Challenges and Pathways for Sustainable Development in Global Land Use Systems: A Narrative Review-Scilight

Land Management and Utilization

Review Article

Challenges and Pathways for Sustainable Development in Global Land Use Systems: A Narrative Review

Downloads

Authors

  • Isaac Sarfo

    College of Geography and Environmental Science, Henan University, Kaifeng 475004, China Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya
  • Nana Adwoa Anokye Effah

    School of Management, Northwestern Polytechnic University, Xi’an 710072, China
  • Michael Atuahene Djan

    Department of Geography, University of Nebraska, Lincoln, Nebraska 68588, USA
  • Michael Kpakpo Allotey

    Department of Geography and Resource Development, University of Ghana, Legon P. O Box LG 25, Ghana
  • Emmanuel Yeboah

    School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Dhekra Ben Amara

    College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
  • Matovu Baker

    Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Clappana P. O. Kollam, Kerala 690525, India
  • Anita Boah

    Department of Public Health and Allied Sciences, Catholic University, Sunyani P. 0. Box 363, Ghana
  • Priscilla Atta Djaba

    Environmental Protection Agency, Accra GP 1613, Ghana
  • Godknows Harrison Xeflide

    Department of Geography and Resource Development, University of Ghana, Legon P. O Box LG 25, Ghana

Land is essential for the flourishing of human civilizations. It is a complex interplay of natural processes, socio-economic dynamics, and environmental sustainability. Hence, it influences policy, research, and practice. This study critically reviews the literature about the challenges and issues currently explored for sustainable development in global land use systems based on an extensive bibliographic database from the Web of Science. It explores the complex world of global land use system development, examining research trends, tools, and future directions. This study’s findings indicate that current research trends emphasize the use of emerging digital technologies, including geospatial and informatics techniques, Geo-detectors, regression models, artificial intelligence, and socio-economic models. These tools are instrumental in addressing the challenges posed by land use change at various scales. They enable us to effectively identify, track, and enhance our understanding of the sustainability, science, and management of land use systems. The studies reviewed offer valuable support for initiatives aimed at adopting innovative theories, methods, instruments, and procedures to tackle land use and sustainability issues related to natural resources globally. Furthermore, new fields within land use systems are increasingly recognized for their potential to transform traditional practices, strengthen urban-rural linkages, and contribute to the realization of the 17 UN Sustainable Development Goals. This recognition stems from the multidisciplinary nature of the discipline.

Keywords:

Current Issues; Global; Land Cover; Land Management; Land Use; Sustainable Development

References

  1. Verburg, P.H., Crossman, N., Ellis, E.C., et al., 2015. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene. 12, 29–41. DOI: https://doi.org/10.1016/j.ancene.2015.09.004
  2. Boserup, E., 2013. The conditions of agricultural growth: the economics of agrarian change under population pressure, 1st ed. Routledge: London, UK. pp.1–124. DOI: https://doi.org/10.4324/9781315016320
  3. Darity, W.A., 1980. The Boserup theory of agricultural growth: a model for anthropological economics. Journal of Development Economics. 7(2), 137–157. DOI: https://doi.org/10.1016/0304-3878(80)90001-2
  4. Sarfo, I., Qiao, J., Effah, N.A.A., et al., 2024. Advances in global land use systems development and sustainability: a bibliometric analysis. Acta Scientiarum Polonorum. Formatio Circumiectus. 23(2), 39–65. DOI: https://doi.org/10.15576/ASP.FC/187717
  5. Spangler, K., Burchfield, E.K., Schumacher, B., 2020. Past and current dynamics of U.S. agricultural land use and policy. Frontiers in Sustainable Food Systems. 4, 98. DOI: https://doi.org/10.3389/fsufs.2020.00098
  6. Kumar, S., Meena, R.S., Sheoran, S., et al., 2022. Remote sensing for agriculture and resource management. In: Jhariya, M.K., Meena, R.S., Banerjee, A., et al. (eds.). Natural Resources Conservation and Advances for Sustainability. Elsevier: Amsterdam, Netherlands. pp. 91–135. DOI: https://doi.org/10.1016/B978-0-12-822976-7.00012-0
  7. Schirpke, U., Tasser, E., Borsky, S., et al., 2023. Past and future impacts of land-use changes on ecosystem services in Austria. Journal of Environmental Management. 328, 118728. DOI: https://doi.org/10.1016/j.jenvman.2023.118728
  8. Dinesha, S., Hosur, S.R., Toushif, P.K., et al., 2023. Sustaino-resilient agroforestry for climate resilience, food security and land degradation neutrality. In: Raj, A., Jhariya, M.K., Banerjee, A., et al. (eds.). Land and Environmental Management through Forestry. 9, pp. 145–162. DOI: https://doi.org/10.1002/9781119910527.CH9
  9. Oh, S., Lu, C., 2022. Vertical farming - smart urban agriculture for enhancing resilience and sustainability in food security. The Journal of Horticultural Science and Biotechnology. 98(2), 133–140. DOI: https://doi.org/10.1080/14620316.2022.2141666
  10. Oliveira, E., Meyfroidt, P., 2021. Strategic land-use planning instruments in tropical regions: state of the art and future research. Journal of Land Use Science. 16(5–6), 479–497. DOI: https://doi.org/10.1080/1747423X.2021.2015471
  11. Naboureh, A., Bian, J., Lei, G., et al., 2021. A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries. Big Earth Data. 5(2), 237–257. DOI: https://doi.org/10.1080/20964471.2020.1842305
  12. Aria, M., Cuccurullo, C., 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of informetrics. 11(4), 959–975. DOI: https://doi.org/10.1016/j.joi.2017.08.007
  13. Tscharntke, T., Klein, A.M., Kruess, A., et al., 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters. 8(8), 857–874. DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x
  14. Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma. 124(1–2), 3–22. DOI: https://doi.org/10.1016/j.geoderma.2004.03.005
  15. Dormann, C.F., Schweiger, O., Augenstein, I., et al., 2007. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Global Ecology and Biogeography. 16(6), 774–787. DOI: https://doi.org/10.1111/j.1466-8238.2007.00344.x
  16. Chen, C., Park, T., Wang, X., et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability. 2(2), 122–129. DOI: https://doi.org/10.1038/s41893-019-0220-7
  17. Scannell, L., Gifford, R., 2010. Defining place attachment: a tripartite organizing framework. Journal of Environmental Psychology. 30(1), 1–10. DOI: https://doi.org/10.1016/j.jenvp.2009.09.006
  18. Coral, C., Bokelmann, W., Bonatti, M., et al., 2021. Understanding institutional change mechanisms for land use: lessons from Ecuador's history. Land Use Policy. 108, 105530. DOI: https://doi.org/10.1016/j.landusepol.2021.105530
  19. Sheng, E.L., 2024. A review on the geopolitics of China: from perspectives of history and theories. From colonial seaports to modern coastal cities. Palgrave Macmillan: Singapore. pp. 1–28. DOI: https://doi.org/10.1007/978-981-99-9077-1_1
  20. Pulver, S., Fiorella, K.J., Aviolo, M., et al., 2022. The roots of socio-environmental research in geography and anthropology. Foundations of socio-environmental research: legacy readings with commentaries. Cambridge University Press: Cambridge, UK. pp. 123–132. DOI: https://doi.org/10.1017/9781009177856.012
  21. Long, H., 2020. Understanding land use transitions: a theoretical approach. Land use transitions and rural restructuring in China. Springer: Singapore. pp. 3–29. DOI: https://doi.org/10.1007/978-981-15-4924-3_1
  22. Briassoulis, H., 2020. Analysis of land use change: theoretical and modeling approaches, 2nd ed. WVU Research Repository: Morgantown, WV, USA.
  23. Petroni, M.L., Siqueira-Gay, J., Gallardo, A.L.C.F., et al., 2022. Understanding land use change impacts on ecosystem services within urban protected areas. Landscape and Urban Planning. 223, 104404. DOI: https://doi.org/10.1016/j.landurbplan.2022.104404
  24. Long, H., Zhang, Y., Ma, L., et al., 2021. Land use transitions: progress, challenges and prospects. Land. 10(9), 903. DOI: https://doi.org/10.3390/land10090903
  25. da Silveira, J.G., de Oliveira Neto, S.N., do Canto, A.C.B., et al., 2022. Land use, land cover change and sustainable intensification of agriculture and livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability. 14(5), 1–23. DOI: https://doi.org/10.3390/su14052563
  26. Brundtland, G., 1987. Report of the world commission on environment and development: our common future. United Nations General Assembly document. Available from: https://digitallibrary.un.org/record/139811 (cited 20 February 2024).
  27. Egidi, G., Salvati, L., Falcone, A., et al., 2022. Re-framing the latent nexus between land-use change, urbanization and demographic transitions in advanced economies. Sustainability. 13(2), 533. DOI: https://doi.org/10.3390/su13020533
  28. Abera, H.G., 2023. The role of education in achieving the sustainable development goals (SDGs): a global evidence based research article. International Journal of Social Science and Education Research Studies. 3(1), 67–81. DOI: https://doi.org/10.55677/ijssers/V03I1Y2023-09
  29. Shayan, N.F., Mohabbati-Kalejahi, N., Alavi, S., et al., 2022. Sustainable development goals (SDGs) as a framework for corporate social responsibility (CSR). Sustainability. 14(3), 1222. DOI: https://doi.org/10.3390/su14031222
  30. Ruggerio, C.A., 2021. Sustainability and sustainable development: a review of principles and definitions. Science of the Total Environment. 786, 147481. DOI: https://doi.org/10.1016/j.scitotenv.2021.147481
  31. Edwards, M.G., 2021. The growth paradox, sustainable development, and business strategy. Business Strategy and the Environment. 30(7), 3079–3094. DOI: https://doi.org/10.1002/bse.2790
  32. Bonnedahl, K.J., Heikkurinen, P., Paavola, J., 2022. Strongly sustainable development goals: overcoming distances constraining responsible action. Environmental Science & Policy. 129, 150–158. DOI: https://doi.org/10.1016/j.envsci.2022.01.004
  33. Lima, V., 2021. Collaborative governance for sustainable development. In: Leal Filho, W., Marisa Azul, A., Brandli, L., et al. (eds). Peace, justice and strong institutions. Springer International Publishing: Cham, Switzerland. pp.79–90. DOI: https://doi.org/10.1007/978-3-319-95960-3_2
  34. Guo, Y., Qiao, W., 2020. Rural migration and urbanization in China: historical evolution and coupling pattern. Sustainability. 12(18), 7307. DOI: https://doi.org/10.3390/su12187307
  35. Ebikabowei, B.A., Eboh, I.A., Egbuchulam, P.C., 2021. Urbanization and sustainable cities in Nigeria. International Journal of Economics Development Research. 2(1), 16–31. DOI: https://doi.org/10.37385/ijedr.v2i1.222
  36. Tariq, A., Shu, H., Siddiqui, S., et al., 2021. Monitoring land use and land cover changes using geospatial techniques, a case study of Fateh Jang, Attock, Pakistan. Geography, Environment, Sustainability. 14(1), 41–52. DOI: https://doi.org/10.24057/2071-9388-2020-117
  37. Nguyen, T.T., Grote, U., Neubacher, F., et al., 2023. Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South. Current Opinion in Environmental Sustainability. 63, 101322. DOI: https://doi.org/10.1016/j.cosust.2023.101322
  38. Nguyen, B.Q., Tran, T.N.D., Grodzka-Łukaszewska, M., et al., 2022. Assessment of urbanization-induced land-use change and its impact on temperature, evaporation, and humidity in central Vietnam. Water. 14(21), 3367. DOI: https://doi.org/10.3390/w14213367
  39. Surya, B., Ahmad, D.N.A., Sakti, H.H., et al., 2020. Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, south Sulawesi province, Indonesia. Land. 9(3), 95. DOI: https://doi.org/10.3390/land9030095
  40. Lavorel, S., Locatelli, B., Colloff, M.J., et al., 2020. Co-producing ecosystem services for adapting to climate change. Philos. Philosophical Transactions of the Royal Society B. 375(1794), 20190119. DOI: https://doi.org/10.1098/rstb.2019.0119
  41. Enamul, A.K.E., Mukhopadhyay, P., Nepal, M., et al., 2022. South Asian Stories of Climate Resilience. Climate Change and Community Resilience. Springer: Singapore. pp. 1–7. DOI: https://doi.org/10.1007/978-981-16-0680-9_1
  42. Galan, J., Galiana, F., Kotze, D.J., et al., 2023. Landscape adaptation to climate change: local networks, social learning and co-creation processes for adaptive planning. Global Environmental Change. 78, 102627. DOI: https://doi.org/10.1016/j.gloenvcha.2022.102627
  43. Fekete, H., Kuramochi, T., Roelfsema, M., et al., 2021. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renewable and Sustainable Energy Reviews. 137, 110602. DOI: https://doi.org/10.1016/j.rser.2020.110602
  44. Saraji, M.K., Streimikiene, D., 2023. Challenges to the low carbon energy transition: a systematic literature review and research agenda. Energy Strategy Reviews 45, 101163. DOI: https://doi.org/10.1016/j.esr.2023.101163
  45. Abdukadirova, M.A., Yokubov, S.S., 2022. The use of geoinformation systems in the study of the land fund of household and Dekhkan Farms. Texas Journal of Multidisciplinary Studies. 8, 163–164.
  46. Wang, S.W., Gebru, B.M., Lamchin, M., et al., 2020. Land use and land cover change detection and prediction in the kathmandu district of nepal using remote sensing and GIS. Sustainability. 12(9), 3925. DOI: https://doi.org/10.3390/su12093925
  47. Rehman, A., Saba, T., Kashif, M., et al., 2022. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy. 12(1), 127. DOI: https://doi.org/10.3390/agronomy12010127
  48. Teague, R., Kreuter, U., 2020. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Frontiers in Sustainable Food Systems. 4, 534187. DOI: https://doi.org/10.3389/fsufs.2020.534187
  49. Mohamed, A., Worku, H., 2020. Simulating urban land use and cover dynamics using cellular automata and markov chain approach in Addis Ababa and the surrounding. Urban Climate. 31, 100545. DOI: https://doi.org/10.1016/j.uclim.2019.100545
  50. Xu, P., Tsendbazar, N., Herold, M., et al., 2024. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sensing of Environment. 311, 114316. DOI: https://doi.org/10.1016/j.rse.2024.114316
  51. Afuye, G.A., Nduku, L., Kalumba, A.M., et al., 2024. Global trend assessment of land use and land cover changes: a systematic approach to future research development and planning. Journal of King Saud University-Science. 36(7), 103262. DOI: https://doi.org/10.1016/j.jksus.2024.103262
  52. Zhang, T., Cheng, C., Wu, X., 2023. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Scientific Data. 10(1), 748. DOI: https://doi.org/10.1038/s41597-023-02637-7
  53. Copernicus Climate Change Service (C3S), 2019. Land cover classification gridded maps from 1992 to present derived from satellite observation. Climate Data Store (CDS). DOI: https://doi.org/10.24381/cds.006f2c9a
  54. Zhang, T., Cheng, C., Wu, X., 2023. Global LULC projection dataset from 2020 to 2100 at a 1km resolution. figshare. DOI: https://doi.org/10.6084/m9.figshare.23542860
  55. Chen, G., Li, X., Liu, X., 2021. Future global land datasets with a 1-km resolution based on the SSP-RCP scenarios. Scientific Data. 9, 125. DOI: https://zenodo.org/record/4584775
  56. Luo, M., et al., 2022. 1 km land use/land cover change of China under comprehensive socioeconomic and climate scenarios for 2020–2100. Scientific Data. 9, 110. DOI: https://doi.org/10.1038/s41597-022-01219-3
  57. Monkkonen, P., Guerra, E., Escamilla, J.M., et al., 2024. A global analysis of land use regulation, urban form, and greenhouse gas emissions. Cities. 147, 104801. DOI: https://doi.org/10.1016/j.cities.2024.104801
  58. National Research Council (NRC), 2010. Toward sustainable agricultural systems in the 21st century. The National Academies Press: Washington, DC, USA. DOI: https://doi.org/10.17226/12832
  59. Hasnat, G.N.T., Hossain, M.K., 2021. Examining international land use policies, changes, and conflicts. IGI Global: Hershey, PA, USA. DOI: https://doi.org/10.4018/978-1-7998-4372-6
  60. Li, X., Love, P.E.D., Liang, X., et al., 2024. Public-private partnerships and land value capture: a convergent framework to improve the procurement of urban rail transit infrastructure. Developments in the Built Environment. 18, 100441. DOI: https://doi.org/10.1016/j.dibe.2024.100441
  61. Davis, J., Pijawka, D., Wentz, E.A., et al., 2020. Evaluation of community-based land use planning through Geodesign: application to American Indian communities. Landscape and Urban Planning. 203, 103880. DOI: https://doi.org/10.1016/j.landurbplan.2020.103880
  62. Bassett, E.M., Jacobs, J.M., 1997. Community-based tenure reform in urban Africa: the community land trust experiment in Voi, Kenya. Land Use Policy. 14(3), 215–229. DOI: https://doi.org/10.1016/S0264-8377(97)00003-3
  63. Alden Wily, L., 2018. The community land act in Kenya: opportunities and challenges for communities. Land. 7(1), 12. DOI: https://doi.org/10.3390/land7010012
  64. Dale, A., Vella, K., Ryan, S., et al., 2020. Governing community-based natural resource management in Australia: international implications. Land. 9(7), 234. DOI: https://doi.org/10.3390/land9070234
  65. McGregor, J., Parsons, M., Glavac, S., 2021. Local government capacity and land use planning for natural hazards: a comparative evaluation of Australian local government areas. Planning Practice & Research. 37(2), 248–268. DOI: https://doi.org/10.1080/02697459.2021.1919431
  66. Bibri, S.E., Krogstie, J., Kärrholm, M., 2020. Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Developments in the built environment. 4, 100021. DOI: https://doi.org/10.1016/j.dibe.2020.100021
  67. Xie, H., Zhang, Y., Zeng, X., et al., 2020. Sustainable land use and management research: a scientometric review. Landscape Ecology. 35, 2381–2411. DOI: https://doi.org/10.1007/s10980-020-01002-y
  68. Liu, J., Jin, X., Xu, W., et al., 2020. A new framework of land use efficiency for the coordination among food, economy and ecology in regional development. Science of the Total Environment. 710, 135670. DOI: https://doi.org/10.1016/j.scitotenv.2019.135670
  69. Subramanian, A., Nagarajan, A.M., Vinod, S., et al., 2023. Long-term impacts of climate change on coastal and transitional eco-systems in India: an overview of its current status, future projections, solutions, and policies. RSC advances. 13, 12204–12228. DOI: https://doi.org/10.1039/d2ra07448f
  70. Wu, J., 2022. A new frontier for landscape ecology and sustainability: introducing the world's first atlas of urban agglomerations. Landscape Ecology. 37, 1721–1728. DOI: https://doi.org/10.1007/s10980-022-01475-z
  71. Cordova-Pozo, K., Rouwette, E.A.J.A., 2023. Types of scenario planning and their effectiveness: a review of reviews. Futures. 146, 103153. DOI: https://doi.org/10.1016/j.futures.2023.103153