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Abstract: Effective communication is crucial for ensuring inclusivity, yet the hard‑of‑hearing community faces sig‑
niϐicant barriers due to a shortage of qualiϐied interpreters. British Sign Language (BSL), ofϐicially recognised in
the UK, relies on hand gestures, facial expressions, and body movements. However, limited interpreter availability
necessitates technological solutions to bridge the communication gap between signers and non‑signers. This study
proposes a real‑time, vision‑based BSL recognition system using computer vision and deep learning to interpret
ϐingerspelling and six commonly used BSL words. The system employs OpenCV for video capture, MediaPipe for
hand feature extraction, and Long Short‑Term Memory (LSTM) networks for sign classiϐication. A dataset incorpo‑
rating left‑ and right‑handed signers achieved a 94.23%accuracy rate for 26 ϐingerspelling gestures and 99.07% for
six words. To enhance usability, a graphical user interface was developed, enabling seamless real‑time interaction.
These ϐindings demonstrate the potential of AI‑driven sign language recognition to improve accessibility and foster
more inclusive communication for the hard‑of‑hearing community.
Keywords: British Sign Language; Realtime Recognition; Media Pipe; Hard‑of‑Hearing; LSTM; OpenCV

1. Introduction
Sign language is a vital mode of communication, particularly where verbal interaction is not feasible. It is

widely used across various settings, such as in sports, trafϐic control, and by individuals with speech or hearing
impairments. For the deaf‑mute community, sign language offers a robust means of expression, combining hand
signs, lip movements, and facial expressions to convey meaning. Historically, the development of sign language
began in the 17th century with Juan Pablo de Bonet’s instructional work for the deaf [1], and it gained prominence
through pioneers like Abbe Charles Michel de L’Epee, who established the ϐirst public school for the deaf in 1771.

Despite its widespread use, sign language varies across regions, with over 200 distinct versions globally, in‑
cluding American Sign Language (ASL) and British Sign Language (BSL), which differ signiϐicantly in ϐinger‑spelling
techniques. BSL, used by 151,000 people in the UK, was ofϐicially recognised as a minority language in 2003, and
recent legislative efforts further advocate for its formal recognition in England, Wales, and Scotland. However, the
scarcity of trained interpreters – only 1557 registered in the UK – highlights a gap in accessibility for BSL users,
necessitating innovative technological solutions [2]. While language translation apps have revolutionised commu‑
nication, sign language recognition remains largely underdeveloped. This research seeks to explore how Artiϐicial
Intelligence (AI) and machine learning can be applied to develop a real‑time visual recognition system for British
Sign Language (BSL), addressing the communication barriers faced by the deaf community and offering an afford‑
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able, scalable solution [3, 4].

1.1. Traditional Methods of British Sign Language (BSL) Recognition
The real‑time recognitionofBritish SignLanguage (BSL)poses signiϐicant challengesdue to the intricatenature

of sign gestures and their variations. Traditional approaches to Sign Language Recognition (SLR) often emphasise
static image‑basedmethods, limiting their applicability to dynamic real‑time contexts. Several studies on real‑time
vision‑based sign recognition offer insights into different techniques used across sign language systems. For exam‑
ple, Patel and Patel [5] implemented a real‑time Indian Sign Language recognition system with a 98.7% success
rate using a Support Vector Machine (SVM) classiϐier. Their system employed skin‑color detection and Histogram
of Oriented Gradients (HOG) for feature extraction. However, this method was tested only with static images and
faced performance issues due to its reliance on skin‑color detection, which can be impacted by variations such as
rolled‑up sleeves.

Similarly, Tanvir et al. [6] achieved 99.72% accuracy in Bangla Sign Language recognition using a 2D Convo‑
lutional Neural Network (CNN). While successful, this approach also dealt exclusively with static signs, limiting its
real‑world applicability to sequences of hand movements. Despite high recognition rates, both systems are con‑
strained by their focus on static images rather than continuous gestures. A notable contribution to BSL recognition
was presented by Liwicki and Everingham [7], who developed an automatic recognition system for ϐinger‑spelled
BSLwords using a dataset of 1,000 videos. Their approach integrated HOG descriptors and a HiddenMarkovModel
(HMM) for hand segmentation and classiϐication, achieving a 98.9% accuracy rate for 100 forenames. However,
theirmodel struggledwith larger lexicons and similar‑spellingwords, indicating difϐiculties in recognising nuanced
hand movements. Additionally, both hands were treated as a single shape descriptor, limiting the system’s ability
to distinguish palm‑based letters such as L, M, and N in various orientations [8].

In contrast, Kumar [9] proposed a deep learning framework to improve BSL recognition using CNN, median
ϐiltering, and edge detection techniques. The systemachieved98%accuracy for BSL ϐingerspelling butwas similarly
limited topre‑recordedvideos rather than real‑timeapplications. Real‑time testing andadaptation forboth left‑ and
right‑handed users were also absent from this study, which further limits its practical deployment. Several works
have focused on static image recognition but encountered issues with sequence processing. For instance, Rambhau
[10] implemented a real‑time two‑hand gesture system for BSL recognition using background subtraction and skin
segmentation techniques. Yet, this approachwas conϐined to recognising static alphabet gestures and did not detail
performance metrics, making it difϐicult to assess its real‑time capabilities.

More recently, Olszewska and Quinn [4] developed an intelligent BSL recognition system embedded in a smart‑
phone. This system utilised a self‑created dataset of 2,600 images, applying HOG and an SVM classiϐier to achieve
99% accuracy for ϐingerspelling. However, the dataset did not cover left‑ and right‑handed signs, and the system
was not tested on dynamic sequences, further limiting its real‑time application. Other approaches, such as those by
Bird et al. [11], incorporated CNNs like VGG16 and Multi‑Layer Perceptron (MLP) for feature extraction in a mul‑
timodal system, achieving 94.44% training accuracy. However, the model’s accuracy on unseen data dropped to
76.5%, reϐlecting the difϐiculties in recognising gestures that are not present in the training set. Similarly, Buckley
et al. [12] developed a CNN‑based system for predicting 19 static BSL signs, with real‑time evaluation achieving
an average accuracy of 89%. While this system employed OpenCV for real‑time testing, it still focused primarily
on static signs, limiting its robustness for continuous gesture recognition. A novel method by Hameed et al. [13]
incorporated radar sensors and deep learning models like InceptionV3 and VGG16 to preserve user privacy during
BSL recognition. This system achieved a 93.33% accuracy for six emotion‑related signs but required the user to
stand at a speciϐic distance from the radar, limiting its practical real‑time use [14].

Across these works, a common limitation is the focus on static image recognition without accounting for the
ϐluid nature of sign language, where hand movements often occur in sequences. Moreover, many studies do not
consider both left‑ and right‑handed signers, introducing potential biases in recognition systems. Thus, there is a
growing need for more advanced methodologies capable of handling dynamic, real‑time sign language recognition
while accommodating the variability of individual signers.
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1.2. AI and Real‑Time Recognition System
Artiϐicial intelligence (AI) has revolutionised problem‑solving and decision‑making by enabling computers to

mimic human cognition. As IBM Cloud Education [15] explains, AI’s key subsets –machine learning and deep learn‑
ing – are critical in addressing complex challenges. Deep learning, in particular, is adept at managing unstructured
datasets like audio or video, using neural networks to solve both supervised and unsupervised problems. Computer
vision, a branch of AI, focuses on developing systems that derive meaningful information from visual data, learning
patterns to make predictions [15].

Sign LanguageRecognition (SLR) is an ongoing research area leveragingAI andmachine learning techniques to
bridge communication gaps for thedeaf community. SLR systems followamulti‑stageprocess: data acquisition, pre‑
processing, region‑of‑interest detection, feature extraction, classiϐication, and real‑time prediction. The ϐirst phase,
data acquisition, utilises either vision‑based or sensor‑basedmethods [16]. Vision‑basedmethods apply computer
vision and image processing techniques, but face challenges such as noise from lighting conditions, background
interference, and low detection accuracy, especially when hand movements overlap.

In contrast, sensor‑basedmethods like data gloves ‑ equipped with sensors and trackers ‑ offer high reliability
but are inconvenient for users, while electromyography (EMG) measures muscle signals but introduces complex
noise during feature extraction [16]. Feature extraction, the next critical step, plays a key role in system accuracy.
Methods like edge detection (e.g., canny edge detector) or skin detection, combined with hand motion, help isolate
the hands from the background. Sensor‑based systems, such as data gloves and accelerometers, reduce feature ex‑
traction complexity but impede natural interaction. Techniques like Principal Component Analysis (PCA) simplify
datasets, while Scale Invariant Feature Transform (SIFT) algorithms handle variations in rotation and scaling. Ad‑
ditionally, tools like Microsoft Kinect and Leap Motion controllers provide robust 3D tracking, enhancing real‑time
SLR performance.

1.2.1. Sign Language Recognition Using Media Pipe

The Recent advancements in computer vision have signiϐicantly enhanced sign language recognition systems,
moving from traditional techniques such as background subtraction and hand detection to more sophisticated
frameworks like MediaPipe. Launched by Google in 2019 [17], MediaPipe provides pre‑trained machine learning
models for hand, face, and pose detection, offering a more streamlined and accessible tool for researchers and de‑
velopers in sign language detection [18]. Despite its relatively recent introduction, MediaPipe has been effectively
utilised in a range of studies, although its application in sign language recognition remains limited. For instance,
Halder and Tayade [18] used MediaPipe in combination with a Support Vector Machine (SVM) to recognise signs
from American, Indian, Italian, and Turkish Sign Languages. Their approach, which was trained on static images of
single‑handed signs, achieved an impressive average accuracy of 99%. However, the model was limited to recog‑
nising static signs only, potentially restricting its broader applicability in dynamic sign language interpretation.

In a different approach, Duy Khuat et al. [19] integrated MediaPipe with Long Short‑Term Memory (LSTM)
networks to detect multi‑hand Vietnamese Sign Language. While the dataset was self‑constructed, the study en‑
countered challenges such as overϐitting due to invalid data frames, resulting in a relatively low accuracy of 63%.
This highlights the importance of rigorous data cleaning and preprocessing in achieving reliable results. Alvin et
al. [20] employed MediaPipe alongside K‑Nearest Neighbours (KNN) to classify American Sign Language (ASL).
Their model achieved a 94% accuracy but excluded dynamic signs like ‘J’ and ‘Z’ due to KNN’s inability to handle
the z‑coordinate of hand landmarks, thereby limiting its effectiveness for comprehensive sign language detection.
Similarly, Bora et al. [21] utilised Mediapipe to develop a visual solution for the sign language recognition prob‑
lem in Assamese language, regional Indian language, where 2094 data points was generated. The model’s focus on
single‑handed signs, however, suggests a gap in recognising more complex, two‑handed gestures that are common
in many sign languages.

In a more recent study, Subramanian et al. [22] proposed integrating MediaPipe with an Optimised Gated
Recurrent Unit (MOPGRU) to address challenges in dynamic sign language recognition. Their model outperformed
other recurrent neural networks such as LSTMandBiLSTM, achieving a 95%accuracy on a dataset of 12 signs. How‑
ever, the study noted that sequence prediction using LSTM and BiLSTMwas less effective due to the limited dataset,
underscoring the need for larger, more diverse datasets for training deep learning models. These studies illustrate
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that while MediaPipe provides a strong foundation for sign language recognition, challenges remain, particularly
in recognising dynamic and multi‑handed signs. Building on these insights, future work could focus on integrating
MediaPipe with more robust deep learning models, allowing for real‑time validation and improved recognition of
both single‑handed and multi‑handed signs for languages such as British Sign Language (BSL).

2. Methods
The Developing British Sign Language (BSL) recognition system integrates computer vision with machine

learning techniques for real‑time sign detection. A supervised machine learning model is trained on a BSL dataset
to recognise hand gesture patterns. Once trained, the model is saved and used for live prediction. The system acti‑
vates the camera via a graphical user interface (GUI), capturing hand signs frame by frame. Using feature extraction,
the machine learning model predicts the sign’s label and displays it as text on the screen (see Figure 1 for model
architecture).

Figure 1. Architecture of British Sign Language (BSL) Recognition System.

The development of the proposed system followed a structured four‑stage machine learning process, empha‑
sising the DCSA approach (Deϔine problem, Collect data, Select model, Apply model). Each stage was systematically
executed, ensuring alignment with best practices in data science. Figure 2 provides a visual summary of the stages,
and the subsequent sections offer a detailed breakdown of each step.

Figure 2. Stages of BSL recognition system development.
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The system conϐiguration for processing activities is critical to ensuring efϐicient data collection, cleansing,
preprocessing, andmodelling. Each of these steps is crucial for building a robust data pipeline capable of supporting
accurate and scalable system outcomes.

2.1. System Conϐiguration (Hardware and Software Conϐiguration)
The hardware and software conϐigurations employed for this implementation are adopted to optimise perfor‑

mance and facilitate efϐicient execution of the computer vision and machine learning tasks.
Hardware

The system utilised an HP Wide Vision 720p HD webcam for capturing video input. The computing environ‑
ment consisted of aWindows 11machinewith an Intel Core i5‑1155G7 processor (up to 4.5 GHz, 4 cores, 8 threads)
and 8 GB DDR4‑3200 MHz RAM. The integrated Intel Iris Xᵉ Graphics GPU provided additional computational sup‑
port for image processing tasks.
Software

Python 3.8 served as the primary interpreter, with a range of specialised libraries to support application de‑
velopment:

• Computer Vision: OpenCV‑python (v4.5.5.64) and MediaPipe (v0.8.10) were used for real‑time image process‑
ing.

• Machine Learning: The scikit‑learn (v1.0.2), Keras (v2.8.0), and TensorFlow (v2.8.0) libraries facilitatedmodel
development and training.

• Visualization: Matplotlib (v3.5.1) was employed for generating visual insights from data.
• GUI: Streamlit (v1.8.1) enabled the creation of an intuitive user interface.
• Additional Libraries: Pyttsx3 (v2.90) for text‑to‑speech, along with Pandas (v1.4.0) and NumPy (v1.22.2) for
data manipulation and numerical computing.

2.2. Data Collection for Real‑Time Sign Language Recognition
Real‑time sign language recognition remains a challenging area of research due to the scarcity of publicly avail‑

able datasets, especially for British Sign Language (BSL). Unlike American Sign Language (ASL), BSL datasets are
often limited or non‑existent in open repositories. Consequently, researchers frequently rely on custom datasets
created speciϐically for their studies.

2.2.1. Data Collection Methods

To address the lack of readily available BSL datasets, data collection for this study involved capturing videos of
signs using two primary methods: sourcing videos images from Video platforms or self‑recording. Self‑recording,
however, was chosen for its advantages in privacy and control over data quality. A pose captures the body’s position
at a speciϐicmoment using a set of skeletal landmarks, each representing key body parts like the shoulders and hips.
The spatial relationships between these landmarks deϐine and differentiate various poses [23]. Using a webcam,
we captured signs in real‑time to minimise data storage needs and streamline feature extraction. To optimise data
storage and processing, we utilised a method where key data points were extracted directly from video frames
rather than storing the entire video. This approachwas facilitatedby theMediaPipe framework, anopen‑source tool
that supports cross‑platform development and offers solutions for hand, face, and pose detection [24]. Speciϐically,
MediaPipe’s holistic model provides 21 3D landmarks per hand, which are essential for accurate sign language
recognition as shown in Figure 3. The landmarks are represented by coordinates (x, y, z), with x and y normalised
to the image dimensions and z indicating depth [24].
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Figure 3. MediaPipe Hand Landmarks [24].

OpenCV, a widely used computer vision library, was employed for real‑time video processing. The library’s
functions, such as ‘VideoCapture’ for accessing webcam feeds and ‘imread’ for image processing, facilitated efϐi‑
cient data collection and validation. The integration of OpenCV with MediaPipe allowed us to preprocess images
effectively by performing tasks such as noise reduction and skin colour detection [25].

2.2.2. Data Collection Protocol

For ϐingerspelling, a dataset consisting of 120 video sequences (60 for each hand) was created. Each video
captured 30 frames per second at a resolution of 640 × 480 pixels. Similarly, 180 videos were recorded for BSL
words, with 90 videos per hand (as shown in Table 1). This setup enabled the collection of comprehensive data for
both hand signs and individual BSL words.

Table 1. Summary of Collected Data.

Category Classes Number of Videos per Class Frames per Video

Right‑handed Signer Left‑handed Signer
Fingerspelling 26 60 60 30
BSL Words Signs 6 90 90 30

The signs were referenced from Figure 4 “British Sign Language”: Fingerspelling [26] and veriϐied against
multiple sources to ensure accuracy. The collected data was organised in a hierarchical directory structure, where
each sign had its own folder, and videos were stored in subfolders.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) BSL Fingerspelling Alphabet Charts [26]; (b) BSL Words Chart [26].

2.2.3. Data Collection Algorithm

An automation script in Python was developed to streamline data collection:
Step 1. Initialise MediaPipe and OpenCV:

Set up the MediaPipe holistic solution and OpenCV for real‑time image capture.
Step 2. Process Frames:

Convert frames from BGR to RGB, process them with MediaPipe, extract key points.
Step 3. Draw Landmarks:

Visualise detected landmarks on the frames.
Step 4. Extract Key Points:

Retrieve and store the (x, y, z) coordinates for each hand.
Step 5. Organise Data:

Create directories and save the key points as NumPy arrays.
Voice commands were used to guide the signer through the process, ensuring smooth transitions between

signs. The Python script included functionality for displaying reference images, issuing voice commands, and man‑
aging delays to assist the signer. Each frame contained 126 key points, encompassing both hands’ landmarks. The
dataset will be utilised for training and testing machine learning models, comparing performance on both a small
scale (ϐingerspelling) and a larger scale (BSL words). This structured approach ensures that the data collection is
robust and suitable for future extensions, potentially including BSL sentences.

2.3. Data Cleaning and Preprocessing
Effective data cleansing is a critical step in the machine learning process, ensuring model accuracy and relia‑

bility. The quality of data directly inϐluences model performance and predictive outcomes [27]. In this case, hand
detection failures, such as blurred frames or inconsistent lighting, result in keypoint extraction errors where land‑
mark values are set to zero, rendering those frames invalid for analysis.

2.3.1. Data Cleansing

To address this, a Python algorithm was implemented to systematically identify and remove invalid frames.
The algorithm iterates through each sign and its corresponding video frames, detecting frames where no hand
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landmarks are captured. These invalid videos are ϐlagged for recapture and revalidation to ensure data accuracy.
For instance, three videos representing the sign for ”C” failed to capture hand landmarks. After recapture and repro‑
cessing, these frames were validated, improving the dataset’s integrity. This process guarantees that only accurate
data is fed into the model for training, signiϐicantly enhancing performance.

2.3.2. Data Preprocessing

Data preprocessing is essential for preparing raw data for machine learning models. In this study, the x and
y coordinate values obtained from hand landmarks were normalized to the range [0,1], ensuring that variations
in hand size did not affect real‑time detection accuracy. Machine learning algorithms require numerical inputs.
Therefore, categorical class labels (alphabets) were converted into numerical values using the ‘enumerate’ func‑
tion, which created a dictionary of key‑value pairs representing each class. All video instances, totalling 3120 (120
instances per 26 classes), were stored in arrays for training. Each video had 30 frames, each with 126 features. The
corresponding labelswere one‑hot encoded using Keras’ “to_categorical” function, transforming each label into a bi‑
nary vector. This stepwas crucial as themodel used categorical cross‑entropy loss, which requires one‑hot encoded
labels for training.

2.3.3. Data Split for Model Training

The dataset was divided into 80% training data and 20% test data to evaluate model performance on unseen
data. Additionally, 20%of the training datawas set aside for validation duringmodel training. The ϐinal structure of
the dependent variable (y) consisted of a matrix with binary values [0, 1], where rows represented video instances
and columns corresponded to the class labels. The train‑test split resulted in 2496 videos for training and 624 for
testing, as shown in Table 2.

This preprocessing approach ensured that the model could handle the complexity of multi‑class classiϐication
efϐiciently, preparing the data for optimal performance during training and evaluation [28, 29].

Table 2. Data split (Train, Test & Validation).

Available Data Features/Independent Variable (X) Labels/Dependent Variable (y)

Total Data (3120, 30, 126) (3120, 26)
Train Data (1997, 30, 126) (1997, 26)
Validation Data (499,30, 126) (499,26)
Test Data (624, 30, 126) (624, 26)

2.4. Model Architecture and Implementation
The model implementation covers the selection of models, architecture, advantages, and evaluation methods

used for British Sign Language (BSL) ϐingerspelling andword classiϐication. Twomodels ‑ Long Short‑TermMemory
(LSTM) and Gated Recurrent Unit (GRU) ‑ were chosen based on their performance in similar contexts. Yang et al.
[30] compared the performance of LSTM and GRU neural networks on varying dataset sizes in the Yelp dataset,
showing that GRU’s simpler structure reduces computational time without sacriϐicing performance, particularly
for small datasets. This makes both models suitable candidates for evaluating performance on the newly created
BSL dataset.

The implemented sequential model consists of three LSTM layers stacked with three dense layers, utilising
the ReLU activation function for the LSTM layers. ReLU (Rectiϐied Linear Unit) is efϐicient as it does not activate all
neurons simultaneously, leading to faster computation [31]. For the ϐinal dense layer, a softmax function is applied,
which is appropriate formulticlass classiϐication. As Sharma et al. [31] state, softmax outputs probabilities between
0 and 1, representing the likelihood of each class. Themodel was compiled using the Adamoptimizer, with a default
learning rate of 0.001. Adam iswidely used due to itsmemory efϐiciency and effectiveness in handling large datasets
or parameters [32]. Categorical cross‑entropy was employed as the loss function, given the one‑hot encoded labels,
and categorical accuracy was used as the evaluation metric. Training was conducted over 200 epochs with early
stopping set tomonitor validation loss, avoiding overϐitting. Early stopping patiencewas set to 15 epochs, following
Vijay [32], who recommends a patience threshold of 10% of the total epochs.
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2.5. Graphical Interface for Realtime Detection
To evaluate model performance, the best‑performing model was selected based on predeϐined success met‑

rics. This model underwent rigorous testing in a real‑time environment, involving ϐive users. The testing process
was conducted using the PyCharm IDE to ensure reliability and accuracy in predictions. To enhance user interac‑
tion, the critical analysis code was integrated into a graphical user interface (GUI) using the Streamlit framework,
a user‑friendly, open‑source tool that simpliϐies web application development with Python scripts. Streamlit was
chosen for its ability to expedite development time and facilitate the creation of multi‑page applications with in‑
tuitive widgets. Despite its advantages, one challenge encountered was the relatively slow direct live streaming
in Streamlit compared to OpenCV’s performance. To address this, the application was designed to allow users to
activate their camera through OpenCV via button widgets within the Streamlit interface, balancing ease of use with
efϐicient performance.

3. Results
Provide a concise and precise description of the experimental results, their interpretation as well as the exper‑

imental conclusions that can be drawn.

3.1. Model Performance Analysis: LSTM vs. GRU
Accuracy and loss plots are vital tools for assessing the performance of machine learning models, particularly

for identifying issues such as underϐitting, overϐitting, or optimal ϐitting. For both LSTM and GRU models, accuracy
and loss plots in Figure 5a,b were generated using Matplotlib to visually evaluate these aspects throughout the
training process.

(a) (b)

Figure5. (a) LSTMAccuracyPlot, Accuracy plot of LSTMModel; (b) GRUAccuracyPlot, Accuracy plot of GRUModel.

The accuracy plots depict the progression of the ‘categorical accuracy’ metric for both training and validation
datasets over each epoch. Similarly, loss plots represent the ‘categorical_crossentropy’ values at each epoch, pro‑
viding insights into the model’s convergence behaviour. Early stopping, a regularization technique, was employed
to monitor validation loss, halting training when no improvement was observed or when validation loss began to
increase. This approach prevents overϐitting by ensuring the model does not continue to train unnecessarily.

For the GRU model, training ceased at the 60th epoch, with the weights being restored from the epoch that
yielded the best validation performance. This process resulted in a ϐinal training accuracy of 94.24% and a vali‑
dation accuracy of 90.4%. When evaluated on an unseen test dataset, the GRU model achieved a test accuracy of
91.5%. As depicted in Figure 2, the GRU model’s training accuracy showed a signiϐicant increase from 57% at the
10th epoch to 94% by the 60th epoch.
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The LSTMmodel, on the other hand, continued training until the 103rd epoch, reaching a training accuracy of
95.29%and a validation accuracy of 88.20%. Themodel’s performance on the test dataset resulted in an accuracy of
94.23%. Figure6b illustrates the LSTMmodel’s accuracy growth, with training accuracy improving from20.24%at
the 10th epoch to 95.29%by the 103rd epoch. Additionally, the loss plot inFigure6a shows a decrease in validation
loss from 2.3666 at the 10th epoch to 0.3832 at the 103rd epoch, indicating effective training and convergence of
the model.

(a) (b)

Figure 6. (a) LSTM Loss Plot, Loss plot of LSTMModel; (b) GRU Loss Plot, Loss plot of GRU Model.

The results in Table 3 underscore the effectiveness of both LSTM and GRUmodels, with LSTM slightly outper‑
forming GRU in test accuracy, albeit with a longer training period.

Table 3. Summary of accuracy obtained for train, validation, and test data for LSTM and GRU models.

Model Train Validation Test

LSTM 95.25 88.2 94.23
GRU 94.24 90.4 91.5

3.2. Analysis of Model Performance Using Normalized Confusion Matrices
To evaluate the performance of our models, we employed a 26 × 26 normalized confusion matrix for both

the LSTM and GRU models, comparing predicted versus true values across the 26 alphabet classes. This approach
was necessary due to the imbalanced nature of the test data, where the number of instances varies across classes.
Normalizing the confusion matrix allows for a more accurate assessment of prediction accuracy across all classes,
mitigating the effects of class imbalance [33].

In the normalized confusion matrix for the LSTM model, nine classes achieved perfect prediction accuracy
(True Positive rate = 1.0). Additionally, twelve classes had accuracy rates between 0.9 and 1.0, four classes between
0.8 and 0.9, and one class with an accuracy of 0.72. Conversely, the GRU model’s normalized confusion matrix
indicates seven classes with a perfect True Positive rate, nine classes with accuracy between 0.9 and 1.0, eight
classes between 0.8 and 0.9, and two classeswith accuracies of 0.73 and 0.68, respectively (Figure 7). These results
highlight the strengths and weaknesses of both models in handling class predictions, particularly under conditions
of class imbalance. The normalized confusion matrix provides critical insights into the models’ reliability across
different classes, offering a comprehensive view of performance beyond simple accuracy metrics.
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(a) (b)

Figure 7. (a) GRU Matrix, Normalized confusion matrix for GRU; (b) LSTM Matrix, Normalized confusion matrix
for LSTM.

3.3. F1 Score: A Critical Metric for Model Evaluation
While accuracy and true positives are often highlighted in model performance evaluation, they are insufϐicient

on their own to provide a complete picture. False negatives and false positives play a crucial role in understanding a
model’sweaknesses, speciϐically its tendency tomiss classiϐications ormake incorrect ones. Recall andprecision are
essential metrics for this purpose, with recall focusing on false negatives and precision on false positives. However,
for a more comprehensive assessment ‑ especially when dealing with imbalanced datasets where both types of
errors are signiϐicant ‑ the F1 score is pivotal.

In the evaluation of the LSTM model, F1 scores for each class are presented in Figure 8a. The scores range
from 0 to 1, with a score of 1 indicating optimal performance. A threshold of 0.9 was set for this analysis. Four
classes (‘I’, ‘N’, ‘O’, ‘V’) fall below this threshold, with the class ‘O’ having the lowest F1 score at 0.63. Similarly, the
GRU model’s performance is depicted in Figure 8b, where eight classes (‘E’, ‘I’, ‘J’, ‘L’, ‘N’, ‘O’, ‘U’, ‘X’) fall below the
0.9 threshold, with ‘O’ again recording the lowest score at 0.69. These results underscore the importance of using
the F1 score in performance evaluation, particularly in cases of class imbalance, to ensure a more accurate and fair
assessment of the model’s predictive capabilities. Before deploying the Long Short‑Term Memory (LSTM) model
to the graphical user interface (GUI), a real‑time evaluation was conducted to assess its predictive accuracy during
live usage. This process involved testing with ϐive participants, each using a webcam to ϐingerspell various signs.
The system captured frames from the video feed, extracted relevant features, and utilised the pre‑trained model to
predict the corresponding sign labels. The validation process required the participants to manually verify the ac‑
curacy of the model’s predictions. If the predicted sign matched the intended one, participants logged a “True” (T)
value; otherwise, they recorded a “False” (F). These results were systematically stored and analysed, with the out‑
come data being tabulated for both right‑ and left‑hand ϐingerspelling signs, as detailed in Appendix A. Following
this evaluation, the model was integrated into the web application’s GUI, making it accessible for user interaction.
This real‑time validation was crucial in ensuring the model’s robustness and accuracy in a live environment before
public deployment.
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(a) (b)

Figure 8. (a) LSTM F1 Score, Fingerspelling Bar plot of F1 score for LSTM; (b) GRU F1 Score, Fingerspelling Bar
plot of F1 score for GRU.

4. Discussion
The evaluation of LSTM and GRU models revealed that both architectures performed effectively in addressing

the researchproblem, thoughwith notable differences in accuracy andother keymetrics. The LSTMmodel achieved
a higher test accuracy of 94.23% compared to the GRU’s 91.5%, indicating a slight edge for LSTM in overall perfor‑
mance.

A deeper analysis using normalized confusion matrices provided insights into the true positive rates across
different classes. The LSTM model successfully predicted more than 80% of classes accurately, with the exception
of class 8 (’I’), which had a 72% accuracy rate. The GRUmodel, on the other hand, struggledmore signiϐicantly with
certain classes, such as ‘X’ (class 23) and ‘O’ (class 14), achieving accuracy rates of 68% and 73%, respectively. This
suggests that while both models are generally effective, LSTM demonstrated more consistent performance across
the dataset. Further examination of the multilabel confusion matrix highlighted the models’ tendencies toward
misclassiϐication. LSTM exhibited fewer false negatives (FN) and false positives (FP) for critical classes such as ‘I’,
‘N’, ‘O’, and ‘V’. For instance, class ‘I’ under LSTM had 3 FPs and 7 FNs, whereas GRU recorded 7 FPs and 5 FNs. This
indicates that LSTM had a lower rate of misclassiϐication, contributing to its higher overall reliability.

Comparing the F1 scores of bothmodels, LSTM outperformed GRU in 22 out of 26 classes, with a higher overall
F1 score (0.94 vs. GRU’s 0.91). Despite GRU showing slightly better results in a few speciϐic classes, the LSTM
model’s superior performance in the majority of cases, coupled with a more balanced classiϐication, justiϐies its
selection for real‑time validation.

In terms of computational efϐiciency, GRU’s fewer trainable parameters (73,258) compared to LSTM’s 96,362
suggested faster training times for GRU. However, the computational cost remained manageable for the dataset
used, and the LSTM’s slight increase in complexity did not hinder its performance, making it a suitable choice given
the problem’s requirement. Interestingly, when tested on a smaller dataset of 6 BSL words with 180 videos per
class, the LSTM model achieved near‑perfect accuracy (99.5%) and an F1 score of 1. This outcome underscores
the potential for further improving LSTM’s performance with larger datasets, particularly in the context of BSL
ϐingerspelling. Overall, the LSTM model was selected as the preferred model due to its superior accuracy, lower
misclassiϐication rates, and better generalisation across classes, making it more robust for real‑time applications.

Table 4 presents a comparative analysis of our LSTM‑based sign language recognition model against previous
works utilising MediaPipe. Our model achieved a notable accuracy of 94.23% across 26 classes, surpassing the
performances of Adhikary et al. [34] with 11 classes, Subramanian et al. [22] with 12 classes, and Alvin et al. [20]
with 24 static classes. Although Halder and Tayade [18] reported higher accuracy, their dataset was limited to
single‑hand signs, indicating a narrower scope and less complexity compared to our approach.
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Table 4. Comparative Analysis of MediaPipe‑Based Sign Language Recognition.

Author, Year Description Performance

Halder and Tayade [18] MediaPipe along with Support Vector Machine for static images: American signs (26
alphabets and 10 numbers), Indian (24 alphabets), Italian (22 alphabets), and Turkey
(10 numbers)

99%

Duy Khuat et al. [19] MediPipe with LSTM is used to detect Vietnamese Sign Language for 15 words 63%
Alvin et al. [20] MediaPipe with KNN to detect 24 static American Sign Language 94%
Adhikary et al. [34] MediaPipe and Random Forest Classiϐier for 11 Classes 97.4%
Subramanian et al. [22] MediaPipe with an optimized Gated Recurrent Unit (MOPGRU) for 12 signs 95%
BSL Intelligent Recognition
System (Current work)

MediaPipe with LSTM for BSL Alphabets (26 letter) 94.23%
MediaPipe with LSTM for BSL words (6 words) 99.0%

5. Conclusions
This Sign language recognition remains a dynamic ϐield, driven by advances in artiϐicial intelligence and ma‑

chine learning. Recent developments have centered on leveraging computer vision and deep learning techniques
to create cost‑effective, vision‑based systems that facilitate real‑time recognition across various sign languages.
Among these techniques, Convolutional Neural Networks (CNNs) have emerged as the leading algorithm for image
classiϐication. However, for sequential data such as video or continuous frames, Recurrent Neural Networks (RNNs)
like Long Short‑Term Memory (LSTM) and Gated Recurrent Units (GRU) are preferred due to their ability to retain
and process essential information over time.

This study adopted cutting‑edge methods for data collection and feature extraction speciϐically tailored for
British Sign Language (BSL) ϐingerspelling and selected signs. Data was captured in real‑time using OpenCV, with
MediaPipe employed for efϐicient feature extraction. This approach allowed for the handling of large datasets by
converting frame data into NumPy arrays containing hand feature coordinates, signiϐicantly simplifying the prepro‑
cessing pipeline typically required in image classiϐication tasks.

The LSTM and GRU models were selected for their proϐiciency in managing sequential data, with LSTM out‑
performing GRU, achieving an F1 score of 0.94 and a test accuracy of 94.23%. The system was further evaluated
in real‑time scenarios, where it demonstrated an 86% accuracy rate across tests with ϐive different signers. The
integration of a Streamlit web application provided a user‑friendly interface, enhancing accessibility and usability.

While the proposed methods successfully achieved the study’s objectives, certain limitations were identiϐied.
For instance, the MediaPipe‑based approach exhibited ϐlickering in landmark detection during real‑time applica‑
tion. Additionally, the dataset faced orientation challenges, particularly with palm signs such as ‘L’, ‘M’, and ‘N’
being trained with the non‑dominant palm’s dorsal side facing the camera, while ‘R’ and ‘V’ were trained with the
palmar side facing the camera. The current scope is limited to hand movements for ϐingerspelling and speciϐic
words, unaffected by cluttered backgrounds but challenged by the presence of multiple people or hands on screen.

Future work will aim to expand beyond static and dynamic hand sign detection to include continuous sign
language recognition, integrating body posture and facial expressions to accommodate a larger vocabulary. This
extension will be crucial in developing a fully functional, real‑time BSL recognition system.
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