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Abstract: Wireless networks generate large volumes of heterogeneous data from network elements, user equip‑
ment, andmanagement systems, posing significant challenges for effective networkmonitoring, fault management,
and resource optimization. Traditional rule‑based or data‑driven approaches often lack unified knowledge repre‑
sentation and reasoning capability, limiting their scalability and interpretability. To address these challenges, this
paper proposes a knowledge‑graph‑based framework for wireless network knowledge construction, management,
and application. The proposed framework integrates multi‑source network data through ontology‑driven model‑
ing and rule‑based semantic mapping, enabling structured representation of network entities, events, and their
relationships. An event‑driven incremental update mechanism is introduced to efficiently maintain the knowledge
graph in dynamic network environments without full reconstruction. Furthermore, a lightweight reasoning mech‑
anism is employed to infer implicit network states and support intelligent network management decisions. The
framework is designed to balance expressiveness and computational efficiency, making it suitable for large‑scale
wireless networks. To quantitatively evaluate the effectiveness of the proposed approach, extensive experiments
are conducted under different network scales. The experimental results demonstrate that the proposed frame‑
work consistently outperforms traditional rule‑based methods in terms of fault localization accuracy and resource
utilization efficiency, while exhibiting lower query latency and better scalability as the network size increases. The
results indicate that the proposed knowledge‑graph‑based framework provides an effective and scalable solution
for intelligent wireless network management, with potential applicability to fault detection, resource optimization,
and network security analysis.
Keywords: Knowledge Graph; Wireless Networks; Construction; Management; Application

1. Introduction
With the wide deployment of 5G technology, the rapid progress toward 6G [1], and the increasing scale of

Internet‑of‑Things applications, wireless networks are evolving toward higher data rates, larger connectivity, and
lower latency. However, this rapid development also brings several critical challenges that hinder efficient network
operation andmaintenance. In particular, wireless networks are becoming more difficult to monitor, optimize, and
secure due to growing data diversity, complex device interactions, and highly dynamic network environments. The
introduction of knowledge graph techniques offers new perspectives for addressing these issues.

The low efficiency of troubleshooting in wireless networks has become a prominent challenge. Wireless in‑
frastructures include a wide range of devices such as base stations, routers, switches, and optical links, all of which
continuously generate alarm logs, performance records, and configuration data. Because these data are heteroge‑
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neous, fragmented, and distributed across multiple subsystems, traditional manual troubleshooting methods are
often slow, labor‑intensive, and prone to oversight. For example, in a 5G deployment in one city, users reported
sudden signal degradation in several areas. Manual inspection revealed a damaged optical cable caused by nearby
construction, an issue that could have been identified earlier if the semantic associations among base stations, op‑
tical links, and historical fault records had been automatically analyzed [2]. By integrating entities such as devices,
transmission media, and fault events as well as their relationships, knowledge graphs can rapidly correlate related
components and support fast root‑cause localization.

Resource optimization in wireless networks is another major challenge. Due to diverse user behaviors, com‑
plex topologies, andhighlydynamic traffic patterns—especially in scenarios suchas vehicularnetworks—traditional
resource allocation strategies struggle to deliver real‑time and fine‑grained optimization. For instance, in the Inter‑
net of Vehicles, the fast movement of vehicles causes frequent handovers, and different services require varying
levels of bandwidth and latency. Static allocation strategies often result in overloaded resources in certain areas
and underutilized resources elsewhere [3]. This is similar to the scenarios in the transportation field where traffic
flow changes need to be dynamically predicted. The TreeCN [4] model processes traffic time series data through
a tree convolutional network, effectively capturing the patterns in dynamic changes. Meanwhile, other advanced
traffic predictionmodels [5] also provide valuable references for the logic of resource optimization. For instance, in
research focused onmining trajectory features, the accuracy of travel time prediction has been enhanced, which can
inspire the integration of usermotion trajectory data inwireless networks formore precise resource pre‑allocation.
Inspired by approaches in transportation flow prediction, where models such as tree‑structured convolutional net‑
works effectively capture dynamic patterns, knowledge graphs can integrate information such as user mobility,
service requirements, and radio conditions to support more intelligent resource scheduling.

Security protection is also facing increasing pressure. As attack methods evolve, traditional rule‑based detec‑
tion systems have difficulty identifying new or concealed threats such as identity forgery and abnormal signaling
patterns. Attack behaviors are often subtle and distributed, requiring multi‑dimensional, cross‑domain contex‑
tual analysis that conventional systems are unable to provide. Insights from other domains—such as multi‑source
fusion used in predicting urban health risks—demonstrate the value of integrating heterogeneous data for risk as‑
sessment. By incorporating user behavior, device logs, known vulnerabilities, and external threat intelligence into a
unified semantic network, knowledge graphs can infer potential attack paths and provide earlier andmore accurate
security warnings.

Security protection is also facing increasing pressure. As attack methods evolve, traditional rule‑based detec‑
tion systems have difficulty identifying new or concealed threats such as identity forgery and abnormal signaling
patterns. Attack behaviors are often subtle and distributed, requiring multi‑dimensional, cross‑domain contextual
analysis that conventional systems are unable to provide [6]. Insights from other domains—such as multi‑source
fusion used in predicting urban health risks [7]—demonstrate the value of integrating heterogeneous data for risk
assessment. By integrating internal network data such as user behavior, device logs, and attack characteristics, as
well as external related data such as regional network attack trends, device vulnerability databases, and network
threat intelligence, knowledge graphs can form amore comprehensive security correlation network, enabling early
detection of potential cross‑regional and cross‑type attack risks and further enhancing the proactive defense ca‑
pabilities of wireless networks. By incorporating user behavior, device logs, known vulnerabilities, and external
threat intelligence into a unified semantic network, knowledge graphs can infer potential attack paths and provide
earlier and more accurate security warnings.

Overall, the convergencebetweenknowledge graph technologies andwireless networkneeds is drivenby three
key factors: (1) the ability to model complex, multi‑level entities and relationships; (2) the suitability of knowledge
graphs for dynamic, incremental reasoning; and (3) their effectiveness in integrating heterogeneous, cross‑domain
information. These capabilitiesmake knowledge graphs particularly valuable for enhancingwireless network oper‑
ation andmaintenance, supporting tasks such as fault analysis, resource optimization, and security threat detection.

To provide an intuitive visual synopsis of the limitations inherent to the aforementioned existing approaches,
Figure 1 delineates the core deficiencies of conventional wireless network operation and maintenance paradigms
alongside the targeted solutions proposed in this study. Traditional operation and maintenance schemes predom‑
inantly rely on manual expertise or static pre‑defined rules, which inherently fail to accommodate the dynamic
topology and intricate operational characteristics ofmodernwireless networks. Accordingly, there exists an urgent

48



Journal of Intelligent Communication | Volume 05 | Issue 01

imperative to develop a knowledge‑driven intelligent operation and maintenance framework, where the construc‑
tion and practical deployment of domain‑specific wireless network knowledge graphs serve as the pivotal enabler
for addressing the aforementioned challenges. Extensive experiments are conducted to quantitatively evaluate the
proposed framework in terms of fault localization accuracy, resource utilization efficiency, and scalability under
different network scales.

Figure 1. Core Deficiencies and Corresponding Solutions.

2. RelatedWork
The concept of the knowledge graph was first formally introduced by Google in 2012 with the goal of enhancing

search engine performance by structuring scattered online information into entity–relation networks [8]. Since then,
knowledge graph technologies have significantly advanced, driven largely by progress in natural language processing,
deep learning, and large‑scale datamanagement [9]. The optimization strategies explored in cross‑domain spatiotem‑
poral graph modeling—such as tree‑structured spatial–temporal models for traffic prediction [10]—further demon‑
strate the effectiveness of organizing fragmented information through structured graph representations, which is
consistent with the fundamental objective of knowledge graphs.

Researchondomain‑specific knowledgegraphshasalsoexpandedsteadily, supportedbygeneral‑purposeprojects
such as Freebase and Wikidata, which provide foundational resources for vertical applications [11,12]. In fields such
as healthcare, knowledge graphs constructed frommedical literature, electronic records, and drug databases support
disease diagnosis and treatment recommendation; SNOMED CT, developed by Stanford University, is one of the most
influential ontology systems in clinical decision support [13]. In finance, knowledge graphs help model corporate
ownership structures and transaction behaviors to enable risk warning and fraud detection [14]. In intelligent manu‑
facturing, knowledge graphs integrating equipment parameters and fault records support predictivemaintenance and
production optimization [15].

In the transportationdomain, spatiotemporal data fusionandgraph‑basedmodelinghavedemonstrated strong
potential. For example, the ST‑TDCN model improves traffic velocity prediction by optimizing tree‑structured spa‑
tiotemporal features [16]. Other studies—such as the classification of urban functional regions using empty‑vehicle
transmission data [17] and trajectory‑based pedestrian movement prediction in complex intersections [18]—
illustrate how multi‑source data fusion and interactive entity modeling can enhance intelligent decision‑making.
Thesemethods offer insights that can be extended towireless network scenarios, such as classifying coverage areas
ormodeling usermobility for resource optimization. Recentworks including spatiotemporal tensor autoregression
for shared mobility demand prediction [19], second‑order continuous GNN‑based traffic flow forecasting [20], and
meta‑analysis for traffic safety prediction [21] further highlight the value of advanced spatiotemporal modeling in
dynamic environment analysis, which can inspire wireless network optimization strategies.

Knowledge graph techniques have also been explored in emerging communication domains. For instance, in
low Earth orbit (LEO) satellite communication, researchers have applied knowledge graphs to spectrum‑sensing
data to improve semantic integration and representation [22]. These studies collectively demonstrate the increas‑
ing relevance of knowledge graphs in next‑generation communication systems, where large‑scale heterogeneous
data must be fused to support intelligent network management.

Overall, the compatibility between knowledge graphs andwireless networks is reflected in three aspects. First,
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wireless networks involve numerous entities such as base stations, user terminals, and core network devices with
hierarchical, causal, and interactive relationships that naturally align with the triplet representation of knowledge
graphs. Second, the dynamic characteristics of wireless networks—including changes in topology, user behavior,
and service demand—require models capable of incremental updates and real‑time reasoning, both of which are
strengths of knowledge graphs. Third, the need for cross‑domain knowledge integration in wireless networks,
involving protocols, parameters, and user behaviors, matches the semantic unification capabilities of knowledge
graphs, which help break data silos and enhance intelligent decision‑making.

3. Construction of Wireless Network Knowledge Graph
As a large‑scale system composed of diverse entities, complex relationships, and continuously evolving data,

wireless networks generate extensive information during operation, including device parameters, alarm logs, user
behaviors, and security events. These data often exhibit fragmentation andmulti‑source heterogeneity [23]. Tradi‑
tional datamanagement approaches struggle to capture the deep semantic associations among such heterogeneous
information, leading to delayed fault detection, inefficient resource utilization, and difficulty in identifying security
threats in a timelymanner. Knowledge graphs, as structured knowledge representations capable ofmodelingmulti‑
level relationships between entities, are well suited to address these challenges.

On the one hand, knowledge graphs can systematically integrate key associations in wireless networks through
the triplet structure of “entity–relationship–entity,” such as the communication links between base stations and users,
or the causal dependencies between faults and equipment. This structured representation enables the transforma‑
tion of massive raw network data into machine‑interpretable semantic knowledge. On the other hand, knowledge
graphs support incremental updates and logical reasoning, allowing them to capture dynamic network information—
such as topology variations, user mobility, and changing service demands—in real time. These capabilities make
them particularly valuable for intelligent network operation and maintenance, enabling faster diagnosis, optimized
resource scheduling, and proactive security protection.

The construction of a knowledge graph for wireless networks represents a systematic transformation process
from rawdata to structured knowledge. This process includes threemain stages: ontologymodeling, datamapping,
and knowledge graph management and application. First, ontology modeling serves as the “structural blueprint”
of the knowledge graph. During this stage, core entities, attributes, and relationships of the wireless networking
domain are defined to establish a unified semantic framework. This ensures that subsequent data transformation
follows consistent and domain‑specific semantic standards.

Next, data mapping is conducted. For themulti‑source heterogeneous data present in wireless networks, tech‑
nologies such as entity recognition and relation extraction are used to convert raw information into triples that con‑
form to the predefined ontology. Entity recognition and relation extraction are implemented using a lightweight
rule‑ and template‑based approach tailored to structured network logs and configuration data. This design choice
avoids the overhead of large‑scale model training while ensuring robustness and interpretability in network man‑
agement scenarios. Entity alignment and relation disambiguation are then applied to ensure semantic accuracy and
avoid redundant or conflicting representations. Finally, the resulting knowledge is stored in a graph database, and
dynamic updatemechanisms ensure that new network events and state changes are continuously incorporated. An
overview of the overall construction framework is illustrated in Figure 2.

Figure 2. Structure diagram of the knowledge graph construction.
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To clearly illustrate the core processing logic of the proposed framework, Algorithm 1 summarizes the main
steps involved in knowledge graph construction and incremental update:

Algorithm 1. Knowledge Graph Construction and Incremental Update.

• Input: Network logs, configuration data
• Output: Updated knowledge graph
• Step 1: Extract entities using predefined templates
• Step 2: Map entities to ontology using rules
• Step 3: Resolve conflicts based on rule priority
• Step 4: Insert or update affected nodes and edges

As shown in Algorithm 1, the framework starts by extracting structured entities from network logs and con‑
figuration data using predefined templates. These entities are then mapped to the ontology through rule‑based
mapping, where potential conflicts are resolved based on rule priority and semantic specificity. The knowledge
graph is constructed or updated incrementally in response to network events, such as faults or topology changes,
by modifying only the affected nodes and relations. This event‑driven and fine‑grained update mechanism enables
efficient knowledge maintenance and supports near real‑time network management.

To clearly explain the above construction process, this chapter is divided into three subsections: knowledge
representation, data mapping, and the management and application of the knowledge graph. By presenting these
components step by step, this chapter provides a comprehensive view of how the wireless network knowledge
graph is designed, constructed, and utilized.

3.1. Data Sources and Types
The construction of awireless network knowledge graph relies onmulti‑source heterogeneousdata that jointly

describe the structure, operation, and management logic of the network. According to the characteristics of data
origin and semantic granularity, the sources used in this study can be categorized into four major types: relevant
literature, log files, existing knowledge, and expert advice, as illustrated on the left side of Figure 2. Each type
of data provides complementary information for entity extraction, relationship construction, and rule definition,
enabling a comprehensive representation of wireless network knowledge.

• Relevant Literature: Academic publications, technical reports, and standard specifications in wireless commu‑
nication, network management, and artificial intelligence provide rich textual resources. These documents
contain conceptual definitions, hierarchical structures, and technical relationships that can be transformed
into the ontological framework of the knowledge graph. Using natural language processing techniques such as
named entity recognition and relation extraction, this theoretical and standardized knowledge can be formal‑
ized into semantic triples that enrich the conceptual layer of the graph.

• Log Files: Operational logs generated by base stations, routers, user terminals, and monitoring platforms pro‑
vide real‑time records of alarms, fault events, throughput indicators, and signaling interactions. These logs
reflect the dynamic operational state of the wireless network and serve as an essential basis for identifying
causal relationships and event patterns. Through structured parsing and pattern recognition, entities and re‑
lationships can be extracted to construct an event‑oriented semantic chain that supports fault diagnosis and
performance analysis.

• Existing Knowledge: This category includes previously organized structured or semi‑structured information
suchas equipment configurationdatabases, network topology records, andpublic domainontologies. These re‑
sources offer prior knowledge and relational templates that helpmaintain semantic consistency during knowl‑
edge integration. By aligning the wireless network ontology with existing knowledge bases, redundant repre‑
sentations and semantic conflicts can be minimized, ultimately enhancing interoperability.

• Expert Advice: Domain experts contribute experiential and heuristic knowledge that is often absent from raw
data. Through expert annotation, rule definition, and ontology refinement, hidden associations—such as the
influence of environmental conditions on performance anomalies—can be incorporated into the knowledge
graph. Such expert‑derived knowledge ensures semantic completeness and interpretability, especially in sce‑
narios where data‑driven extraction alone is insufficient.
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These data are collected through networkmonitoring interfaces, configurationmanagement systems, and per‑
formance logging modules at regular intervals. Collectively, these four types of data form the foundational informa‑
tion sources for the wireless network knowledge graph. Their complementarity—literature providing theoretical
structure, logs contributing real‑time dynamics, existing knowledge ensuring semantic continuity, and expert in‑
put enriching domain logic—enables the construction of a comprehensive, scalable, and semantically grounded
knowledge representation.

However, acquiring high‑quality and timely knowledge presents significant challenges. Issues such as licensing
restrictions and compliance requirements may inhibit the direct use of certain proprietary resources; raw records
often contain sensitive information that must be anonymized or filtered to meet privacy standards. Additionally,
the presence of noise, redundancy, and inconsistencies in large‑scale data necessitates strict screening and quality
control. Ensuring the timeliness of knowledge also requires efficient incremental updates and traceability mecha‑
nisms. Therefore, the construction and maintenance of a reliable knowledge base demand continuous verification,
standardized governance, and rigorous curation of data sources.

3.2. Knowledge Representation
Knowledge representation is a fundamental component in the construction of wireless network knowledge

graphs. Its core objective is to define entities, attributes, and relationships within the domain in a standardized,
machine‑interpretable manner, thereby forming a coherent semantic framework. Given the high complexity and
dynamic characteristics of wireless networks, knowledge representation must ensure both structural clarity and
compatibility with reasoning mechanisms.

Based on the requirements of wireless network fault detection and security protection, the ontology first de‑
fines the core conceptual system of the domain, establishing the “basic vocabulary” and “semantic rules” of the
knowledge graph. The ontology provides standardized definitions of entity types, entity attributes, and relation‑
ship types, ensuring semantic consistency across all stages of data processing.

Entity types: According to the structural and operational characteristics of wireless networks, entities are cat‑
egorized into three major groups: network device entities, event and state entities, and user and attack entities, as
shown inTable 1. These categories capture the essential components required for accuratelymodeling network be‑
haviors, device interactions, and potential security threats. The selection of entity categories is guided by common
abstractions in wireless network management, where devices, services, and events represent the core elements
required for monitoring, analysis, and decision‑making. This design balances expressiveness and complexity to
support efficient reasoning and querying.

Table 1. Entity types.

Entity Type Meaning The Key Sub‑type

Network device entity The hardware and logical components that make up a network are the core objects of
fault detection

Base stations; optical cable;
core network equipment

Event and state entities Dynamic events reflecting the operational status of the network serve as the direct
basis for fault and safety analysis

Fault events;
alarm information

Users and attack
entities

Link network users with potential threat sources to support attack traceability in
security protection scenarios

Legitimate users; malicious terminals;
attack behaviors

Entity attributes: Entity attributes describe the key characteristics of entities, including both static parame‑
ters and dynamic parameters. Attribute values are designed to be quantifiable or classifiable to support efficient
computation, comparison, and reasoning.

Relationship type: Relationship types define the semantic associations between entities, such as hierarchical
relationships, causal relationships, and interactive relationships. These relationships form the logical backbone of
the knowledge graph, enabling deeper semantic interpretation and facilitating inference mechanisms such as fault
propagation analysis or attack path prediction.

To provide a more intuitive illustration of the semantic framework defined by the ontology, a partial visualiza‑
tion of the ontologymodel is presented in Figure 3. The diagram illustrates how high‑level concepts in thewireless
network domain are decomposed into specific sub‑entities, and how semantic linkages between these entities are
represented through well‑defined relationships.
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Figure 3. Partial schematic diagram of the ontology model.

Overall, the knowledge representation framework ensures that the wireless network knowledge graph cap‑
tures essential domain semantics, supports logical reasoning, and provides a consistent foundation for subsequent
processes such as data mapping, graph storage, and intelligent applications.

3.3. Data Mapping
Data mapping is a critical step in constructing the knowledge graph, serving as the bridge between raw data

and the domain ontology. Its core function is to align the extracted entities, attributes, and relationshipswith the se‑
mantic structure defined in the ontology, ensuring that unstructured or semi‑structured information is transformed
into standardized knowledge representations. Because the extracted results may contain semantic ambiguity, for‑
mat inconsistencies, or duplicate expressions, the datamapping process plays an essential role in ensuring accuracy,
consistency, and interpretability.

After applying knowledge extraction techniques to raw wireless network data, a set of preliminary entities,
attributes, and relationships is obtained. However, these elements often contain variations such as multiple ex‑
pressions of the same concept—for example, “weak signal,” “poor signal,” and “signal attenuation”—or ambiguous
relationships such as “cause” being used for both causal and correlative associations. To eliminate ambiguity and
unify representation, this study adopts a rule‑based mapping strategy, which defines explicit correspondences be‑
tween data fields and ontology elements, offering strong interpretability and clear logical boundaries.

Mapping rules can be defined in a formal way. For entity mapping, the rules are expressed as:

𝑅𝑒𝑛𝑡𝑖𝑡𝑦(𝑑.𝑓𝑖𝑒𝑙𝑑, 𝐶) → (𝑂.𝐶𝑙𝑎𝑠𝑠, 𝑒.𝐼𝐷)
where 𝑑.𝑓𝑖𝑒𝑙𝑑 is the data source field, 𝐶 is the condition that the field needs tomeet, such as format and value range,
𝑂.𝐶𝑙𝑎𝑠𝑠 is the target class in the ontology, and 𝑒.𝐼𝐷 is the unique identifier of the mapped entity.

The attribute mapping rule is:

𝑅𝑎𝑡𝑡𝑟(𝑒.𝐼𝐷, 𝑑.𝑓𝑖𝑒𝑙𝑑, 𝐶) → (𝑂.𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣)
where 𝑒.𝐼𝐷 is the entity identifier, 𝑂.𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 is the ontology attribute, and 𝑣 is the attribute value.

The relation mapping rule is:

𝑅𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑒1.𝐼𝐷, 𝑒2.𝐼𝐷, 𝑑.𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑓𝑖𝑒𝑙𝑑, 𝐶) → 𝑂.𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
𝑒1.𝐼𝐷 and 𝑒2.𝐼𝐷 are the identifiers of associated entities, and 𝑂.𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is the ontology relationship.

For instance, from the report text “On October 1, 2023, optical cable L‑002 was damaged during construction,
resulting in a weak signal at base station BS‑1001 and affecting user UE‑2023 communication”, the entities “Optical
cable L‑002”, “Weak signal at BS‑1001”, and “UE‑2023” were extracted, along with their relationships “cause” and
“affect”.

According to the mapping rules:
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Relation (e1.ID = Optical cable L‑002, e2.ID = Weak signal at BS‑1001, d.Text includes “cause”) → Ontology
relation: causes.

Relation (e1.ID =Weak signal at BS‑1001, e2.ID =UE‑2023, d.Text includes “affect”)→Ontology relation: affects.
These mappings construct a clear causal chain—Optical cable damage →Weak signal → User communication

degradation—accurately reflecting the ontology‑defined semantic structure for “device–event–impact.” To address
potential conflicts and ambiguities amongmapping rules, a priority‑basedmechanism is adopted. Ruleswith higher
semantic specificity and domain relevance are assigned higher priority, while conflicting rules with lower priority
are suppressed. In addition, consistency checks are performed to ensure that the generated entities and relations
do not violate predefined ontology constraints.

Through rule‑based mapping, all extracted information is ultimately converted into standardized RDF triples
that strictly adhere to the ontology semantics. These triples form the core knowledge units of the graph, supporting
reliable storage, efficient querying, and intelligent reasoning in subsequent applications.

3.4. Management of Knowledge Graphs
The management of knowledge graphs aims to ensure real‑time adaptability to network changes while main‑

taining the accuracy, completeness, and consistency of the stored knowledge. Given the large scale of wireless net‑
works and the frequent updates of entities and relationships, the management framework must support efficient
storage, fast updates, and high‑quality governance.

The management of knowledge graphs needs to adapt to the dynamics and scale of wireless networks. The
core modules include storage architecture, incremental updates, and quality control.

Storage architecture: A suitable graph database must be selected to accommodate the vast number of triples
representing entities such as base stations, users, fault events, and device relationships. In this work, Neo4j [24]
is employed due to its support for high‑concurrency queries, scalable storage, and efficient graph traversal. A hier‑
archical storage strategy is adopted—static knowledge is stored offline, while dynamic knowledge is cached in an
in‑memory database—achieving a balance between storage efficiency and real‑time performance.

Incremental update mechanism: Wireless networks exhibit strong temporal dynamics, with frequent changes
in topology, user behavior, and operational events. To maintain timely knowledge synchronization, a triggered up‑
date mechanism is implemented: whenever device logs, signaling data, or performance indicators are updated, the
corresponding entity recognition, relation extraction, andmapping procedures are automatically activated. The up‑
dated triples are then inserted into the graph. The incremental update mechanism is event‑driven. When changes
such as fault occurrences, topology updates, or configuration modifications are detected, only the affected entities
and relations are updated, rather than reconstructing the entire graph. This fine‑grained update strategy signifi‑
cantly reduces update overhead and supports near real‑time knowledge maintenance. In addition, timestamp la‑
beling and version control are employed to preserve historical states, enabling traceable reasoning such as fault
evolution analysis or anomaly pattern discovery.

Quality control strategy: Knowledge quality is evaluated based on consistency, completeness, and timeliness.
Inconsistent or outdated knowledge is identified through rule validation and periodic checks, and corresponding
entities are corrected or deprecated accordingly. Due to the noisy and heterogeneous nature of wireless network
data, robust quality control is essential. Rule‑based validation is applied to eliminate contradictory or logically
impossible triples—for example, preventing mappings that violate domain rules such as attributing “weak base
station signal” to irrelevant causes. Machine‑learning‑based entity disambiguation is also utilized to resolve con‑
flicts in entity references and ensure accurate linking. Through these mechanisms, the knowledge graphmaintains
high semantic fidelity and supports reliable inference, even in complex and dynamic operational environments.

4. Implement the Knowledge Graph for Wireless Networks
The previous sections have presented the construction process of the wireless network knowledge graph, in‑

cluding ontology‑based knowledge representation, rule‑driven data mapping, and dynamic management mecha‑
nisms. Building on this foundation, this chapter illustrates how the knowledge graph is applied in real wireless
network scenarios to address practical challenges in fault detection, resource optimization, and security protec‑
tion. For large‑scale graphs, query efficiency is improved through indexed entity attributes and localized subgraph
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traversal. By limiting queries to relevant subgraphs based on context constraints, unnecessary global scans are
avoided, enabling scalable query performance. This chapter demonstrates how structured semantic knowledge is
transformed into actionable intelligence.

In wireless network operation and maintenance, fault events often trigger a chain reaction that makes diagno‑
sis difficult. By constructing an association network of “device–event–impact,” the knowledge graph enables rapid
identification of root causes and supports fault propagation analysis. For example, when users within the area re‑
port “signal interruption”, the knowledge graph automatically activates the dependency chain of “user terminal →
access base station → transmission link → core network equipment”, and combines historical fault triples such as
“optical cable damage → weak base station signal” and “core network overload → regional network disconnection”
to infer potential fault points. If the knowledge graph detects an abnormal connection relationship between “Base
Station BS‑2001” and “Optical Cable L‑056”, and the optical cable has recent construction records, it will prioritize
pushing the root cause judgment of “optical cable construction damage” and link the “fault ‑ Solution” associated
data to assist technicians in handling it quickly.

Resource optimization in wireless networks requires dynamic allocation of spectrum, computing, and stor‑
age resources based on real‑time conditions and user demands [25]. Similar to the Internet of Vehicles, where
reinforcement learning has been applied to optimize handover and resource allocation [26], traditional static re‑
source allocation methods struggle under highly dynamic network conditions such as fluctuating user density and
diverse service types. By integrating relationships among “user clusters,” “network nodes,” and “resource pools,”
the knowledge graph constructs a semantic model that supports fine‑grained, demand‑aware resource scheduling.
In high‑density scenarios such as concerts or sporting events, the graph canmatch user service typeswith resource
requirements to ensure stable and fair service quality. This optimization logic is also supported by insights from
cross‑domain dynamic prediction models. For example, multi‑feature attention mechanisms used in traffic predic‑
tion can be adapted to prioritize key influencing factors in wireless networks, such as emergency communication,
high‑definition video, or control signaling [27]. Likewise, hybrid models designed for sparse traffic prediction can
inspire methods to enhance resource scheduling for edge nodes with limited user data [28]. These cross‑domain
strategies extend the reasoning capabilities of the knowledge graph and improve its effectiveness in dynamic re‑
source allocation.

In security protection, emerging cyberattacks exhibit increasing stealth and complexity. By constructing a
security‑oriented knowledge graph linking “user,” “device,” and “attack behavior,” potential threat paths and risk
patterns can be identified through semantic inference. For instance, if “Terminal T‑102” sends an unusually large
number of forged identity requests, the knowledge graph traces its historical behavior and identifies that it fre‑
quently co‑accesses base station BS‑500 with “Terminals T‑103” and “T‑104,” with similar communication charac‑
teristics. The graph infers that these terminals may belong to an attack group. In this work, reasoning refers to the
process of inferring implicit relationships and potential network states by traversing explicit entity–relation paths
and applying predefined logical rules over the knowledge graph. In the event of node failure, the corresponding en‑
tities are marked as inactive, and related relations are temporarily disabled. Once recovery is detected, the graph is
incrementally updated to restore consistencywithout requiring full reconstruction. Furthermore, by linking “attack
behavior”with “vulnerability type”—such asmapping forged requests to authentication protocol weaknesses—the
graph predicts potential risks for similar base stations, such as BS‑501 and BS‑502, and automatically issues patch
update recommendations.

These application scenarios are quantitatively evaluated through experiments, as reported in Section 5, demon‑
strating their effectiveness under different network scales. Overall, the knowledge graph transforms multi‑source
data into an interpretable, actionable intelligence network, enabling enhanced fault localization, efficient resource
scheduling, and proactive security defense in wireless networks. This demonstrates its strong potential to support
next‑generation intelligent network management.

5. Experimental Evaluation
5.1. Experimental Setup

To quantitatively evaluate the effectiveness of the proposed knowledge‑graph‑based framework for wireless
networkmanagement, a series of experiments is conducted. Considering the privacy and availability constraints of
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real operational data, wireless network data are generated that reflect realistic network management scenarios.
The network consists of user equipment (UE), base stations (BS), backhaul links, and abstracted core network

components. Network events, including fault occurrences and traffic load fluctuations, are injected in a controlled
manner. The effectiveness of this application scenario is quantitatively evaluated in the experimental section. Each
event is recorded in the form of structured logs and performance indicators, which serve as the input to different
management methods.

To examine scalability, four network scales are evaluated: small (30 users), medium (100 users), large (500
users), and very large (1000users). For each scale, the correspondingnumber of base stations and links is increased
proportionally tomaintain realistic network density. The proposedmethod is comparedwith a baseline rule‑based
monitoring approach that relies on direct thresholdmatching and local correlation, without leveraging graph‑based
semantic relationships.

The following evaluation tasks are considered:

(1) Fault localization accuracy
(2) Resource utilization efficiency
(3) Query latency and scalability

5.2. Fault Localization Performance
Fault localization is a fundamental task in wireless network management, where the objective is to accurately

identify the root cause of observed service degradation. In the experiments, fault events such as optical link failures
or base station malfunctions are injected, and the system is required to infer the most probable fault source based
on observed symptoms.

Table 2 presents the fault localization accuracy achieved by the baselinemethod and the proposed knowledge‑
graph‑based approach under different network scales. The results demonstrate that the proposed method consis‑
tently outperforms the baseline across all evaluated scenarios, achieving an absolute accuracy improvement of ap‑
proximately 18–20%. While the baseline approach relies on isolated rule matching, the knowledge graph enables
fault propagation reasoning along “device–event–impact” paths, which significantly improves root cause identifica‑
tion, especially in large‑scale networks.

Table 2. Fault Localization Accuracy under Different Network Scales.

Number of Users Baseline Accuracy KG‑Based Accuracy

30 0.557 0.738
100 0.559 0.758
500 0.562 0.754
1000 0.564 0.752

Moreover, the performance of the proposed method remains stable as the network size increases, indicating
that the reasoning process is robust to network expansion.

5.3. Resource Utilization Evaluation
Efficient resource utilization is critical for maintaining service quality in dynamic wireless environments. In

this experiment, network traffic demands are dynamically generated to emulate variations in user behavior and
service requirements. Resource utilization is measured as the ratio of effectively allocated resources to the total
available capacity.

Table 3 compares the resource utilization achieved by the baseline approach and the proposed method. The
knowledge‑graph‑based framework improves overall resource utilization by approximately 10–14%, owing to its
ability to incorporate semantic relationships among users, base stations, and service requirements.

The proposed approach enablesmore informed resource allocation decisions than static rule‑based strategies.
This advantage becomes more pronounced in medium and large‑scale networks, where local optimization alone is
insufficient to capture global resource dependencies.
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Table 3. Resource Utilization Comparison.

Number of Users Baseline Utilization KG‑Based Utilization

30 0.598 0.731
100 0.593 0.740
500 0.620 0.764
1000 0.591 0.740

5.4. Scalability and Query Performance
Scalability is a critical requirement for practical deployment in largewireless networks. To evaluate scalability,

the query latency of network management operations is measured under increasing network sizes. Query latency
refers to the time required to retrieve and reason over relevant knowledge graph entities in response to a manage‑
ment request.

Table 4 summarizes the average query latency for bothmethods. The proposed approach exhibits lower query
latency than the baseline across all scales, despite maintaining richer semantic information. This result can be
attributed to structured graph indexing and localized traversal enabled by the graph database.

Table 4. Query Latency Scalability Analysis.

Number of Users Baseline Latency (ms) KG‑Based Latency (ms)

30 12.8 6.0
100 17.9 11.6
500 66.5 44.6
1000 127.2 83.9

As the number of users increases from 30 to 1000, query latency grows approximately linearly for both meth‑
ods, but with a significantly lower growth rate for the knowledge‑graph‑based approach. These results indicate
that the proposed framework is capable of supporting large‑scale wireless network management with acceptable
response times.

5.5. Discussion
The experimental results demonstrate that integrating structured knowledge graphs into wireless network

management yields measurable performance benefits in fault localization accuracy, resource utilization efficiency,
and scalability. Unlike traditional rule‑based approaches, the proposed framework captures complex semantic rela‑
tionships and supports reasoning over interconnected network entities. The current experiments primarily target
enhancedMobile Broadband (eMBB) and Ultra‑Reliable and Low Latency Communications (URLLC) scenarios [29],
while massive machine‑type communications (mMTC) will be explored in subsequent studies.

From a computational perspective, the proposed framework primarily incurs linear complexity with respect
to the number of graph entities during update and query operations. The storage requirement grows proportion‑
ally with the network scale and can be supported by distributed graph databases in practical deployments. The
architecture is compatible with distributed processing paradigms commonly adopted in large‑scale network man‑
agement systems. The proposed framework is designed to support near real‑time network management through
event‑driven updates and localized graph queries, making it suitable for low‑latency and high‑throughput wireless
environments.

Overall, the results provide quantitative evidence supporting the effectiveness and scalability of the proposed
method, addressing the key limitations identified in existing network management approaches.

6. Conclusions
This paper focuses on the pain points in the field of wireless networks and proposes a construction and ap‑

plication scheme of knowledge graphs. Firstly, the efficiency and accuracy issues existing in traditional fault de‑
tection, resource optimization and security protection were analyzed, and the adaptability of knowledge graph
technology was demonstrated. Secondly, the construction process of the knowledge graph of wireless networks is
elaborated in detail, including the realization of knowledge representation through ontology modeling, rule‑based
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multi‑source data mapping, and the graph management mechanism that supports dynamic updates; Finally, the
application effects of knowledge graphs in fault location, resource scheduling and security protection were demon‑
strated in combination with actual scenarios, verifying their value in enhancing the intelligence level of wireless
networks. The current evaluation focuses on eMBB and URLLC scenarios, while extending the framework tomMTC
remains an important direction for future work. The framework is designed to operate under typical networkman‑
agement hardware constraints. Lightweight rule‑based processing and incremental updates reduce computational
overhead, enabling deployment on commodity servers or edge computing platforms.

Future work will investigate distributed deployment strategies, further optimization of incremental update
efficiency, and cross‑domain knowledge integration. In addition, the trade‑off between ontology expressiveness
and query efficiency, as well as consistency maintenance under concurrent updates, will be explored, and can be
combined with large language [30] models to provide more powerful support for the intelligent operation and
maintenance of the next‑generation networks.
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