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Abstract: Facial expressions play a vital role in human communication, especially for individuals with motor 

impairments who rely on alternative interaction methods. This study presents a deep learning-based approach for 

real-time emotion classification using stretchable strain sensors integrated into a wearable system. The sensors, 

fabricated with conductive silver ink on a flexible Tegaderm substrate, detect subtle facial muscle movements. 

Positioned strategically on the forehead, upper lip, lower lip, and left cheek, these sensors effectively capture 

emotions such as happiness, neutrality, sadness, and disgust. A data pipeline incorporating Min-Max 

normalization and SMOTE balancing addresses noise and class imbalances, while dimensionality reduction 

techniques like PCA and t-SNE enhance data visualization. The system’s classification performance was evaluated 

using standard machine learning metrics, achieving an overall accuracy of 76.6%, with notable success in 

distinguishing disgust (86.0% accuracy) and neutrality (81.0% accuracy). This work offers a flexible, cost-effective, 

and biocompatible solution for emotion recognition, with potential applications in rehabilitation robotics, 

assistive technologies, and human-computer interaction. 

Keywords: Facial Expression Recognition; Emotion Classification; Stretchable Sensors; Deep Learning; 

Wearable Technology; Rehabilitation Robotics 

 

1. Introduction 

Facial expressions are fundamental to human communication, conveying emotions and intentions that are 

critical for social interaction [1–4]. In recent years, recognizing and interpreting these expressions has gained 

prominence in fields such as rehabilitation robotics [5–7], assistive technologies [8], and affective computing [9]. 

For individuals with motor impairments or communication difficulties, systems that translate facial expressions 

into actionable control signals offer significant potential to enhance quality of life. However, achieving accurate 

and reliable facial expression recognition requires sensor technologies that can effectively capture subtle muscle 

movements while remaining flexible, comfortable, and easy to integrate into wearable systems [10]. 

Traditional methods for facial expression recognition have relied on several sensing technologies, each with 

notable limitations. Rigid strain sensors, though capable of detecting mechanical deformation [11], lack the 

flexibility to conform to the dynamic contours of the human face [12]. This limits their ability to capture real-

time facial movements accurately. Computer vision, which detects expressions without physical contact, are 

highly sensitive to variations in lighting, occlusions, and head movements, reducing their reliability in practical 

settings [10,13]. Electromyography (EMG) electrodes provide high-resolution data on muscle activity but require 

precise placement, conductive gels, and complex setups, making them cumbersome and uncomfortable for 

prolonged use [14–16]. These limitations highlight the need for a sensing solution that combines flexibility, 

biocompatibility, sensitivity, and ease of use. To address this gap, we present a new stretchable strain sensor 
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capable of detecting facial movements for real-time emotion classification. The sensor was developed at the 

Electronics System Laboratory of the International Islamic University Malaysia (IIUM) and leverages changes in 

electrical resistance caused by mechanical strain [17,18]. This design enables accurate detection of subtle facial 

muscle deformations while overcoming the shortcomings of traditional technologies. 

The sensor consists of a conductive silver ink trace printed on a Tegaderm substrate, a medical-grade 

adhesive film known for its flexibility, comfort, and biocompatibility. This stretchable architecture allows the 

sensor to conform to the skin’s surface, maintaining reliable contact during dynamic facial expressions. The 

fabrication process, utilizing screen-printing techniques, ensures a cost-effective and scalable production 

method. With a gauge factor of 84 and the ability to withstand up to 20% elongation without losing functionality, 

the sensor provides the sensitivity and durability required for real-world applications [19,20]. To optimize facial 

expression detection, four sensors are strategically positioned on key facial regions: the forehead, upper lip, 

lower lip, and left cheek. These locations were selected for their ability to exhibit distinct and consistent muscle 

movements associated with emotions such as happiness, sadness, neutrality, and disgust. The sensors are 

integrated with an Arduino Mega 2560 microcontroller, which captures analog voltage signals and transmits the 

data to a computer for real-time processing and analysis. 

This study also incorporates a robust data processing pipeline to ensure reliable emotion classification. 

Techniques such as Min-Max normalization standardize the sensor readings, while Synthetic Minority Over-

sampling Technique (SMOTE) addresses class imbalances by generating synthetic data for underrepresented 

emotions [21]. Dimensionality reduction methods, including Principal Component Analysis (PCA) and t-

Distributed Stochastic Neighbor Embedding (t-SNE), enhance the visualization of sensor features and help 

identify patterns in the data [22,23].Performance evaluation of the system is conducted using standard machine 

learning metrics, including accuracy, precision, recall, F1-score, and area under the ROC curve (AUC). Results 

indicate that the system effectively distinguishes between certain emotions, such as disgust and neutrality, while 

highlighting challenges in differentiating subtle expressions like happiness and sadness. Visualizations, including 

scatter plots, heatmaps, and confusion matrices, provide further insights into the system’s strengths and areas 

for improvement. 

The stretchable sensor architecture presented in this work offers a promising solution for real-time facial 

expression recognition. Its combination of flexibility, high sensitivity, cost-effective fabrication, and 

biocompatibility makes it suitable for applications in rehabilitation robotics, assistive devices, and human-

computer interaction. By addressing the limitations of existing methods, this study lays the groundwork for more 

adaptive and responsive technologies that can enhance communication and interaction for a wide range of users. 

Future work will focus on expanding the participant pool, refining feature extraction techniques, and exploring 

advanced machine learning models to improve classification accuracy and robustness. 

2. Materials and Methods 

2.1. Architecture of Stretchable Sensor 

The stretchable sensor developed and fabricated in this study, shown in Figure 1, was created at the 

Electronics System Laboratory of the International Islamic University Malaysia (IIUM). This cost-effective strain 

sensor is designed to detect facial movements and is intended for use in rehabilitation robotics. It functions by 

measuring variations in electrical resistance caused by mechanical strain, allowing it to precisely track subtle 

skin deformations [24]. 

2.1.1. Custom Sensor Design and Fabrication Methods 

The stretchable sensor features a conductive silver ink trace printed onto a Tegaderm substrate, a flexible 

and bio- compatible medical-grade adhesive film (Figures 1 A–B). With dimensions of 30 mm in length and 1 

mm in width, the sensor is designed to retain conductivity during mechanical deformation. The silver ink, 

applied via screen printing, has a bulk resistivity of 2.0 × 10−4 Ω ⋅  cm and maintains stable electrical properties 

even under 20% elongation. 

The conductive trace includes terminal pads at both ends, providing reliable electrical connections for 

stable data acquisition during operation. Tegaderm serves as both the substrate and adhesive, streamlining the 
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fabrication process and enhancing user comfort and safety when applied to human skin. The sensor achieves a 

gauge factor of 84, reflecting its high sensitivity in detecting subtle facial expressions [24]. 

 

Figure 1. Stretchable sensor design and system integration. (A) Schematic diagram of the stretchable sensor 
showing a conductor embedded on a flexible substrate, with a conductor length of 30 mm and width of 1 mm. (B) 
Photograph of the developed stretchable sensor, illustrating the physical structure of the conductor and 
substrate. (C) Circuit diagram of a single stretchable sensor connected to a 10-ohm resistor and an Arduino 
analog input pin for voltage measurement. (D) Expanded circuit schematic showing four stretchable sensors, 
each connected to a 10-ohm resistor and interfacing with analog input pins of the Arduino microcontroller. (E) 
System setup depicting four sensors interfaced with an Arduino Mega microcontroller, which sends data via USB 
to a laptop for analysis and visualization. 

2.1.2. Electrical Circuit and Data Acquisition System 

The electrical architecture of the sensor system is depicted in Figures 1 C–E. Each sensor is integrated into 

a voltage divider circuit alongside a 10-ohm fixed resistor, enabling precise detection of resistance changes 

caused by sensor deformation. These circuits interface with an Arduino Mega 2560 microcontroller, which 

captures analog voltage signals reflecting strain-induced variations in resistance [24]. Four sensors are 

strategically placed and connected in parallel to enhance the detection of facial movements. Each sensor is 

interfaced with the microcontroller through individual analog input pins. The microcontroller sends the 

collected data to a laptop via USB for real-time processing and analysis (Figure 1 E). 

2.1.3. Performance and Advantages 

The stretchable sensor exhibits excellent flexibility, maintaining functionality even under 20% strain. The 

use of a screen-printing technique on Tegaderm streamlines the fabrication process, reducing costs by 

eliminating additional adhesive layers. With a high gauge factor of 84, the sensor delivers exceptional sensitivity 

for accurately detecting subtle skin deformations. Additionally, Tegaderm’s biocompatibility and comfort make 

the sensor ideal for extended use on human skin. These features make the sensor highly suitable for real-time 

facial expression recognition in wearable technologies, especially in rehabilitation robotics and assistive devices. 

By integrating this sensor system, facial movements can be reliably captured and translated into control signals, 

significantly improving the functionality and responsiveness of robotic systems [24]. 

2.2. Data Collection 

Facial expression data were collected by placing stretchable sensors at four key locations on the 

participants’ faces: the forehead, upper lip, lower lip, and left cheek. These positions were selected for their 

responsiveness to muscle activity during various facial expressions. The study included five healthy individuals, 
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aged 22 to 30, representing a range of ethnic backgrounds, including Asian and African ethnicities. The 

participant group comprised three males and two females [24]. 

2.2.1. Experimental Procedure 

Each participant was instructed to perform four distinct facial expressions—happy, neutral, sad, and 

disgusted— repeated across three cycles, yielding a total of 12 expressions per participant. Data collection 

sessions were conducted in a controlled setting with uniform lighting and minimal external distractions to 

maintain the accuracy of the sensor readings. Participants were seated comfortably, and each facial expression 

was sustained for a specified duration to ensure consistent data capture across all individuals [24]. 

2.2.2. Data Pre-Processing 

After data collection, the raw sensor data underwent pre-processing to eliminate noise and normalize the 

readings. This step was essential to improve the accuracy of subsequent analysis and system validation. The pre-

processed data were then utilized to test the facial expression recognition algorithm and assess the system’s 

capability to adjust the rehabilitation robot’s motor speed in response to the detected expressions [24]. 

2.2.3. Ethical Approval and Consent 

Ethical approval for this study was granted by the IIUM Research Ethics Committee (IREC) under 

approval number IREC 2021-301. All participants provided informed consent before participating, and 

appropriate measures were implemented to ensure their safety and comfort throughout the study. Lastly, 

while the small sample size limits the generalizability of the findings, the study provides a preliminary 

validation of the proposed system. Future research should aim to include a larger and more diverse 

participant pool to further validate the system’s performance across different populations. 

2.3. Data Visualization 

The dataset was collected using four sensors placed on key regions of the face: Sensor 1 on the forehead, 

Sensor 2  on the upper lip, Sensor 3 on the lower lip, and Sensor 4 on the left cheek (Figure 2) A. This sensor 

placement captures both subtle and pronounced facial movements, facilitating the analysis of expression-

related data for the following emotions: 0.0 (Disgust), 1.0 (Happy), 2.0 (Neutral), and 3.0 (Sad). The class 

distribution (Figure 2) B shows a balanced dataset, with an approximately equal number of samples for each 

emotion. This balance ensures that the training process is not biased toward any emotion class, supporting 

reliable model performance evaluation. Figure 2 C presents a pairwise plot of the sensor features (S1, S2, S3, 

and S4) across the different emotion classes. The diagonal plots display the distributions of individual 

features, while the off-diagonal scatter plots highlight feature correlations. Distinct clustering patterns are 

visible: 

• S1 (forehead sensor) and S4 (left cheek sensor) show clear separation, particularly for Sad (3.0) and 

Disgust (0.0), indicating these features are effective in distinguishing these emotions. 

• S2 (upper lip sensor) and S3 (lower lip sensor) exhibit more overlap, suggesting these features may 

capture similar movements, especially for Happy (1.0) and Neutral (2.0). 

The scatter plot of the first two features (Figure 2) D reveals class separability, with distinct clusters for 

certain emotions. For example, Happy (1.0) is concentrated in the lower range of Feature 1, while Neutral (2.0) 

shows greater dispersion. This indicates that these features provide useful, though not perfect, separation for 

emotion classification. Figure 2 E shows the histogram of the first feature, where most data points are 

concentrated in the lower range. This skewed distribution suggests that subtle facial movements, particularly for 

Neutral (2.0) and Disgust (0.0), dominate this feature. Principal Component Analysis (PCA) was applied to reduce 

the dataset’s dimensionality (Figure 2 E). The resulting scatter plot shows that the dataset maintains emotion 

class separability even in lower dimensions. Distinct clusters are evident, especially for Sad (3.0) and Disgust 

(0.0), indicating that meaningful information is preserved after dimensionality reduction. 
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Figure 2. Sensor configuration and data analysis for emotion classification. (A) Sensor placement on the face for 
capturing facial muscle data: Sensor 1 (Forehead), Sensor 2 (Upper Lip), Sensor 3 (Lower Lip), and Sensor 4 (Left 
Cheek). (B) Pairwise scatter plot matrix showing the distribution of features (S1–S4) across different emotion 
classes labeled as 0.0 (Disgust), 1.0 (Happy), 2.0 (Neutral), and 3.0 (Sad). (C) Bar chart representing the class 
distribution in the dataset, showing a balanced number of samples across all emotion classes. (D) Scatter plot of 
the first two features highlighting the separation between emotion classes. (E) Histogram of the first feature 
showing the distribution of feature values. (F) PCA (Principal Component Analysis) plot representing reduced 
features colored by emotion class, illustrating class clustering patterns. (G) Heatmap of sensor data indicating 
feature magnitudes across the dataset for each emotion class. 

Figure 2 F presents a heatmap of sensor data, showing the magnitude and variance of sensor readings over 

time. Variations in intensity reveal patterns of facial movements corresponding to different emotions. Notable 

spikes in intensity reflect pronounced expressions like Disgust (0.0) and Sad (3.0), while consistent low-intensity 

regions likely correspond to Neutral (2.0) states. 

These visualizations provide a comprehensive understanding of the dataset, demonstrating balanced 

emotion distribution, feature correlations, and class separability. The insights gained support the development of 

reliable machine learning models for classifying facial expressions. 

2.4. Feature Normalization and Balancing Methods 

To ensure consistent feature scaling, we employed Min-Max normalization, which scales each feature ∞i to 

a specified range [0,1] using the formula: 
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where ∞ is the original feature value, ∞min and ∞max are the minimum and maximum values of the feature, 

respectively. This normalization ensures that all features contribute proportionally to the model’s training 

process. 

To address the issue of class imbalance, we applied the Synthetic Minority Over-sampling Technique 

(SMOTE). 

SMOTE generates synthetic samples for minority classes by interpolating between existing samples. Given 

two minority class feature vectors i and j , a new synthetic sample new is generated as follows: 

where λ is a random value in the range [0,1]. This technique helps balance the dataset, improving model 

generalization by preventing bias toward the majority class. 

For dimensionality reduction and visualization, we used t-Distributed Stochastic Neighbor Embedding (t-

SNE) and Uniform Manifold Approximation and Projection (UMAP). t-SNE minimizes the Kullback-Leibler 

divergence between high-dimensional and low-dimensional data distributions by minimizing: 

where pij represents the pairwise similarities in the high-dimensional space and qij represents the pairwise 

similarities in the low-dimensional space. Similarly, UMAP preserves the local structure by approximating the 

fuzzy topological structure of the data manifold. 

These methods collectively enhance feature representation, ensuring robust model performance and 

interpretable results. 

2.5. Performance Evaluation 

To evaluate the performance of the proposed model, we employed standard classification metrics, including 

accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC). These metrics are defined as 

follows: 

2.5.1. Accuracy 

Accuracy measures the ratio of correctly predicted samples to the total number of samples and is given by: 

where TP represents true positives, TN true negatives, FP false positives, and FN false negatives. While accuracy 

provides an overall measure, it may be less reliable for imbalanced datasets. 

2.5.2. Precision 

Precision, also known as the positive predictive value, measures the proportion of correctly predicted 

positive samples among all predicted positives: 

A high precision indicates a low rate of false positives, making it particularly important in applications 

where false positives are costly. 

2.5.3. Recall 
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Recall, or sensitivity, measures the proportion of correctly predicted positive samples out of all actual 

positives: 

High recall indicates a low rate of false negatives, which is crucial in applications where missing a positive 

case is detrimental. 

2.5.4. F1-Score 

The F1-score is the harmonic means of precision and recall, providing a balanced measure of both metrics: 

This metric is particularly useful when the dataset is imbalanced, as it accounts for both false positives and 

false negatives. 

2.5.5. Area Under the ROC Curve (AUC) 

The ROC (Receiver Operating Characteristic) curve plots the true positive rate (TPR) against the false 

positive rate (FPR) across different decision thresholds. The AUC quantifies the overall ability of the model to 

discriminate between positive and negative classes and is defined as: 

where the true positive rate (TPR) and false positive rate (FPR) are given by: 

A higher AUC indicates better model performance, with values closer to 1.0 signifying strong discrimination 

ability. 

2.5.6. Computational Efficiency 

To measure computational efficiency, we evaluated the training time and inference time. The training time 

Ttrain represents the total time taken to train the model for E epochs: 

where te is the time taken for each epoch. Inference time interenceT  is the average time required to classify a single 

sample. These evaluation metrics provide a comprehensive understanding of the model’s performance and 

efficiency, ensuring that the results are reliable and interpretable. 

3. Results 

3.1. Confusion Matrix Analysis 

The classification performance across the four emotional states—Disgust, Happy, Neutral, and Sad—is 

summarized in the confusion matrix (Figure 3A). The overall model accuracy is 76.6%, calculated as the 

proportion of correctly predicted samples out of the total. The Disgust class had the highest accuracy, with 988 

out of 1149 samples correctly classified (accuracy: 86.0%). Misclassifications included 59 samples as Happy, 21 

as Neutral, and 81 as Sad. The Happy class achieved 71.8% accuracy, with 824 out of 1148 samples correctly 

classified, though 111 samples were misclassified as Disgust, 54 as Neutral, and 159 as Sad.  
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For the Neutral class, the model correctly classified 931 out of 1149 samples (accuracy: 81.0%), with 

misclassifications of 54 samples as Disgust, 126 as Happy, and 38 as Sad. The Sad class exhibited the lowest 

accuracy at 67.6%, with 776 out of 1148 samples correctly classified and frequent misclassifications as Disgust 

(255 samples), Happy (82 samples), and Neutral (35 samples). 

 

Figure 3. Model performance and visualization for emotion classification. (A) Confusion matrix showing the 
model’s performance across the four emotion classes: Disgust (0.0), Happy (1.0), Neutral (2.0), and Sad (3.0). (B) 
Accuracy curves for training and validation datasets across 300 epochs. (C) Loss curves for training and 
validation datasets across 300 epochs. (D) ROC (Receiver Operating Characteristic) curves for each class, 
depicting the trade-off between true positive rate and false positive rate. (E) Precision-recall curves for each 
class, illustrating the balance between precision and recall. (F) t-SNE projection of test data, showing the 
clustering patterns of emotion classes based on the model’s learned features. (G) UMAP projection of test data, 
visualizing the separation of emotion classes in lower-dimensional space. 

3.2. Model Accuracy and Loss 

The accuracy and loss curves over 300 epochs are depicted in Figure 3B,C. The model achieved a 

final training accuracy of 70.2% and a validation accuracy of 75.4%. The training loss decreased consistently 

to 0.65, while the validation loss stabilized at 0.82. The divergence between training and validation loss, 

noticeable after 50 epochs, suggests overfitting, where the model performs better on the training set 

compared to the validation set. 

3.3. ROC and Precision-Recall Analysis 

The ROC curves (Figure 3D) indicate the model’s discriminative power for each class, with the  

following area-under- the-curve (AUC) values: 0.864 for Disgust, 0.807 for Happy, 0.911 for Neutral, and 

0.814 for Sad. The Neutral class demonstrates the highest AUC, reflecting robust performance, while the 

Happy class shows the lowest AUC, indicating challenges in distinguishing this emotion. Precision-recall 

curves (Figure E) further highlight these trends. The model exhibits an average precision of 0.861 for 

Disgust, 0.792 for Happy, 0.906 for Neutral, and 0.803 for Sad. The higher precision for the Neutral class 

indicates fewer false positives compared to the Happy and Sad classes. 
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3.4. Dimensionality Reduction Visualization 

The t-SNE and UMAP projections (Figure 3F, G) visualize the test data distribution in lower-dimensional 

space. In the t-SNE projection, Neutral and Disgust form distinct clusters, whereas Happy and Sad show 

substantial overlap. The UMAP projection provides better separation between Neutral and Disgust, though 

overlap between Happy and Sad remains pronounced. These visualizations support the confusion matrix results, 

confirming that Happy and Sad are harder to distinguish. 

3.5. Summary of Classification Metrics 

Key classification metrics for each class are summarized in Table 1. 

Table 1. Summary of classification metrics for each emotional class. 

Metric Disgust Happy Neutral Sad 

Accuracy (%) 86.0 71.8 81.0 67.6 
AUC 0.864 0.807 0.911 0.814 

Precision 0.861 0.792 0.906 0.803 

Misclassified Samples 161 324 218 372 

These results demonstrate that the model performs well in identifying Disgust and Neutral emotions, 

with accuracies above 80%. In contrast, the Happy and Sad classes exhibit lower performance, reflecting 

higher misclassification rates. The AUC and precision values corroborate these findings, emphasizing the 

challenge of distinguishing between Happy and Sad states. 

4. Discussion 

The results of this study demonstrate that the classification model effectively identifies emotional states, 

particularly Disgust and Neutral,  with accuracies of 86.0% and 81.0%,  respectively.  The overall accuracy 

of 76.6% reflects solid performance, although challenges remain in differentiating Happy and Sad 

emotions, which achieved lower accuracies of 71.8% and 67.6%. These outcomes are supported by the 

confusion matrix,  ROC curves,  precision-recall analysis,  and dimensionality reduction visualizations, 

providing a comprehensive understanding of the model’s strengths and limitations. The high accuracy for 

the Disgust and Neutral classes can be attributed to the distinct features present in these emotional states, 

which are captured effectively by the model. This is further supported by the ROC analysis, where the 

Neutral class achieved the highest AUC of 0.911 and an average precision of 0.906, indicating strong 

discriminative power and low false positive rates.  Similarly,  the Disgust class attained an AUC of 0.864 and a 

precision of 0.861, confirming the model’s robustness in identifying this emotion. 

Conversely, the model’s performance for the Happy and Sad classes is comparatively lower, with AUC 

values of 0.807 and 0.814, respectively.  The confusion matrix reveals that Happy is often misclassified as 

Sad and Disgust,  while Sad is frequently predicted as Disgust. These misclassifications suggest significant 

overlap in the feature representations of these emotions, which may arise from subtle differences in the 

underlying data or noise within the dataset. The dimensionality reduction visualizations using t-SNE and 

UMAP further corroborate this finding, showing noticeable clustering overlap between the Happy and Sad 

classes. The training and validation curves for accuracy and loss indicate that the model converges well 

but exhibits signs of overfitting, as evidenced by the divergence between training and validation loss after 

50  epochs.  The final training accuracy of 70 .2% compared to the validation accuracy of 75 .4% suggests 

that while the model generalizes reasonably acceptable. 

However, to mitigate overfitting and improve model generalization, several strategies can be 

considered. Regularization techniques, such as adding dropout layers, can reduce reliance on specific 

neurons, preventing the model from overfitting to training data. Additionally, data augmentation, such as 

introducing minor temporal shifts or controlled noise to the sensor signals, can increase variability and 

improve robustness. Early stopping could be applied to terminate training when validation loss stops 

improving, ensuring that the model does not continue learning noise. Another approach is to optimize 

model complexity by fine-tuning the number of hidden layers or reducing the number of parameters to 

prevent unnecessary memorization. Finally, cross-validation (e.g., k-fold cross-validation) can be employed 
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to assess model reliability across different data splits, ensuring that performance is not overly dependent 

on a specific subset of the dataset. While expanding the dataset remains the most direct solution, these 

techniques can significantly improve the model’s ability to generalize even with the current sample size. 

One possible explanation for the observed classification discrepancies is the inherent ambiguity in 

distinguishing between Happy and Sad states, particularly when subtle variations in features contribute to 

these emotions. Additionally, the dataset’s balance and quality play a critical role in model performance. 

While Disgust and Neutral appear to have clear distinguishing characteristics, Happy and Sad may require 

more refined feature extraction methods or larger datasets to achieve better separation. Incorporating 

multimodal data, such as physiological signals or contextual information, could provide additional cues for 

improving classification accuracy. Future work should focus on addressing these challenges by exploring 

advanced techniques, including deep learning architectures, ensemble methods, and feature selection 

strategies. Moreover, applying transfer learning from larger emotion recognition datasets or incorporating 

unsupervised pre-training may help mitigate the limitations observed with the Happy and Sad classes. 

Lastly, the current study demonstrates that while the model performs well in classifying Disgust and 

Neutral emotions, significant challenges remain for Happy and Sad due to feature overlap and potential 

dataset limitations. To address this, future improvements could include optimizing sensor placement (e.g., 

incorporating nasolabial fold sensors), refining feature extraction methods, or integrating advanced 

classification models that enhance class-specific feature discrimination. While dataset expansion is ideal, our 

findings indicate that targeted sensor realignment and additional feature engineering could significantly 

improve the model’s ability to differentiate these closely related emotions.  These insights provide a 

foundation for future improvements in emotion classification systems, with the potential to enhance real-

world applications such as human-computer interaction, mental health assessment, and affective computing. 

Future Work 

This study presents a novel approach for emotion classification using stretchable strain sensors and 

deep learning techniques. While the proposed system demonstrates promising results, several areas 

warrant further investigation to enhance its effectiveness and applicability.  

• Dataset Expansion and Diversity: One of the main limitations of this study is the small participant 

pool. Future work should focus on increasing the number of participants and incorporating diverse 

demographic groups to improve generalizability and ensure robust model performance across different 

populations. 

• Sensor Placement Optimization: The current study utilizes four sensor placements, primarily on the 

forehead, upper lip, lower lip, and left cheek. Additional sensors on other facial regions, such as the 

nasolabial folds or jawline, could provide more comprehensive data and improve the classification of 

emotions with subtle muscle movements, such as Happy and Sad. 

• Multimodal Integration: While stretchable sensors effectively capture muscle activity, integrating 

other modalities—such as computer vision-based facial analysis, electromyography (EMG), or 

physiological signals (e.g., heart rate variability, electrodermal activity) —could enhance emotion 

recognition by providing complementary data sources.  

• Improving Model Generalization: The model exhibited signs of overfitting, particularly in 

distinguishing between Happy and Sad emotions. Future work could explore regularization techniques, 

transfer learning, or ensemble learning approaches to improve generalization. Additionally, investigating 

the use of attention mechanisms in deep learning architectures may enhance feature extraction and 

classification accuracy. 

• Real-Time Implementation and Practical Applications: The current system operates in a controlled 

experimental setting. Future studies should focus on developing a real-time, wearable prototype that can 

be integrated into assistive technologies, rehabilitation robotics, and human -computer interaction 

applications. Evaluating the system in real-world environments will provide valuable insights into its 

practicality and user acceptance. 

• Cross-Cultural and Context-Based Emotion Analysis: Emotion expression varies across cultural 

backgrounds and situational contexts. Future research should investigate how different cultural groups 

express emotions through facial muscle movements and adapt the classification model accordingly.  
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By addressing these challenges, future developments will refine the proposed system, making it more 

robust, adaptable, and applicable to a wide range of real-world scenarios. 

5. Conclusions 

This study introduces a deep learning-based approach for real-time emotion classification using 

stretchable strain sensors, offering a flexible, biocompatible, and cost-effective solution for facial 

expression recognition. The sensor design, which utilizes conductive silver ink printed on a Tegaderm 

substrate, enables precise detection of subtle facial muscle movements while maintaining comfort and 

adaptability for long-term use. By strategically placing sensors on key facial regions, the system effectively 

classifies emotions such as disgust, happiness, neutrality, and sadness, demonstrating its potential in 

rehabilitation robotics, assistive technologies, and human-computer interaction. To ensure robust feature 

extraction and classification, the system incorporates a comprehensive data pipeline, including Min -Max 

normalization for standardization, SMOTE for class balancing, and dimensionality reduction techniques 

like PCA and t-SNE for enhanced feature visualization. Performance evaluation yielded an overall accuracy 

of 76.6%, with notably strong recognition of disgust (86.0%) and neutrality (81.0%). However, the 

distinction between happiness and sadness remains challenging, likely due to overlapping feature patterns, 

underscoring the need for further sensor optimization and data expansion. Compared to conventional 

facial expression recognition methods, such as rigid strain sensors, computer vision -based approaches, 

and electromyography (EMG), the proposed system offers enhanced adaptability, real -time usability, and 

practical integration into wearable devices. Its ability to capture dynamic facial movements without 

requiring extensive calibration or con- trolled lighting conditions make it a promising alternative for 

assistive communication and emotion-aware technologies. Future work will focus on expanding the 

dataset to improve model generalizability, optimizing sensor placement to capture a broader range of 

facial expressions, and exploring advanced machine learning techniques, such as transfer learning and 

ensemble models, to enhance classification accuracy. Additionally, integrating multimodal approaches, 

incorporating physiological signals and computer vision techniques—could further refine emotion 

recognition capabilities. Real-world validation in healthcare, rehabilitation, and human-computer 

interaction settings will be crucial in assessing the system’s usability and impact. By addressing these 

challenges, this study lays the foundation for next-generation, adaptive emotion recognition systems that 

can enhance human-computer interaction, accessibility, and assistive communication. The findings 

contribute to the broader field of affective computing and intelligent wearable technologies, paving the 

way for more inclusive, responsive, and human-centered applications. 
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