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Abstract: The rapid adoption of electric vehicles (EVs) has intensified concerns over the sustainable management
of lithium‑ion batteries (LIBs), which often retain up to 80% of their capacity after reaching end‑of‑first‑life in ve‑
hicular applications. This study advances second‑life battery (SLB) research through three components: artificial
intelligence (AI)‑driven predictive maintenance, optimized recycling strategies, and enabling policy frameworks. A
synthesis of 51 peer‑reviewed sources published between 2019 and 2025, combinedwith case analyses from Tesla
and Nissan pilots, supports the development of an integrated framework. Findings show that AI‑enhanced diagnos‑
tics can extend second‑life battery service by up to 50% and reduce lifecycle costs by 25%. Hybrid recycling pro‑
cesses can recover over 95%of criticalmaterials—lithium, cobalt, and nickel—while lowering energy consumption
by up to 20–40%. Policy incentives and adaptive regulations can reduce adoption barriers by 30–40%, facilitating
large‑scale integration. The structured survey (n = 121) in this study revealed lowpublic awareness, with 83%of re‑
spondents unaware of reuse potential. However, respondents expressedmoderate willingness to adopt second‑life
batteries, provided AI monitoring ensures at least 90% safety and performance reliability. By unifying technical,
economic, and policy dimensions, this study demonstrates that AI‑enabled monitoring, advanced recycling, and
adaptive regulation collectively support the alignment of second‑life EV batteries with global sustainability goals.
The proposed framework underscores the importance of bridging innovation, market readiness, and governance
to accelerate sustainable energy transitions.
Keywords: Electric Vehicles; Second‑Life Batteries; Lithium‑Ion Battery Recycling; AI‑Based Predictive Mainte‑
nance; Circular Economy; Battery Disposal; Sustainable Energy Storage; Policy Frameworks

1. Introduction
The rapid rise of electric vehicles (EVs) marks a significant transformation in the global transportation sector.

It is drivenby theneed to reduce greenhouse gas emissions, reduce fossil fuel dependence, andmitigate dependence
on fossil fuels and urban air pollution. According to the Global EV Outlook 2024, EV sales reached 14 million units
globally in 2023, representing 18% of total car sales [1]. However, the rapid adoption of EVs has introduced signif‑
icant challenges in managing the battery lifecycle. Lithium‑ion batteries (LIBs), which power most EVs, typically
have a lifespan of 8–15 years [2]. Even after falling below automotive performance standards, these batteries can
retain up to 80% of their original capacity, presenting viable opportunities for second‑life applications. Effective
management is essential not only to minimize environmental waste but also to advance sustainable energy storage
solutions.
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Despite extensive research, most studies have examined technical diagnostics, recyclingmechanisms, or policy
frameworks in isolation. Only a fewhave proposed an integrated framework that combines real‑timeAImonitoring,
sustainable recycling strategies, and adaptive policy measures. We specifically target this gap in a unique way with
three closely related objectives: (1) AI‑based predictive maintenance, (2) end‑of‑life recycling strategies, and (3)
policy and business model innovations. Each of these components plays a critical role in advancing sustainable
battery lifecycle management.

First, AI‑based predictive maintenance offers real‑time battery health diagnostics and the ability to forecast
degradation patterns. While traditional methods depend on static, empirical models, this study emphasizes AI‑
driven systems that utilize machine learning and cloud‑based analytics to support dynamic, adaptive decision‑
making. This approach enhances performance, reduces operational risks, and extends battery lifespan while mini‑
mizing maintenance costs [3].

Second, this study focuses on sustainable end‑of‑life recycling strategies. The current literature primarily com‑
pares pyrometallurgical and hydrometallurgical processes, which are both resource‑ and environment‑intensive
with significant environmental impacts [4]. Addressing these recycling challenges enables the efficient recovery
of valuable materials such as lithium, cobalt, and nickel, supporting a circular battery economy and reducing de‑
pendence on raw material extraction. Optimized hybrid technologies combining mechanical pre‑treatments with
selective dissolution are presented, achieving recovery rates above 95% while reducing energy input by approxi‑
mately 40%.

The third objective emphasizes the role of policy and business model innovations. Standardized regulations,
such as battery passports that track battery health and usage history, can facilitate secondary markets and recy‑
cling efforts [5]. Business models like battery‑as‑a‑service (BaaS) and leasing programs can lower upfront costs,
improve accessibility, and ensure proper end‑of‑life management. Unlike previous approaches that primarily fo‑
cused on technological advancements without consideringmarket readiness and regulatory compliance, this study
integrates economic and policy frameworks to drive scalable and sustainable adoption.

Addressing these objectives is essential because it not only enhances the sustainability and economic viability
of second life battery applications but also supports broader goals related to renewable energy integration and car‑
bon neutrality. The proposed framework applies AI‑driven algorithms for real‑time battery monitoring at charging
stations. It demonstrates how technology, recycling strategies, and policy frameworks canwork together. This inte‑
gration helps optimize second‑life battery applications. By providing accurate degradation forecasts, enabling effi‑
cient recycling processes, and fostering supportive regulatory environments, this study presents a holistic solution
that bridges technical innovation with practical implementation. Ultimately, these integrated strategies contribute
to a sustainable energy future, ensuring that the rapid growth of electric mobility aligns with global sustainability
goals.

While prior research on second‑life EV batteries has advanced technical diagnostics, recycling methods, and
policy frameworks, most studies address these areas in isolation. Existing frameworks emphasize regulatory com‑
pliance but often neglect integration with economic and technical feasibility. AI‑based battery monitoring systems
have been developed for first‑life EVs, yet they remain underdeveloped and unvalidated for second‑life operational
profiles. Similarly, recycling research frequently overlooks integration with real‑time health diagnostics, limiting
opportunities for targeted end‑of‑life processing. Policy analyses typically focus on regulations or incentives with‑
out adequately incorporating the technical and economic realities of battery repurposing.

As a result, no comprehensive model currently unites AI‑based predictive maintenance, optimized recycling
pathways, and adaptive policy frameworks into a single, scalable strategy. To address this gap, the present study
introduces applications such as digital battery passports and Extended Producer Responsibility (EPR), along with
businessmodels like BaaS. These demonstrate scalableways for implementation and enforcement. Specifically, this
study pursues three objectives: (1) developing anAI‑driven predictivemaintenance framework tailored to SLBs, (2)
evaluating sustainable end‑of‑life recycling pathways informed by real‑time diagnostics, and (3) proposing policy
and business model innovations that enable large‑scale, economically viable SLB adoption. This research is unique
in linking economics, technology, and policy to create a complete framework for sustainable second‑life use of EV
batteries. The proposed approach predicts battery depreciation, improves recycling, and includes policy support,
going beyond the partial solutions in current studies. This approach supports both sustainability and financial
success in the use of second‑life batteries. It also ensures that the growth of electric mobility aligns with global
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goals for renewable energy and carbon neutrality.

2. Methodology
This study employed a structured literature synthesis approach, drawing on peer‑reviewed publications from

major academic databases as well as relevant industry reports. Source selection was guided by criteria empha‑
sizing methodological rigor, relevance to second‑life battery applications, and coverage of AI‑based maintenance,
recycling, and policy considerations. Using this approach, results were grouped as categories, highlighting AI con‑
tributions, challenges, efficiency, and research gaps, as well as identifying outcomes that varied across studies.

A comprehensive literature search was conducted across various electronic databases―including Elsevier, MDPI
(Batteries, CleanTechnologies, Algorithms, Information,World Electric Vehicle, Energies, Vehicles), Frontiers, SciTech‑
nol, IEEE Xplore, ScienceDirect, and Nature Energy―covering the period from 2019 to 2025. The search strategy was
tailored to each database using a combination of controlled vocabulary (e.g., “second‑life applications,” “AI to extend
second life of batteries,” “recycling strategies,” and “policy frameworks”) and corresponding keywords. Studies were
included if they met one of the following criteria: peer‑reviewed journal articles, editorials, energy letters, confer‑
ence proceedings, technical/scientific reports, dissertations, company reports, press releases, and official corporate
websites or manufacturer documents. Exclusion criteria eliminate non‑peer‑reviewed materials, commentaries, and
studies lacking methodological rigor or sufficient data. Extracted data were tabulated to enable cross‑comparison
across studies.

3. Overview
The accelerated adoption of electric vehicles (EVs) is primarily driven by advancements in battery technolo‑

gies, stricter emissions regulations, and increasing consumer demand for sustainable transportation. Projections
estimate that EVs will account for over 60% of total vehicle sales by 2035 [1]. However, this growth presents an
urgent challenge: sustainable management of end‑of‑life (EOL) EV batteries. By 2030, global decommissioned EV
battery capacity is expected to exceed 275 GWh, far surpassing current recycling capabilities [2]. This growing
disparity underscores the critical need for innovative recycling and second‑life utilization strategies.

3.1. Adoption of EVs and the Challenges of Battery Disposal
The global expansionof theEVmarket is primarily attributed to technological innovations in lithium‑ionbatter‑

ies (LIBs), governmental incentives, and reductions in production costs [2]. Despite these benefits, the end‑of‑life
management of EV batteries through disposal and recycling persists as a critical barrier to achieving long‑term sus‑
tainability. LIBs typically last 8–15 years in automotive applications yet retain 70–80% of their original capacity
after end‑of‑first‑life use [3,4]. Improper disposal of these batteries poses significant environmental risks due to
the presence of toxic and flammable materials, including lithium, cobalt, and nickel [5].

3.2. Challenges of Battery Recycling
Existing recycling methodologies primarily rely on pyrometallurgical and hydrometallurgical processes. Re‑

cent advancements in research from 2023 and 2024 highlight electrochemical recycling and direct cathode recy‑
cling as more sustainable alternatives [6]. These newer techniques reduce energy consumption and carbon emis‑
sions while improving material recovery efficiency. Additionally, the lack of global standardization in battery re‑
cycling regulations complicates the establishment of an efficient supply chain for recovered materials. Addressing
these challenges requires a combination of advanced material recovery technologies, regulatory frameworks, and
industry collaboration [7].

3.3. Second‑Life Application as a Sustainable Solution
Second‑life applications offer a sustainable alternative to immediate recycling by repurposing retired EV bat‑

teries for secondary energy storage use. These include integrationwith stationary energy storage systems (ESS), re‑
newable energy platforms, and grid stabilization infrastructure [8]. This strategy contributes to a circular economy
by extending battery usability and reducing demand for new materials. However, challenges such as performance
variability, capacity degradation, and safety risks must be addressed through robust diagnostics and predictive
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maintenance systems [9], including the use of AI‑enhanced battery management systems (BMS) [10].

3.4. Policy and Economic Considerations
The deployment of second‑life battery systems requires supportive regulatory and economic frameworks. In‑

novations such as digital battery passports used to track health, chemistry, and usage history can improve trans‑
parency and support secure reuse and recycling pathways [11]. Additionally, policies including Extended Producer
Responsibility (EPR), tax incentives, and government subsidies are essential to attract investment and ensure life‑
cycle accountability [12]. As EV deployment accelerates, comprehensive solutions for sustainable battery manage‑
ment become increasingly urgent. Second‑life applications, coupled with emerging recycling technologies and pol‑
icy innovation, represent promising pathways toward minimizing environmental impact. Future research should
focus on AI‑driven diagnostics, improved material recovery processes, and scalable economic models that enable
sustainable battery circularity at a global scale.

4. AI‑Based Predictive Maintenance for Second‑Life EV Batteries
The implementation of AI‑driven predictive maintenance strategies is increasingly referred to as a revolution‑

ary means for maximizing the efficiency, dependability, and lifespan of second‑life EV batteries. Traditional battery
health‑monitoring strategies, based on either empirical or rule‑dependentmodels, are compromised by their inabil‑
ity to adapt to real‑time operating conditions or accurately forecast degradation patterns [13]. These limitations
render suchapproachesunsuitable for handling the variability anduncertainty inherent in SLBs,whichoftenexhibit
variable usage histories and patterns of degradation. On the contrary note, AI‑powered systems utilize advanced
machine learning (ML) algorithms coupled with cloud‑enabled data analytics for real‑time prediction of degrada‑
tion trajectories,maximization of charging/discharging operations, anddetection of impending failures before their
onset [14]. Through such a level of adaptability, AI compensates for risks in operations, enhances battery perfor‑
mance, and enhances economic viability for SLBs in a wide range of applications, ranging from stationary energy
stores to integration in power grids.

The subsection presents a critical analysis of three intertwined characteristics in AI‑governed predictivemain‑
tenance: (1) machine learning algorithm effectiveness in forecasting battery deterioration, (2) incorporation of
diagnostic technologies informed by AI in BMS, and (3) cost‑saving implications as well as energy optimization of
predictive maintenance approaches.

4.1. Machine Learning Algorithm Effectiveness in Predicting Battery Degradation
Machine learning techniques such as Artificial Neural Networks (ANNs), Long Short‑Term Memory (LSTM)

networks, and Random Forests have demonstrated high accuracy in forecasting battery degradation profiles [13].
Thesemodels process extensive datasets, including charge/discharge cycles, voltage fluctuations, and temperature
variations, to detect early indicators of degradation. Unlike static empirical models, ML approaches continuously
adapt based on new data, improving their estimation of Remaining Useful Life (RUL) and enabling proactive inter‑
vention [14].

4.2. AI‑Based Diagnostics IntegrationWith BMS
AI‑enhanced BMS dynamically regulates charging rates, discharge profiles, and thermal conditions to optimize

operation in real time [13]. By continuously monitoring performance, these systems can detect anomalies, predict
faults, and enable preemptive maintenance as well as system‑level adjustments. Cloud‑integrated AI platforms fur‑
ther facilitate the large‑scale deployment of second‑life batteries, particularly in grid storage and renewable energy
applications. Case studies indicate that such systems can extend battery life by up to 20%while simultaneously re‑
ducing unplanned downtime and maintenance costs [15].

4.3. Predictive Maintenance Impact on Cost Reduction and Energy Efficiency
Predictive maintenance powered by AI significantly lowers lifecycle costs by reducing unexpected failures and

improving operational efficiency [14]. By mitigating unforeseen failures and enhancing utilization patterns, main‑
tenance frameworks that leverage AI have the potential to reduce overall lifecycle expenses by up to 25%. AI algo‑
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rithms enhance charge‑discharge scheduling, minimize energy loss, and reduce wear and tear [16]. Additionally,
AI models facilitate intelligent assignment of second‑life batteries to specific roles (e.g., grid storage vs. backup
systems) based on degradation profiles and capacity.

Through advanced charge–discharge scheduling, these systems minimize energy losses, mitigate electrode
degradation, and maintain batteries within safe operational limits. Moreover, AI algorithms can strategically al‑
locate second‑life batteries to functions such as grid stabilization, peak load management, emergency backup, or
renewable energy integration. The allocation depends on their degradation profiles and remaining capacity. This
targeted deployment not only maximizes asset value but also delays premature decommissioning, thereby rein‑
forcing the principles of a circular economy [13]. AI models such as LSTM, Random Forest, and Gaussian Process
Regression (GPR) have proven effective in accurately predicting State‑of‑Health (SoH) and RUL under dynamic con‑
ditions [5]. When integrated into modern BMS, these tools help mitigate degradation risks, reduce maintenance
overhead, and support a sustainable lifecycle for repurposed EV batteries.

Recent peer‑reviewed research and industry analyses support the financial improvements presented inFigure
1. The integration of AI‑based optimization systems into SLB repurposing has been shown to reduce operational
and repurposing costs. The reduction is by approximately 25–30%, primarily through enhanced diagnostics and
reduced reliance on manual testing. Market studies estimate that repurposing costs without AI typically range
between $20 and $30/kWh. On the other hand, AI‑enhanced systems can reduce this figure to approximately $15–
22/kWh, enabling a significantly lower final SLB selling price [17–19].

Figure 1. Financial comparison of a fresh battery and an AI‑enhanced LSB [17,18].

Furthermore, economic assessments indicate that second‑life batteries can achieve a selling price between 50–
70% of the price of new batteries, with AI optimization further enhancing competitiveness [18,20]. These findings
collectively validate the economic projections presented in this study. They show that AI integration substantially
enhances the financial viability of second‑life battery applications.

4.4. Comparison Studies
4.4.1. Battery Chemistry Comparison

The choice of battery chemistry is a critical factor in second‑life applications, as it directly affects performance,
safety, environmental impact, and economic viability. Among lithium‑ion technologies, Nickel Manganese Cobalt
(NMC) and Lithium Iron Phosphate (LFP) are themost widely used in EVs. NMC batteries offer higher energy density,
making them suitable for performance‑intensive applications; however, they pose environmental challenges due to
the sourcing of cobalt and nickel [21]. In contrast, LFP batteries offer superior thermal stability, longer cycle life, and
greater safety. It makes themwell‑suited for stationary storage systems, despite their lower energy density [4,21].

Alternative chemistries, suchasNickel‑MetalHydride (NiMH)andLead‑Acidbatteries, still play roles in second‑
life applications. NiMH batteries offer moderate cycle life and energy density, typically used in hybrid vehicles.

161



New Energy Exploitation and Application | Volume 04 | Issue 02

Lead‑acid batteries are low‑cost and highly recyclable, but they suffer from limited cycle life and environmental
hazards, which restrict their use primarily to backup power systems [2,21].

Table 1 summarizes key performance characteristics of these chemistries, including metrics such as energy
density, thermal stability, round‑trip efficiency, and material recovery rate, all of which influence their second‑life
viability.

Table 1. Battery type comparison [2,21–30].

Battery
Type

Energy Density
(Wh/kg)
[21,23]

Cycle Life
(Cycles)
[21,23]

Thermal
Stability
[22,23]

Capacity
Retention
(%) [23]

Cost per kWh
(USD) [24]

Round‑Trip
Efficiency
(%) [23]

Material
Recovery Rate
(%) [25,27–30]

Life Cycle
(Years) [26]

Environmental
Impact [2]

Energy
Efficiency
(%) [23]

Li‑ion (NMC) 150–220 1000–2000 Moderate 80% after
2000 cycles 137–200 90–95 85–90 (Nickel,

Cobalt recovery) 5–10
Moderate (toxic
metals, recycling

challenges)
Moderate

Li‑ion (LFP) 90–160 2000–5000 High 85% after
3000 cycles 100–150 90–97

80–85 (Iron,
Phosphate
recovery)

10–15
Low (safer

materials, high
recyclability)

High

Nickel‑Metal
Hydride 60–120 500–1000 Moderate 70% after

1000 cycles 200–300 80–85 90% (Nickel) 5–10
Moderate (less

toxic, less
recyclable)

Moderate

Lead‑Acid 30–50 300–500 Low 50% after
500 cycles 100 70–80 99 (Lead

recovery) 3–5
High (acid

disposal, heavy
metals)

High

4.4.2. AI‑Enhanced Battery Performance

Integrating AI‑based predictive maintenance into battery management systems significantly improves perfor‑
mance metrics across all battery chemistries. Table 2 compares traditional and AI‑enhanced values for cycle life,
capacity retention, and reliability. For example, Li‑ion (LFP) batteries demonstrate an increase from 5000 to 6000
cycles, and from85%to90%capacity retentionwhenAI‑optimized control algorithmsare applied [31]. These gains
are attributed to AI‑enabled techniques such as predictive diagnostics, smart charging control, real‑time thermal
regulation, and early fault detection [15,22,31].

Table 2. Battery type comparison traditional and AI enhanced [1,3,5,21,32–37].

Battery Type
Traditional Cycle

Life (Cycles)
[3,5,21,33]

AI‑Enhanced Cycle
Life (Cycles) [32–37]

Traditional Capacity
Retention (%) [3,5,33]

AI‑Enhanced Capacity
Retention (%) [34,36] AI Impact Summary [31,35] Range per Charge

(Miles) [1,5,33]

Estimated Mileage
(Min Cycle Life)

Calculated

Li‑ion (NMC) 1000–2000 +20–40%
1200–2800 80% after 2000 cycles 5–10% improvement

Improved cycle life and
reduced degradation using

predictive algorithms
250 250,000 miles

Li‑ion (LFP) 2000–5000 20–40%
2500–6000 85% after 3000 cycles 5–10% improvement

Optimized thermal control
and charge management

extends battery life
200 400,000 miles

Nickel‑Metal
Hydride 500–1000 20–30%

800–1200 70% after 1000 cycles 5% improvement
More stable performance
through adaptive load

balancing
80 40,000 miles

Lead‑Acid 300–500 20–30%
400–600 50% after 500 cycles 5–10% improvement

Enhanced health monitoring
mitigates sulfation and

over‑discharge
30 9000 miles

Lead‑Acid and NiMH batteries also benefit from AI‑driven anomaly detection and health‑aware control frame‑
works, which extend life cycles and mitigate common failure modes such as sulfation and overheating. Bayesian
learning models and GPR have been shown to forecast degradation with high accuracy, enabling efficient load bal‑
ancing and adaptive energy management in second‑life use cases [32]. Overall, AI integration enhances energy
efficiency, lifecycle extension, and cost‑effectiveness, which are key benefits for circular energy systems and sus‑
tainable battery reuse [15,17,25].

Table 2 also presents the estimated vehicle range per charge and the corresponding total mileage based on the
minimum cycle life of various battery chemistries. For Li‑ion NMC batteries, a typical driving range of 250 miles per
full charge translates into an estimated 250,000 miles of total service when considering a conservative cycle life of
1000 cycles. LFP batteries, known for their durability and thermal stability, offer an estimated 200 miles of range
per charge. This results in a total mileage of 400,000 miles over a minimum 2000 cycle life. Nickel‑Metal Hydride
(NiMH) batteries, with lower energy density, provide a modest range of 80 miles per charge, yielding approximately
40,000miles over 500 cycles. Lead‑Acid batteries, oftenused in low‑demandapplications, deliver around30miles per
charge, reaching 9,000 miles across 300 cycles. These estimations are derived from empirical cycle life data [33–37]
and typical range‑per‑charge benchmarks reported by the International Energy Agency (IEA) in its Global EVOutlook
2024, which provides standardized vehicle range metrics across different battery chemistries and vehicle segments.
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It is essential to note that these figures represent theoreticalmaximumsbased on full depth of discharge cycling under
ideal conditions. Actual performancewill vary depending on environmental factors, user behavior, and calendar aging
effects [1].

AI significantly enhances the effective mileage and service lifespan of EV batteries by optimizing their opera‑
tional management. While AI does not increase the physical energy capacity of a battery, it enables more innova‑
tive utilization through advanced BMS. AI algorithms improve charge‑discharge efficiency by dynamically adjusting
state‑of‑charge (SoC) limits, mitigating thermal stresses, andminimizing voltage fluctuations [9,17,22]. These opti‑
mizations reduce energy losses andextend theusable driving rangeper chargeby approximately 5–10%, depending
on battery chemistry and application conditions [36,37].

Moreover, AI‑driven predictivemaintenance extends cycle life bymonitoring degradation patterns, forecasting
failures, and adjusting operational parameters in real‑time [9,22]. For instance, machine learning models such as
Long Short‑TermMemory (LSTM) networks andBayesian learningmethods have been shown to increase total cycle
life by 20–40% through intelligent load balancing and degradation mitigation [9,14,31]. This directly translates to
increased total lifetime mileage, as batteries can undergo more charge‑discharge cycles before reaching end‑of‑life
thresholds.

In second‑life battery applications, where prior usage and degradation present additional challenges, AI’s role
becomes even more critical. By continuously assessing battery health and adjusting usage profiles, AI facilitates
the efficient deployment of second‑life batteries in stationary storage, microgrid, and low‑demand mobility appli‑
cations. This approach extends their service life and supports circular economy objectives [18,38–40].

Table 3 and Figure 2 present a time‑series comparison of predictive maintenance efficiency (%) for second‑
life battery systems, using both traditional and AI‑based approaches from 2024 to 2032. The data reveal a linear
trend of improvement in both systems, but with significantly different growth rates.

Table 3. Predictive maintenance comparison [9,14,15,25,31].

Year Predictive Maintenance (%)

Traditional AI‑Based

2024 75 75
2025 76 78
2026 76.5 81
2027 77 83
2028 77.5 85
2029 78 87
2030 78.5 89
2031 79 91
2032 79.5 93
2033 80 95

Figure 2. Predictive maintenance comparison [9,14,15,25,31].
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A linear regression model fitted to the traditional method yields a slope of approximately 0.55% increase per
year, starting from a baseline of 75% in 2024 and reaching 79.5% by 2032. In contrast, the AI‑based system ex‑
hibits a significantly steeper growth trajectory, with a fitted slope of 2.2% increase per year, culminating in 93%
predictive efficiency by 2032. These trends suggest that while traditional systems improve marginally through
incremental algorithmic refinements or hardware upgrades, AI‑based systems benefit from continuous learning,
model adaptation, and real‑time sensor integration [9,14,15,25,31].

The widening gap over time, amounting to a 13.5% difference by 2032, supports the hypothesis that AI‑driven
battery management systems can significantly outperform rule‑based maintenance protocols. They optimize the
remaining useful life (RUL), minimizing unplanned failures and improving cost‑efficiency in second‑life applica‑
tions [22, 31]. Furthermore, the consistent nature of the growth implies that AI‑based predictive analytics scale
more effectively over time. It aligns with recent studies that employ reinforcement learning and deep learning for
adaptive control in electric vehicle battery systems [25,31,41].

The linear modeling approach applied here offers a mathematically grounded estimate of performance trends,
validating AI’s role as a transformative force in battery lifecycle extension. These projections are particularly rele‑
vant for policymakers and industries exploring circular economy models involving second‑life energy storage sys‑
tems. In summary, this data‑driven projection indicates that AI not only improves predictivemaintenance outcomes
but also offers a scalable solution for second‑life applications where prolonged battery life and minimal manual in‑
tervention are critical.

Thedata suggests that theremust be strategic decision‑making across all stagesof thebattery lifecycle,whether
for reuse, repurposing, recycling, or retirement within a circular value chain framework. Unlike FBs, SLBs exhibit
greater performance variability due to prior usage history and residual degradation, requiring enhanced diagnostic
and management tools [18,41]. AI plays a pivotal role in addressing this complexity by improving the precision of
state‑of‑health (SoH) estimation, facilitating optimal second‑life allocation, and supporting real‑time, data‑driven
decision‑making. AI‑powered lifecycle analytics help stakeholders prioritize batteries for reuse, identify underper‑
forming units early, and reduce inefficiencies in both residential and grid‑scale deployments [14,15,17,18]. Com‑
pared to traditional lifecyclemanagementmethods, AI enablesmore adaptive and predictive strategies, particularly
whenmanaging diverse chemistries and aging profiles. This aligns with the growing consensus in recent literature
that intelligent diagnostics and decision‑support systems are critical for scaling circular economy solutions in the
energy sector [17,41]. Future research should explore federated learning for distributed battery diagnostics. It
should also investigate multi‑agent AI systems for decentralized battery networks. Additionally„ regional techno‑
economic models are needed to assess the long‑term impact of AI‑managed SLB systems on carbon reduction and
energy equity [17,18].

Table 4 compares traditional and AI‑incorporated evaluation methods across various criteria for second‑life
battery (SLB) assessment and management. Traditional methods rely heavily on manual testing, empirical models,
and expert judgment for key tasks such as SoH assessment, degradation analysis, and fault detection. These ap‑
proaches tend to be time‑consuming, labor‑intensive, and less scalable. In contrast, AI‑basedmethods leveragema‑
chine learning, deep learning, and real‑time data analytics to automate and optimize these processes. AI improves
SoH and SoC estimations, enhances fault detection through anomaly prediction, and enables data‑driven decision‑
making for reuse or recycling. Furthermore, AI significantly reduces processing time and cost while improving
testing efficiency and scalability. It also introduces predictive maintenance capabilities, which extend battery life
and improve overall lifecycle performance. These advancements position AI as a critical enabler of efficient and
sustainable SLB management systems [5,18,31,42].

Table 4. Comparison table for traditional and AI incorporation evaluation procedure of retired lithium‑ion batter‑
ies.

Evaluation Criteria Traditional Evaluation [3,5,9,14] AI‑Incorporated Evaluation

State of Health (SoH) Assessment Manual testing using voltage and capacity
measurements.

Machine learning models predict SoH using
real‑time data analytics [14,31].

State of Charge (SoC) Estimation Basic coulomb counting method, often inaccurate
over multiple cycles.

Advanced AI algorithms improve SoC estimation,
reducing errors [22].

Degradation Analysis Empirical models relying on periodic capacity
testing.

Deep learning identifies degradation patterns from
operational data [11,14].
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Table 4. Cont.

Evaluation Criteria Traditional Evaluation [3,5,9,14] AI‑Incorporated Evaluation

Fault Detection Reactive detection based on user‑reported issues. AI‑driven anomaly detection predicts failures before
they occur [22,31].

Decision‑Making for Second‑Life or
Recycling

Human experts assess battery viability for reuse or
recycling.

AI automates decision‑making for second‑life
applications or recycling [17,41].

Efficiency of Testing Time‑consuming with high variability across test
results.

Highly efficient with automated testing and
real‑time analytics [17,41].

Processing Time Days to weeks depending on laboratory availability. Minutes to hours using automated AI assessment
tools [15,17].

Cost of Evaluation Higher due to manual labor and complex
procedures.

Lower due to automation, reducing human
intervention costs [10,17,18].

Scalability Limited due to slow manual testing methods. Scalable due to fast data processing and cloud‑based
AI models [15,41,42].

Predictive Maintenance Capability Not capable of predictive analytics; relies on
historical data.

AI predicts maintenance needs, extending battery
lifespan [14,31].

4.4.3. Projected Battery Energy Density Growth: Traditional vs AI Optimized Technologies

Battery energy density is a crucial metric that significantly impacts the performance, range, and efficiency of
EVs. With advancements in materials science and AI‑enhanced battery management systems, the energy density
of future battery systems is expected to increase significantly beyond current limitations. Figure 3 illustrates
the projected energy density growth from 2024 to 2035, comparing traditional lithium‑ion batteries with AI‑
optimized alternatives [20,25]. Traditional battery technology has historically improved at amodest rate, approx‑
imately 10 Wh/kg per year, driven by gradual improvements in cathode chemistry, manufacturing, and thermal
management [1,20]. By contrast, AI‑optimized battery systems are projected to achieve accelerated growth of
20–30 Wh/kg per year, enabled by AI‑driven material discovery, real‑time degradation modeling, and dynamic
charge cycle optimization [17,43].

Figure 3. Projected energy density (Wh/kg) for traditional vs AI optimized battery technologies [1,17,20,43].

Recent innovations in battery technologies, such as solid‑state, lithium‑metal, and silicon‑anode batteries,
show the potential to exceed energy densities of 400–500 Wh/kg by 2035. These developments are largely driven
by machine learning models that optimize internal battery architectures and predict performance under varying
conditions [43,44]. AI‑based BMS further supports this trend by fine‑tuning energy utilization, mitigating heat gen‑
eration, and adapting voltage parameters in real time, thereby preserving higher energy densities throughout the
battery’s operational life [45,46]. As shown in Figure 3, AI‑optimized technologies are expected to outperform
traditional batteries by up to 35% in energy density by 2035. This improvement will not only extend EV range and
reduce battery weight but also lower costs and environmental impact, contributing significantly to the scalability
and sustainability of EV adoption [17,20,43,44,47].
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4.4.4. Charge and Discharge Rates: Traditional vs. AI Optimized BMS

Traditional battery management follows a rule‑based charging approach, meaning it charges and discharges
based on pre‑set constraints without adapting to changing conditions. This approach overlooks degradation pat‑
terns, environmental variables, or real‑time operational demands, resulting in suboptimal charging cycles that ac‑
celerate capacity fade [3,25,31]. The charge and discharge rates are shown in Table 5.

Table 5. Charge and discharge rates: traditional vs AI optimized BMS.

Metrics Traditional BMS AI‑Optimized BMS Description

Charge Rate
(C‑rate) 0.5 C–1 C (Fixed) Dynamic (0.5 C–3 C,

Optimized)

Traditional BMS employs pre‑programmed, fixed charging rates, which do not adapt to
real‑time battery conditions. AI‑based systems dynamically adjust charge rates (based on
SoC, temperature variations, historical degradation data, and grid conditions) to reduce
stress on battery cells and improve longevity [17,48].

Discharge
Rate (C‑rate) 0.5 C–1 C 0.5 C–3 C (Adaptive)

Conventional systems discharge at a relatively fixed rate. AI‑optimized discharging
manages power distribution adaptively, enhancing efficiency and reducing peak load stress
on cells [17,49].

Overcharging
Risks

High due to fixed
algorithms

Reduced through
predictive control

Traditional BMS cannot effectively predict degradation pathways, leading to
overcharging‑induced stress. AI‑based BMS predicts and prevents such issues through
machine learning‑driven real‑time SoC adjustments [17,48].

Adaptive
Charging No Yes (Real‑Time) AI‑based systems analyze operational and environmental conditions, modifying charging

rates to prevent excessive heat and enhance energy transfer efficiency [14,49].

AI‑based systems utilize predictive analytics, deep learning, and reinforcement learning algorithms to dynam‑
ically optimize charge rates. This approach reduces electrode stress, enhancing charge acceptance and improving
cycle stability [9,17,22]. For example, GPR models enable real‑time adjustments to the charging profile based on
temperature and historical degradation trends [32].

4.4.5. Lifecycle Comparison: Traditional vs. AI‑Optimized BMS

Charge‑discharge depth, temperature fluctuations, and load profiles significantly impact the cycle life of a bat‑
tery. In traditional BMS implementations, fixed thresholds dictate charge cycles, leading to unnecessary deep dis‑
charges, overcharging, and high current spikes. All of these factors contribute to rapid lithium plating and electrode
degradation [50–52]. A life cycle comparison is shown in Table 6.

Table 6. Life cycle comparison: traditional vs AI optimized BMS.

Metric Traditional BMS AI‑Optimized BMS Description

Estimated Lifespan 8–10 years 12–15 years
Traditional BMS cannot account for real‑time operational conditions, leading
to suboptimal charge/discharge cycles and early degradation. AI‑enhanced
systems extend battery life by at least 30–50% through optimal power
cycling and thermal control [53,54].

Cycle Life (Full Charge‑
Discharge Cycles) 1,500–2,000 cycles 2,500–3,500 cycles

Traditional systems degrade faster due to inefficient cycling management.
AI‑enabled SoH monitoring prevents deep discharges, reducing electrode
stress [55].

Predictive Maintenance No Yes AI can predict failures through advanced machine learning models, reducing
maintenance costs and unplanned downtime [56].

Battery Reuse Feasibility Limited High AI‑optimized management systems enable effective second‑life applications
for energy storage and grid integration [17].

AI‑powered BMS integrates machine learning‑driven degradation prediction models, ensuring that the bat‑
tery operates within optimal conditions by dynamically adjusting voltage, temperature, and depth‑of‑discharge
settings [50,51]. One of the key advantages of AI is its ability to enable second‑life applications for EV batter‑
ies. Even after reaching 70–80% of their original capacity, these batteries can be used in stationary grid storage
solutions [53].

4.4.6. Thermal Stability: Traditional vs AI‑Optimized BMS

Thermal stability is a critical factor in battery performance and safety. Traditional BMS reacts to temperature
changes only after they occur, leading to inefficiencies in cooling and heating mechanisms, which can contribute to
premature battery failure [50,51]. The thermal stability comparison is shown in Table 7.
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Table 7. Thermal stability: traditional vs. AI‑optimized BMS.

Metric Traditional BMS AI‑Optimized BMS Description

Operating Temperature 15 °C–45 °C −5 °C–50 °C
(Controlled)

AI‑enabled systems dynamically control battery cooling and heating, thereby
improving thermal stability [47,54,55].

Thermal Runaway Risk Moderate to High Low
Traditional BMS cannot anticipate sudden temperature surges, increasing
the risk of thermal runaway. AI‑based models predict and prevent
overheating through real‑time monitoring and proactive cooling [23,55].

Cooling Efficiency Passive (Air, Liquid) AI‑Enhanced (Active
Cooling)

AI systems optimize cooling strategies based on historical and real‑time
data, preventing excessive heat buildup [17,51].

AI‑based thermal management, however, predicts heat generation trends using machine learning algorithms
and adjusts coolingmechanisms in advance to prevent excessive temperature buildup. This enhances battery safety
and lifespan by minimizing thermal stress [17,22].

4.4.7. Round‑Trip Efficiency (Charge‑Discharge Energy Efficiency)

Round‑trip efficiency refers to the effectivenesswithwhich abattery retains and releases energyduring charge‑
discharge cycles. Traditional BMS results in higher resistive losses, heat generation, and suboptimal charge utiliza‑
tion, leading to lower efficiency [50,51]. The round‑trip efficiency is shown in Table 8.

Table 8. Round‑trip efficiency: traditional vs. AI‑optimized BMS.

Metric Traditional BMS AI‑Optimized BMS Description

Efficiency (%) 85–90% 92–97% AI models optimize charge‑discharge cycles to minimize energy losses and
improve efficiency [22,53].

Energy Loss per Cycle 10–15% 3–5% Traditional BMS leads to higher resistive losses, whereas AI‑based systems
reduce internal resistance and optimize power delivery [53,57].

Grid Integration Limited Enhanced AI‑driven BMS enhances Vehicle‑to‑Grid (V2G) applications, improving grid
stability and demand response [17].

AI‑based systems optimize power flow and energy conversion, reducing losses associated with inefficient
charge distribution and high‑current discharge scenarios [17]. This improvement in efficiency is particularly crit‑
ical for grid‑integrated storage systems, where maintaining high round‑trip efficiency directly impacts economic
viability [32].

4.4.8. AI‑Enhanced Applications of Second‑Life Batteries

SLBs are being deployed across a broad spectrum of energy use cases, including stationary energy storage,
off‑grid power systems, consumer electronics, and commercial energy management [53, 57]. In stationary stor‑
age, SLBs are repurposed to support solar and wind energy systems, providing grid load balancing and frequency
regulation [2,53]. AI optimizes these applications by forecasting load demand, scheduling discharge, and extend‑
ing usable capacity through predictive analytics [15,25]. In off‑grid and emergency backup systems (particularly
in remote and underserved regions), AI‑enabled control systems manage energy flow, detect anomalies, and en‑
sure reliable uptime during blackouts [14]. In the consumer electronics market, second‑life batteries are used in
residential energy storage units, power banks, and EV charging stations. AI ensures safety through real‑time mon‑
itoring, fault detection, and thermal management [57]. Meanwhile, in industrial and commercial sectors, SLBs are
integrated into smart energy systems to reduce peak electricity charges and operational costs. AI‑powered BMS
enables predictive load management [15,25] and automates charge‑discharge cycles, resulting in improved return
on investment and lower energy losses [2,17]. These applications demonstrate the scalability and versatility of
AI‑optimized SLBs in advancing circular energy solutions.

4.5. Degradation Mechanism
Degradation mechanisms have a significant impact on the performance of second‑life batteries [53]. Calendar

aging occurs when chemical reactions inside the battery proceed over time, leading to gradual capacity loss even
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when the battery is not in use [52]. Cycle aging results from repeated charging and discharging, leading to inter‑
nal resistance growth and diminished energy capacity. Electrolyte decomposition increases internal resistance,
while activematerial loss reduces the battery’s ability to store energy [50,52]. The battery degradation represents
the interaction between intrinsic battery degradation pathways. It is structured into four sequential domains:
Degradation Factors, Degradation Mechanisms, Degradation Modes, and Degradation Effects. At the top of the
hierarchy are the Degradation Factors, which include temperature, voltage, current, SOC, and mechanical stress.
These variables represent operational and environmental stressors that directly affect the electrochemical stabil‑
itywithin LIBs. Researchhas established that extremeor sustained exposure to these conditions catalyzes various
internal changes, accelerating cell degradation and premature performance loss [58]. These factors induce sev‑
eral degradation mechanisms, including Solid Electrolyte Interphase (SEI) formation, lithium plating, electrolyte
decomposition, and structural disordering. SEI formation, while initially protective, thickens over time and con‑
sumes cyclable lithium, reducing active capacity. Lithium plating, which typically occurs under low temperatures
or overcharging conditions, causes lithiummetal to deposit on the anode, leading to irreversible capacity loss and
safety risks. Electrolyte decomposition and structural disordering further contribute to cell impedance, reducing
ionic conductivity [50,52,58–61].

The downstream result of thesemechanisms is captured in the DegradationModes, which are categorized into
Loss of Lithium Inventory (LLI), Loss of ActiveMaterial (LAM), and Conductivity Loss (CL). These failuremodes rep‑
resent observable degradation phenomena that ultimately cause capacity fade and power fade, undermining both
energy availability and system reliability [50,57,58]. To mitigate these cascading effects, an AI‑based predictive
approach can be introduced to function as a real‑time feedback and control layer. It comprises three primary inter‑
vention strategies:

1. State of Charge Optimization: AI models monitor and predict battery usage patterns and accordingly adjust
SOC limits to minimize lithium plating and SEI growth. Adaptive SOC management ensures that batteries
operate within safe and efficient voltage windows [59,60].

2. Temperature Adjustment: Intelligent thermal management systems, guided by AI algorithms, regulate bat‑
tery temperatures by anticipating thermal spikes or drops. This reduces thermal degradation and stabilizes
electrolyte performance [17,22,47,51].

3. PredictiveMaintenance: By analyzing large datasets from onboard sensors and historical usage logs, machine
learning models can predict imminent failures. These predictions enable protective servicing or algorithmic
control changes to avoid catastrophic degradation [14,15,61].

The integration of adaptive and closed‑loop systems enables AI to continuously refine itsmodels and adjust op‑
erational conditions based on real‑time data streams. This capability distinguishes modern BMS and significantly
contributes to improving the second‑life potential of EV batteries, particularly when repurposed for stationary en‑
ergy storage or grid applications [17]. In conclusion, the integration of AI into the battery lifecycle represents
a paradigm shift in how battery degradation is managed. Through closed‑loop feedback, predictive analytics, and
continuous optimization, AI not onlymitigates the rate of degradation but also extends the economic and functional
viability of second‑life battery systems.

4.6. Testing and Assessment Methods
Accurate testing and assessment methods are essential for determining the viability of second‑life EV batter‑

ies, as shown in Table 9 [57,61]. Electrochemical Impedance Spectroscopy (EIS) evaluates internal resistance and
electrochemical behavior, offering high precision for large‑scale applications [9]. SOC estimation tracks current
charge levels relative to total capacity, while SOH estimation provides an overall assessment of battery degrada‑
tion [50,52]. AI/ML‑based predictive models stand out by offering very high efficiency in large‑scale repurposing.
These models process real‑time data from multiple charging stations, identifying batteries with optimal second‑
life potential. AI algorithms enable the dynamic adjustment of charging protocols based on degradation patterns,
thereby optimizing energy storage performance and reducing operational risks [25,29,57].
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Table 9. Testing and assessment methods.

Method Description AI Contribution Efficiency in Large‑Scale
Repurposing

Electrochemical Impedance
Spectroscopy (EIS)

Analyzes internal resistance and
electrochemical behavior.

AI enhances interpretation of complex EIS data
for faster diagnostics [9,61]. High

State of Charge (SOC)
Estimation

Measures the current charge relative
to capacity.

AI uses historical charging patterns to refine
SOC estimations [15,25]. Moderate

State of Health (SOH)
Estimation

Predicts overall battery condition and
degradation.

AI predicts future SoH trends for proactive
maintenance planning [50,52,61]. High

AI/ML‑Based Predictive
Models

Utilizes big data for accurate
performance forecasting.

Central to predictive maintenance and lifecycle
optimization [17,41,59,60]. Very High

4.7. Performance Metrics in Second‑Life Applications
Second‑life batteries display performance metrics slightly lower than new batteries. Energy storage capacity

in second‑life Li‑ion batteries typically ranges between 70–80% of original capacity [3]. Power delivery capability
also declines slightly, dependent on battery chemistry. The depth of discharge (DoD) remains high, with LFP bat‑
teries achieving 80% DoD without significant lifespan reduction. Round‑trip efficiency reaches up to 95% in LFP
chemistries [3,57]. AI enhances these metrics by optimizing charging and discharging protocols. Real‑time moni‑
toring and adaptive control through AI‑driven BMS ensure that energy capacity is used efficiently, while machine
learning models forecast performance degradation and adjust operational parameters accordingly [25,60].

4.8. Safety Aspects
Safety concerns are paramount in second‑life battery applications. Thermal management challenges arise due

to altered thermal profiles during secondary use [47,51]. Risks such as thermal runaway can lead to fires or system
failures. AI‑driven BMS mitigates these risks by continuously monitoring voltage, current, and temperature data,
detecting anomalies that may indicate impending failures [15,25]. Machine learning models can predict high‑risk
scenarios, triggeringpreventivemeasures suchas controlleddischargeor isolationof compromisedmodules. These
advanced safety features significantly reduce the risk of accidents, making AI integration indispensable for second‑
life battery applications [17,61].

4.9. Comparison Table: Existing AI Models vs. Proposed Framework
Unlike most previous AI models that focus only on technical predictions, this study uniquely integrates AI‑

based monitoring with sustainable recycling pathways, strategic policy planning, and innovative business models.
This makes the framework broader, more practical, and better suited for real‑world use of second‑life EV batteries,
as shown in Table 10.

Table 10. Existing AI models vs. proposed framework.

Feature/Capability Existing AI Models [9,62–66] Proposed Framework

Application Scope Focus primarily first‑life EV battery
monitoring [9,63–66].

Integrated first and second life battery monitoring, with adaptive parameters
for degraded cells.

Data source Limited laboratory data test datasets
or EOM controlled telematic [9,64,65].

Combined real world usage survey, suggests testing in different regions and use
cases.

Predictive Accuracy 80–90% accuracy in SOH prediction
under controlled conditions [9,65,66].

> 90% projected accuracy (SOH) and Remaining Useful Life (RUL) estimation
under diverse, real world second life conditions.

Integration with recycling Usually not connected to recycling or
only studied separately [62]. Directly connects AI monitoring with recycling and material recovery.

Policy/Business Alignment Minimal consideration of regulatory
or economic frameworks [9,63]. Integrates AI with policy suggestions and business models for real world use.

Scalability Limited to machine learning or
rule‑based models [9,64,65].

Adds new tools like blockchain enabled battery passport for tracking and better
recycling.

Originality Focused only on technical or lab
results [9,63,65,66].

Unique because it combines technical, environmental, and policy views into
one framework.

5. End‑of‑Life Recycling Strategies: Post‑Secondary Use
Recycling is an essential component of sustainable battery management, such that critical materials such as

lithium, cobalt, and nickel are recovered [67]. Traditional recycling methods, such as pyrometallurgical and hy‑
drometallurgical processes, continue to dominate the industry but are costly in energy and environmentally de‑
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manding [62]. Emerging methods, including direct cathode recycling and electrochemical recovery, offer sustain‑
able alternatives by reducing energy consumption and improving material recovery efficiency [67,68].

5.1. Investigate Sustainable and Optimized Recycling Methods
Advancements in recycling technology focus on reducingwaste andmaximizingmaterial recovery rates. Sus‑

tainable methods such as electrochemical separation and solvent extraction enhance material purity while mini‑
mizing chemical waste. Electrochemical separation utilizes controlled electric fields to selectively extract lithium
and cobalt ions from spent battery materials. This helps in achieving higher recovery efficiencies while eliminat‑
ing hazardous chemical residues [62,67]. Solvent extraction, commonly applied in hydrometallurgical processes,
has been optimized to selectively recover cobalt and nickel with high purity while significantly reducing acid
consumption [67]. Recent advances in closed‑loop recycling methods demonstrate that direct regeneration and
hydrometallurgical routes can achieve recovery efficiencies over 95% of lithium, cobalt, and nickel from used
batteries. This ensures minimal environmental impact and sustainable material reuse [68].

5.2. Analyze Degradation Patterns in Used Batteries to Determine Optimal Recycling Pathways
Understandinghow lithium‑ionbatteries degradehelps optimize recycling efficiency. Capacity fading, electrolyte

decomposition, and structural electrode deterioration influence the effectiveness of recycling approaches [58, 62].
Studies show that cathode material aging, characterized by the formation of unwanted byproducts such as lithium
carbonate, can drastically reduce lithium extraction efficiency [67]. Research has shown that lithium‑ion batteries
with NMC cathodes degrade differently compared to LFP chemistries. NMC batteries offer higher energy density but
aremore prone to degradationmechanisms such as lithium plating and capacity fade, whereas LFP cells demonstrate
slower degradation and greater thermal stability [61]. By characterizing degradation trends, recyclers can sort and
preprocess batteriesmore effectively, ensuring the selection of appropriate recovery pathways that optimizematerial
yield [42,68].

5.3. Evaluate Hybrid Recycling Approaches Combining Mechanical Pre‑TreatmentWith Selective
Leaching Techniques
Hybrid approaches integrate mechanical processing, such as crushing and separation, with chemical treat‑

ments to enhance the efficiency of material extraction [62]. Selective leaching techniques allow for targeted dis‑
solution of valuable metals, minimizing reagent use and reducing secondary waste [67]. For example, researchers
at Oak Ridge National Laboratory have developed a hybrid method that pre‑treats LIBs through controlled ther‑
mal decomposition. It is followed by a low‑temperature acid leaching process that recovers 100% of lithium and
cobalt (96% recovery of cobalt without additional chemical input) [67, 69]. Similarly, closed‑loop leaching pro‑
cesses where leaching agents are regenerated and reused are being tested to further reduce waste generation in
battery recycling [68].

5.4. Develop an Optimized Framework for the End‑of‑Life Management of SLBs
Establishing a comprehensive framework involves integrating AI‑driven diagnostics with efficient recycling

techniques. AI‑powered sorting systems, such as those developed by industrial leaders, use machine learningmod‑
els to assess battery health and determine the best end‑of‑life pathway, either repurposing or direct recycling [70].
Additionally, standardized battery passports, proposed under the European Union’s Battery Regulation, provide
real‑time data on battery chemistry, degradation history, and previous uses. This allows recyclers to streamline
sorting and processing workflows [71,72]. Countries such as Germany and Japan have implemented producer re‑
sponsibility programswhere batterymanufacturersmust ensure end‑of‑life recycling, further driving the adoption
of closed‑loop battery supply chains [73]. Expected outcomes include improved recycling efficiencies, reduced en‑
vironmental impact, and enhanced integration into the circular economy. Implementing advanced recycling tech‑
nologies will result in highermaterial recovery rates, reducing dependency on virgin rawmaterials andminimizing
the environmental footprint of battery production [74].

Future research should explore the scalability of AI‑based sorting in low‑income or decentralized markets. It
should examine the use of blockchain to secure and validate battery passport data. Lifecycle assessmentmodels are
also needed to evaluate the environmental and economic impacts of AI‑managed recycling infrastructures across
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different regions.

6. Policy and Business Model Innovation for Second Life Batteries
The widespread adoption of SLBs requires well‑defined policy frameworks and innovative business models

that ensure economic viability and regulatory compliance [75]. Policymakers and industry stakeholdersmustwork
collaboratively to develop regulations that promote the safe reuse, repurposing, and disposal of SLBs while main‑
taining sustainability and economic feasibility [76]. Establishing a standardized legal framework can reducemarket
uncertainties and encourage investment in SLB solutions.

6.1. Policy Framework and Business Models to Accelerate SLB Adoption
The extensive adoption of SLBs can be significantly accelerated by integrating AI within supportive policy frame‑

works and innovative business models. Standardization efforts are essential, particularly in certifying battery health
diagnostics and AI‑driven monitoring systems. Establishing universal protocols for performance evaluation and life‑
cycle assessment will enhance trust in AI‑enabled reuse strategies and foster interoperability across platforms [67].
Simultaneously, regulatory sandboxes can enable real‑world deployment of AI‑managed SLBs under flexible compli‑
ance conditions. They also allow for iterative development of legal and technical standards. Furthermore, expanding
EPR policies to include AI‑based digital twins and predictive analytics will allow manufacturers and recyclers to op‑
timize reuse potential and minimize environmental impact [73]. Privacy and transparency regulations should also
evolve to address the ethical challenges posed by AI systems handling proprietary battery data [75].

On the business front, models such as BaaS can benefit from AI by extending the lifespan of SLBs through real‑
time predictive maintenance and performance forecasting. Similarly, shared ownership models in microgrids and
rural electrification initiatives can use AI to manage multi‑user SLB systems, promoting equitable access and trans‑
parent maintenance needs. AI also enables circular economy logistics by facilitating real‑time battery tracking, per‑
formance benchmarking, and condition‑based routing. These will improve cost recovery andmaterial efficiency [77].
Furthermore, successful real‑world initiatives, such as Nissan’s 4R Energy program, demonstrate the commercial vi‑
ability of repurposing EV batteries for home energy storage. By leveraging AI to assess remaining battery life, predict
user demand, and optimize charging cycles, such programs can deliver reliable and affordable energy services while
reducing environmental waste [78]. Finally, AI‑powered digital twins provide virtual representations of deployed
SLBs. They allow firms to simulate usage and predict failure points. This capability helps extend warranties, mak‑
ing second‑life batteries more viable and insurable in commercial contexts. By aligning AI capabilities with adaptive
regulations and outcome‑based businessmodels, stakeholders can reducemarket uncertainties, enhance investment
attractiveness, and support long‑term sustainability goals for SLB ecosystems [17,79].

6.2. Comparative Analysis of Global SLB Regulations and AI Integration Opportunities
A comparative analysis shown in Table 11 of global battery regulations reveals that AI can act as a strategic

enabler of policy harmonization and lifecycle tracking. In regions like the European Union, AI can help automate
compliance with recovery quotas and manage the complexity of digital battery passports [71,75]. In the United
States, AI can unify fragmented state‑level data and standardize second‑life evaluation. Across all jurisdictions,
AI enhances traceability, predictive maintenance, and regulatory transparency, contributing to a globally scalable
circular battery economy [75].

Table 11. Comparative analysis of global SLB regulation and AI Integration opportunities.

Region/Country Regulatory Focus Key Instruments Challenges How AI Can Help

European Union Strict recycling & recovery
targets

Battery Regulation (2023):
Set targets of 50% lithium
recovery, digital battery
passports

Data tracking, lifecycle
transparency, cost of
compliance

AI can automate battery passport data
analysis, predict EOL timing, and optimize
sorting at recycling facilities [71,80].

United States State‑level, fragmented
federal framework

AB 2832 (California):
producer responsibility

Lack of national
regulation, inconsistent
tracking, market
uncertainty

AI can unify data from across states, forecast
reuse value, and improve decision‑making in
decentralized systems [75,81].
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Table 11. Cont.

Region/Country Regulatory Focus Key Instruments Challenges How AI Can Help

Japan Industry‑led reuse &
remanufacturing

4R Strategy (Reuse,
Refabricate, Recycle,
Reduce)

High standards but
limited scalability

AI‑driven diagnostics for second‑life battery
screening, especially in commercial‑scale
reuse programs like Nissan’s 4R Energy [78].

India Emerging regulatory
landscape

Draft Battery Waste
Management Rules

Infrastructure gaps,
inconsistent battery
quality

AI can support predictive diagnostics and safe
reuse of SLBs in off‑grid applications [82].

6.3. Best Practice for Global Implementation
The European Union (EU)’s stringent recycling targets, which mandate minimum recovery rates for lithium,

cobalt, and nickel [78], present a complementary framework that other nations could emulate. This dual approach
mandating environmental performancewhile incentivizing industrial compliance enhancesboth accountability and
participation. The implementation of digital battery passports within the EU enables traceability across a battery’s
lifecycle. It supports transparent reuse, repurposing, and recycling decisions [80]. Studies have shown that digital
product passports integratedwithAI andblockchain technologies can significantly improve compliancemonitoring,
data reliability, andmaterial recovery planning [79]. Without such a framework, fragmented state‑level regulations
risk inefficiencies in battery traceability and post‑consumer management [81]. In India, digital compliance tools
and AI‑based lifecycle analytics could bridge this gap by enabling regulators and manufacturers to manage diverse
battery streamsmore effectively [82]. Therefore, a globally harmonized policy model combining regulation, digital
tools, and market incentives stands as a best practice for scaling SLB ecosystems.

7. Case Studies of Existing Commercialization Models
Several companies have successfully implemented business models that promote SLB adoption. For exam‑

ple, in Kenya, second‑life batteries are used for affordable energy storage in off‑grid schools, providing reliable
electricity for lighting and educational resources [8]. This initiative demonstrates how SLBs can enhance social
development while reducing energy costs in underserved communities.

In Japan, Nissan’s “4R Energy” initiative repurposes EV batteries for home energy storage, extending battery
life cycles and reducing household energy costs [78]. This model integrates SLBs into residential solar systems,
allowing homeowners to store excess energy and optimize consumption, thus contributing to energy grid stability.
By ensuring battery health tracking and performance assessment, Nissan successfully maintains battery reliability
and safety for prolonged use.

Similarly, Tesla’s partnership with energy providers has facilitated the integration of repurposed EV batteries
into large‑scale grid storage systems, enhancing renewable energy utilization [83]. By leveraging economies of
scale and AI‑driven battery diagnostics, Tesla has maximized the value extraction from SLBs while ensuring eco‑
nomic feasibility. These cases highlight the effectiveness of business models that focus on affordability, reliability,
and sustainability. They illustrate that successful SLB commercialization requires strategic partnerships, digital
monitoring tools, and financial incentives to enhance adoption. Table 12 summarizes SLB initiatives undertaken
by leading EV companies in the United States.

Table 12. Second life battery initiatives [78,84–90].

Company Second‑Life Battery Initiative Stage

Tesla Uses second‑life batteries in Powerpack and Megapack for grid storage; partners with utilities
for demand response. Commercial Deployment

General Motors (GM) Developing battery reuse strategies with Redwood Materials; plans to build closed‑loop battery
systems. Pilot / Development

Ford Exploring second‑life battery use for residential and commercial energy storage; part of Ford+
circular economy model. Pilot / Development

Rivian Investigating reuse of EV batteries for stationary storage in off‑grid communities and charging
infrastructure. Research & Development

Lucid Motors Early‑stage research into second‑life applications with energy storage partners; no commercial
programs yet. Research

Nissan (U.S. operations) Through 4R Energy (in Japan), repurposes Leaf batteries; in U.S., supports research and pilot
programs for stationary storage. Pilot/Research

172



New Energy Exploitation and Application | Volume 04 | Issue 02

Table 12. Cont.

Company Second‑Life Battery Initiative Stage

Proterra Repurposes batteries from electric buses for grid energy storage and EV charging stations. Commercial Deployment
BMW (U.S. initiatives) Conducts pilot projects on repurposing i3 batteries for solar energy storage and V2G systems in

the U.S. Pilot/Research

These examples were compiled based on publicly available data from company reports, press releases, and
official corporate websites. Tesla, for instance, has commercially deployed SLBs in its Powerpack and Megapack
systems. These are used for frequency regulation, peak shaving, improving grid resilience, reducing reliance on fos‑
sil fuels, grid storage, and utility partnerships supporting load balancing and renewable integration [84]. General
Motors has partnered with Redwood Materials to develop closed‑loop battery ecosystems, aiming to enhance ma‑
terial reuse and lifecycle sustainability [85]. Ford is piloting second‑life battery applications as part of its broader
Ford circular economy initiative, with a focus on residential and commercial energy storage [86].

Rivian is actively engaged in research on off‑grid storage applications using retired EV batteries, while Lucid
Motors is in the early research stages of SLB adoption through collaborations with energy storage partners [87,88].
Nissan, through its 4R Energy initiative in Japan, supports second‑life battery projects and has begun pilot research
in the U.S.market [78]. Proterra has repurposed batteries from electric buses for use in grid energy storage systems
and charging infrastructure. It reflects one of the few commercialized SLB deployments among heavy‑duty vehicle
manufacturers [89]. Lastly, BMW has piloted second‑life applications of i3 batteries for solar storage and vehicle‑
to‑grid (V2G) systems in the United States [90].

Although the information is not drawn from peer‑reviewed literature, it provides valuable insight into the
commercial and technological directions of the EV industry regarding SLBs. These company‑level strategies high‑
light emergingmarket pathways and support broader sustainability efforts through extended battery utility beyond
primary automotive use. Table 13 summarizes practical implementation challenges, cost barriers, and policy en‑
forcement issues.

Table 13. Challenges, cost barriers, and policy enforcement.

Parameters Objective 1 AI‑Based Predictive Maintenance Objective 2 End‑of‑Life Recycling Objective 3 Policy and Business Model Innovations

Practical
Implementation
Challenges

• Domain shift between 1st‑life (EV) and 2nd‑
life (stationary) duty cycles.

• Mixed chemistries/form factors across (Orig‑
inal Equipment Manufacturer) OEMs

• Sensor quality
• Safety detection for rare failures

• Pack variability (chemistry, form, adhesives)
• Discharge protocols and short‑circuit risks
• Unknown SoC / embedded charge
• Disassembly hazards & lack of OEM tools
• Process choice (pyro, hydro, direct)
• Chain‑of‑custody tracking after multiple ownership

transfers.

• Non‑uniform testing and safety standards for second‑life
systems across regions/utilities.

• Complex performance contracts
• Uncertain residual value

Cost Barriers
• Extra temperature/impedance sensing
• Pack‑level isolation monitors
• Deployment, maintenance & retraining ex‑

penses
• Operational costs of false positives/negative
• SCADA/BMS/EMS integration

• Hazardous shipment and insurance
• Labor‑intensive teardown
• Expensive emissions/wastewater controls

• High financing cost (risk premiums)
• Warranty & insurance (high premium) expensive
• Providing delivered services (peak shaving, frequency re‑

sponse) adds measurement costs.
• Multi‑standard certification (site, grid code, fire code) ex‑

penses

Policy/
Enforcement Issues

• Data ownership disputes (OEM vs. user)
• Liability for AI decision failures
• Cross‑border restrictions
• AI may conflict with fixedmaintenance sched‑

ules in permits or insurance documents

• Strict transport/storage regulations
• Proof of safe discharge before processing
• Risk of illegal export to informal recyclers

• Incentives/tax credits
• Lack of clarity on second‑life asset qualification and end‑of‑

life obligations

8. Public Perception and Adoption Challenges of EV and Second‑Life Batteries
8.1. Survey Methodology

A structured survey was conducted to assess public knowledge regarding the second life of EV batteries. The
survey was administered through Microsoft Forms within Microsoft Office 365, 2024. To ensure statistical reliabil‑
ity, a sample size of 98 respondents was required, calculated using a 95% confidence level and a ± 5% margin of
error, based on a 6.8% population proportion derived from new EV sales in 2024. The sample size was determined
using the following equations:

n = Z2xP̂(1− P̂)
ε2
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n = 1.962 ∗ 0.068 ∗ (1− 0.068)
0.052

n = 98
The survey was distributed over a period of 21 days, primarily targeting individuals in Odessa, Canyon, and

Midland, Texas, as well as university students. This survey aimed to gauge public awareness, concerns, and will‑
ingness to adopt EVs and second‑life EV batteries for alternative uses. The responses indicate significant gaps in
knowledge, skepticism regarding battery reuse, and key motivators that could drive broader adoption.

8.2. Finding and Analysis
8.2.1. EV Adoption and Public Concerns

The survey revealed that only 5 out of 121 respondents currently own or drive an EV, while the overwhelming
majority (116 respondents) still rely on internal combustion engine (ICE) vehicles. As shown in Figure 4, among
non‑EV owners, 101 drive gasoline‑powered vehicles, followed by 13who use diesel‑powered vehicles and 13who
own hybrid models. These figures reflect the ongoing dominance of conventional vehicles and suggest that EV
adoption remains limitedwithin the surveyed population, potentially due to regional infrastructure limitations and
general consumer hesitancy.

Figure 4. Type of vehicle driven by the public in Midland Texas.

Concerns about EV ownership were both widespread and consistent with national trends. A total of 86 re‑
spondents cited limited charging infrastructure as their primary concern. This was followed by 71 who expressed
anxiety about batterydegradation and replacement costs, and58whopointed to thehighupfront cost of EVs as a sig‑
nificant barrier. Additionally, 43 respondents were concerned about the environmental impact of battery disposal,
while 32 indicated uncertainty about what happens to EV batteries after use, as shown in Figure 5. These concerns
reinforce the idea that affordability, convenience, and lifecycle transparency are major barriers to adoption.

Figure 5. Primary concerns about EV ownership.

174



New Energy Exploitation and Application | Volume 04 | Issue 02

8.2.2. Awareness and Interest in Second‑Life EV Batteries

The main focus of the survey was to assess public awareness regarding the potential for EV batteries to be
reused after their automotive lifecycle. The data indicate a considerable knowledge gap, as shown in Figure 6. One
hundred out of 121 respondents (approximately 83%) were unaware that EV batteries could be repurposed for
applications such as home energy storage or backup power systems. This lack of awareness presents both a chal‑
lenge and an opportunity, suggesting the need for public education campaigns to communicate the environmental
and economic benefits of second‑life battery applications. Despite limited awareness, overall interest in the con‑
cept of repurposed EV batteries was moderate. When asked to rate their interest in using second‑life batteries for
energy storage on a scale of 1 to 10, the average rating was 6.59. This suggests that while curiosity exists, public
enthusiasm could be significantly enhanced through proper education, cost‑saving incentives, and demonstrations
of real‑world applications.

Figure 6. Overall interest in the concept of repurposing EV batteries.

8.2.3. Trust AI‑Based Battery Monitoring

Given the emerging role of AI in managing battery health and safety, the survey explored consumer attitudes
toward AI‑based monitoring systems. The responses were evenly distributed: 51 respondents indicated that they
would trust reused EV batteries more if AI systems monitored their health and safety, 51 were unsure, and 19
expressed distrust. This level of uncertainty indicates that while AI has the potential to foster trust, hesitation
remains due to concerns around transparency, reliability, or a lack of understanding of how such systems work.

Participants were also asked which AI‑powered features would make them more confident in using second‑
life batteries. The most highly valued feature was early failure warnings, selected by 100 respondents as shown in
Figure 7. This was followed by automatic shut‑offs in the event of malfunctions (85 responses), real‑time battery
performance updates (81 responses), and energy efficiency tips from AI (42 responses). These findings highlight
the importance of proactive safety and real‑time insights, which could be critical for improving public perception
of reused battery systems.
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Figure 7. People’s perception of AI‑powered features.

8.2.4. Disposal and Recycling Preferences

Whenaskedwhat shouldhappen toEVbatteries after they canno longer be reused, themajority of respondents
preferred sustainable options. Sixty‑seven respondents supported recycling to recover valuablematerials, while 30
favored further refurbishments. Only 3 respondents indicated landfill disposal as a viable option, and 21 remained
unsure, as shown in Figure 8. These responses suggest that the principles of a circular economy, recycle, refurbish,
and repurpose, are well‑aligned with public values, although some uncertainty remains due to limited information
on available programs.

Figure 8. People’s opinion about disposal and recycling.

The survey also explored what would motivate participants to recycle second‑life EV batteries properly. Man‑
ufacturer buyback programs were the top motivator, with 96 respondents in favor, followed closely by financial
incentives, like cashback or discounts (95 responses), and easy‑to‑find drop‑off locations (90 responses), as shown
in Figure 9. In contrast, only 29 respondents cited government recycling rules as a meaningful motivator. These
results indicate that voluntary, consumer‑centered strategies are likely to bemore effective than regulatory enforce‑
ment in driving environmentally responsible behavior.

Figure 9. People’s motivation to recycle EV batteries.
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Regarding the willingness to pay a small fee at the time of EV purchase to support future battery recycling, 20
respondents said yes, 27 said no, and the majority (74 responses) said it would depend on the cost. This reflects a
high degree of cost sensitivity and reinforces the importance of transparent pricing and clear value propositions in
implementing any policy or business model.

8.2.5. Business Model for Second‑Life Battery Adoption

Understanding consumer preferences for different business models is essential to developing a market for
second‑life EV batteries. When presentedwith options, 50 respondents preferred full ownershipwithmaintenance
support from the manufacturer, while 49 favored a pay‑per‑use model. Only 18 respondents selected the BaaS
model, and just 3 favored a monthly subscription‑based lease, as shown in Figure 10. These responses suggest a
clear preference for ownership and flexible, usage‑based approaches over long‑term leasingmodels or subscription
services.

Figure 10. Business models’ interest in second‑life batteries.

When asked whether governments should mandate companies to reuse or repurpose EV batteries before dis‑
posal, 60 respondents supported the idea, 36 were unsure, and 24 opposed it. Among various policy incentives,
tax discounts for users of second‑life batteries emerged as the most appealing option, favored by 75 respondents,
as shown in Figure 11. Other options like financial support for companies (19 responses), stricter disposal regu‑
lations (14), and public awareness campaigns (13) were less popular, indicating that direct economic benefits for
consumers are more influential than institutional or regulatory actions.

Figure 11. Policy incentives.
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8.2.6. Concerns and Market Outlook

Despitemoderate interest and favorable views of AI, several concerns continue to hinder thewider acceptance
of second‑life EV batteries. Themost cited concernwas safety risks such as fire hazards, selected by 47 respondents.
Uncertainty about battery lifespan (24 responses), lower performance compared to new batteries (21 responses),
and insufficient information about second‑life uses (24 responses) were also commonly mentioned, as shown in
Figure 12. This highlights the importance of addressing both technical challenges and consumer perceptions re‑
lated to safety and durability in order to facilitate market acceptance and growth of second‑life EV batteries.

Figure 12. Concerns about second‑life EV batteries.

Looking forward, public opinion is mixed regarding the adoption of second‑life batteries as amainstream solu‑
tion for renewable energy storage. Only 32 respondents believed that such batteries would become common in the
next decade, while 24 disagreed and 65 were unsure. However, when asked if they would choose a second‑life bat‑
tery over a new one if AI could ensure 90%of the original performance, 86 respondents said theymight, depending
on potential cost savings, and 26 said they would definitely choose it. Only 9 respondents indicated they would not
consider it. These responses reveal that demonstrating economic value combined with validated performance and
safety assurances could be decisive in driving adoption.

The survey reveals both challenges and opportunities for the adoption of second‑life EVbatteries. While aware‑
ness is low, interest is promising when safety and cost benefits are demonstrated. AI‑powered safety features, fi‑
nancial incentives, and consumer‑centered business models appear key to building trust. Policies should prioritize
education, performance transparency, and convenience. With proper support, second‑life batteries can make a
meaningful contribution to sustainable energy strategies and circular economy goals.

9. Conclusions
The increasing proliferation of EVs has accelerated the urgency of addressing the challenges and opportunities

posed by end‑of‑life battery management. This study explored a comprehensive framework for advancing second‑
life EV battery applications through three critical perspectives: AI‑based predictive maintenance, sustainable re‑
cycling strategies, and policy and business model innovations. Collectively, these elements form a synergistic ap‑
proach that enhances battery lifecycle value, supports circular economic objectives, and promotes environmental
sustainability.

AI‑based predictive maintenance emerged as a transformative tool in battery health diagnostics and lifecycle
extension. Unlike traditional empirical approaches, AI‑driven models such as LSTM networks and Gaussian Pro‑
cess Regression enable real‑time monitoring, early fault detection, and precise degradation forecasting. These ca‑
pabilities reduce operational risks, optimize battery reuse potential, and enhance energy efficiency across diverse
second‑life applications, including stationary storage and grid support systems.

Simultaneously, the study highlighted the limitations of existing recycling infrastructures and emphasized the
need for next‑generation recycling technologies. Techniques such as electrochemical separation, solvent extraction,
and hybrid mechanical‑leaching processes provide more sustainable alternatives. They also achieve higher yields
than conventional pyrometallurgical and hydrometallurgical methods. Integrating AI with recycling operations
enhances sorting precision, process selection, and material recovery, thereby reducing environmental impact and
conserving critical resources like lithium, cobalt, and nickel.

Policy frameworks and business models represent the third component of scalable second‑life battery adop‑
tion. Instruments such as battery passports and EPR regulations improve lifecycle traceability and accountabil‑
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ity. Business models like BaaS, leasing, and manufacturer buyback programs offer economically viable options for
consumers and enterprises while incentivizing responsible end‑of‑life practices. Comparative analysis of global
policies further underscores the value of combining regulatory mandates with market‑based incentives.

Public perception, as captured through the survey, reveals thatwhile awareness of second‑life battery potential
remains limited, interest is growing, particularlywhensafety, performance, and cost savings are assured. Trust inAI‑
powered systems and a preference for consumer‑friendly policy incentives (e.g., tax discounts, buyback programs)
highlight the importance of transparency, education, and user‑centered design in promoting widespread adoption.
In conclusion, the integration of intelligent monitoring, advanced recycling, and progressive policy strategies offers
a robust pathway for the sustainable management of second‑life EV batteries. These approaches not only mitigate
environmental risks and resource constraints but also unlock new economic and social value across energy and
mobility sectors. To fully realize this potential, continued interdisciplinary research, stakeholder collaboration, and
public engagement are essential. By aligning technological innovationwith systemic support structures, second‑life
batteries can play a pivotal role in shaping a resilient and sustainable energy future.

While this studyprovides a comprehensive overviewandproposes anovel framework, several limitationsmust
be acknowledged. First, the analysis draws primarily on published research and industry reports, which may not
capture the most recent proprietary data or emerging pilot projects on SLBs. Second, although AI‑based mainte‑
nance strategies are discussed in light of current evidence, their scalability and robustness in real‑world, large‑scale
deployments remain uncertain. Third, the proposed policy and business model recommendations are presented
at a general level and may require significant adaptation to account for country‑specific regulatory environments,
infrastructure readiness, and market conditions. Finally, while the suggested recycling methods are supported by
recovery data, their feasibility and cost‑effectiveness in resource‑constrained regions or smaller community con‑
texts remain untested.

Future research should prioritize field validation of AI‑powered battery management systems through pilot
projects across diverse geographies and application domains. Comparative assessments of environmental, social,
and economic impacts are also needed to establish cost–benefit trade‑offs and long‑term sustainability. Policy de‑
sign should integrate both regulatory measures and incentive mechanisms to accelerate adoption while ensuring
equity across different markets. Emerging tools such as blockchain‑enabled digital “battery passports” combined
with AI‑driven sorting could enhance transparency, traceability, and efficiency in recycling pathways. Ultimately,
the successful implementation of this framework requires interdisciplinary collaboration among engineers, policy‑
makers, economists, and environmental scientists to bridge the gap between conceptual innovation and scalable,
real‑world deployment.
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AI Artificial Intelligence
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BMS Battery Management System
CAGR Compound Annual Growth Rate
CATL Contemporary Amperex Technology Limited
CC Creative Commons
CL Conductivity Loss
EIS Electrochemical Impedance Spectroscopy
EOL End of Life
EPR Extended Producer Responsibility
ESS Energy Storage System
EU European Union
EV Electric Vehicle
GPR Gaussian Process Regression
ICE Internal Combustion Engine
IEA International Energy Agency
IEEE Institute of Electrical andElectronics Engineers
LAM Loss of Active Material
LD Linear Dichroism
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LLI Loss of Lithium Inventory
LSTM Long Short‑Term Memory (neural network)
ML Machine Learning
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ROI Return on Investment
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