on both predictive and event data. Based on these predictive data, the optimal sequence of
operating modes that minimizes or maximizes a set of criteria can then be proposed. In the presented work, it has
been chosen to maximize the lifetime of the most expensive components in a system.

The results obtained by applying the proposed theoretical approach to a hydrogen production system demon‑
strate the relevance of the proposed approach.
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