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Abstract: Phishing attacks pose significant risks in the digital landscape, resulting in financial losses and sensitive
information breaches. Traditional detection methods often struggle to keep pace with evolving threats, compro-
mising their effectiveness. This study addresses these limitations by developing a robust detection system using
a hybrid machine learning approach. We combine random forest, gradient boosting, and logistic regression al-
gorithms to enhance phishing detection accuracy. A labeled dataset of URLs from Kaggle is utilized, with robust
feature engineering extracting key attributes for model training. Following the CRISP-DM framework and leverag-
ing Object-Oriented Programming principles, we develop a model that achieves strong performance metrics. The
model’s accuracy stands at 84%, with precision, recall, and F1-score values of 85%, 86%, and 84%, respectively.
Notably, the model demonstrates excellent ability to differentiate between phishing and legitimate URLs, with an
ROC AUC score of 91%. These results confirm the model’s potential as a reliable phishing detection tool, capable of
identifying phishing URLs effectively while minimizing false positives. Our research contributes to the development
of more effective phishing detection strategies, ultimately safeguarding users and organizations from economic and
reputational harm. By leveraging machine learning, we can develop more robust cybersecurity systems. Our pro-
posed model can be seamlessly integrated into existing security frameworks to improve the detection of phishing
threats.

Keywords: Hybrid Machine Learning; URL Classification; Cybersecurity; Random Forest; Gradient Boosting; Phish-
ing Detection

1. Introduction

The Internet has emerged as one of the most transformative and rapidly expanding technologies, with the
number of global users increasing from 413 million in 2000 to 4.54 billion in 2020 [1]. While it has enabled un-
precedented opportunities in communication, commerce, education, and entertainment, it has also created fertile
ground for cybercriminal activity. Among the most prevalent threats are phishing attacks and malware distribu-
tion [2,3]. Phishing, a malicious form of online identity theft, is designed to obtain unauthorized access to sensitive
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user information by impersonating legitimate organizations [4]. Attackers typically deploy deceptive emails or
fraudulent websites that mimic trusted entities to manipulate users into providing sensitive information such as
passwords, personal identification numbers, credit card details, or banking information [5]. The harvested data
are often exploited to compromise social media accounts, email services, or financial systems, leading to severe in-
cidents of identity theft and monetary loss [6]. The growing sophistication of phishing techniques has heightened
security concerns across critical sectors such as banking, e-commerce, and education. According to Abdelhamid
et al,, phishing-related theft costs U.S. banks and credit card companies approximately USD 2.8 billion annually [7].
The Anti-Phishing Working Group (APWG) [8] reported over 165,772 phishing sites detected in the first quarter of
2020 alone, underscoring the scale and persistence of this threat.

Phishing is now recognized as one of the most severe challenges in cybersecurity [9]. With global internet
penetration reaching 59.5% and over 4.66 billion users by early 2021, an increase of 316 million users compared
to the previous year [1,10], attackers have unprecedented access to potential victims. Cybercriminals often exploit
social media platforms, emails, and online services by creating fraudulent websites and disseminating malicious
links accompanied by urgent or alarming messages to elicit immediate responses from unsuspecting users [11,12].
Once sensitive credentials are provided, attackers misuse them for fraudulent transactions, blackmail, or broader
cybercrimes. Phishing attacks have evolved beyond credential theft to also serve as vectors for distributing mali-
cious software such as ransomware [12]. The APWG reported a dramatic escalation in phishing incidents during
the COVID-19 pandemic, with the number of attacks more than doubling in 2020. Notably, over 225,304 new phish-
ing sites were identified in October alone, marking the highest monthly record to date [8]. Similarly, the Internet
Crime Complaint Center (IC3) received 241,342 phishing-related complaints in 2020, representing reported finan-
cial losses exceeding USD 54 million [13]. These statistics underscore the urgency of developing effective phishing
detection mechanisms to safeguard unsuspecting internet users and mitigate both financial and emotional harm.

The rise of data science has opened new opportunities for combating such threats, as vast digital records can
now be transformed into actionable intelligence through machine learning [14]. Data-driven solutions have already
shown strong utility across domains such as business analytics, [oT, cybersecurity, and financial forecasting [15-17].
Applying these techniques to phishing detection provides a promising avenue for building adaptive and intelligent
security models. Existing research on phishing website detection has explored diverse approaches. Early methods
employed blacklist and whitelist techniques [18], content-based filtering [19], and visual similarity analysis. More
recent efforts have investigated heuristic- and machine learning-based solutions [20]. Abdelhamid etal. [7] applied
Multi-label Classifier-based Associative Classification (MCAC), achieving 94.5% accuracy. However, their work was
limited by a relatively small dataset of 601 legitimate and 752 phishing sites and only 16 extracted features, leaving
room for more robust feature engineering. Similarly, Aydin and Baykal [21] employed Naive Bayes and Sequential
Minimal Optimization across two feature subsets, such as CFS and Consistency, achieving accuracy rates ranging
between 83.69% and 95.39%. While these approaches demonstrate potential, their reliance on restricted datasets
and limited feature sets constrains generalizability to real-world phishing scenarios.

This study aims to create an efficient phishing detection system by selecting the relevant features and evalu-
ating the effectiveness of various classification algorithms. To achieve this, the study introduces a hybrid machine
learning model designed to differentiate phishing websites from legitimate ones almost instantly. Unlike conven-
tional methods that depend on search engines, external services, or analysis of DNS and web traffic, the proposed
approach focuses on extracting features directly from URLs, enabling faster detection. This strategy is crucial be-
cause phishing sites generally remain active for less than 10 hours on average, with nearly half being taken down
within 24 hours. Nevertheless, compromised domains often persist beyond this window, underscoring the need
for rapid and adaptive detection systems. Despite widespread awareness campaigns, users continue to face several
challenges in recognizing phishing websites:

i. Limited understanding of URL syntax and structure.

ii.  Uncertainty regarding which websites to trust.

iii.  Inability to recognize redirections or hidden URLs.

iv.  Lack of time to manually inspect website addresses.

v.  Difficulty distinguishing legitimate from fraudulent websites.
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To address these limitations, this study sets out the following specific objectives:

a.  Compile a comprehensive labeled dataset of phishing and legitimate URLs from the Kaggle repository.

b.  Extract relevant URL-based features indicative of phishing activity, including lexical characteristics, length,
and keyword presence.

c.  Implement a hybrid machine learning architecture that combines linear and non-linear models—specifically
Random Forest (RF), Gradient Boosting (GB), and Logistic Regression (LR)—to enhance detection accuracy.
Train and optimize the hybrid model on the preprocessed dataset.

e.  Design a system architecture that integrates the trained model for real-time classification of URLs.

f. Carry out the performance evaluation of the hybrid model using standard metrics such as accuracy, precision,
recall, F1-score, as well as ROC-AUC.

Significance of the research

a.  Government: Assures a functional system capable of reducing cyberattacks at the national level.

b.  Users: Protects individuals from online fraud and identity theft while fostering greater awareness and vigi-
lance in online interactions.

c.  Organizations: Promotes a security-conscious culture, enabling employees to identify phishing attempts and
thereby reducing financial and reputational losses.

d. Cybercrime Agencies: Reduces the investigative burden by filtering out fraudulent websites automatically,
allowing agencies to focus on high-priority threats.

2. Related Works

Phishing detection has received extensive research attention due to the increasing sophistication of attack vec-
tors and their persistent threat to online transactions. Existing countermeasures can broadly be classified into user
education-focused approaches and software-based detection techniques, with recent research emphasizing auto-
mated and hybrid machine learning-driven solutions to overcome the limitations of human-centered defenses.

2.1. User Education-Focused Approaches

User awareness and training constitute an early line of defense against phishing attacks. Sheng et al. [22]
demonstrated that Anti-Phishing Phil, a game-based learning system, significantly improved users’ ability to iden-
tify fraudulent websites. Similarly, Kumaraguru et al. [23] employed email-based training mechanisms to educate
users on recognizing malicious URLSs, reinforcing human vigilance alongside automated systems. Arachchilage and
Love [24] further grounded user-oriented interventions in the Technology Threat Avoidance Theory (TTAT), propos-
ing game-based strategies to promote secure behavioral responses. While these studies confirm the value of user
education in reducing susceptibility, they also highlight its inherent limitations. Human-dependent solutions are
susceptible to fatigue, inconsistency, and delayed responses to rapidly evolving phishing strategies, rendering edu-
cation insufficient as a standalone defense mechanism.

2.2. Software-Based Approaches

To address the scalability and adaptability limitations of user-centered methods, software-based phishing de-
tection solutions have been extensively explored. These approaches are generally categorized into list-based and
machine learning-based techniques.

2.2.1. List-Based Approaches

List-based detection techniques rely on predefined blacklists and whitelists to classify URLs. Wang et al. [25]
and Han et al. [26] employed whitelist-oriented domain classification, while logo and favicon matching techniques
were explored by Chiew et al. [20] and Rosiello et al. [27]. Conversely, blacklist-based approaches, such as those
incorporating DNS and domain registration data [28], aim to block previously identified phishing sources. Despite
their simplicity and low computational cost, list-based methods suffer from a critical weakness: they are ineffective
against zero-day phishing attacks, as newly registered malicious domains often evade static lists. This limitation
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significantly restricts their applicability in dynamic threat environments.

2.2.2. Machine Learning-Based Approaches

Machine learning (ML) techniques have emerged as a more flexible and robust alternative, leveraging URL
structures, webpage content, hyperlink relationships, and third-party metadata. Mohammad et al. [29] achieved
high classification accuracy using self-structuring neural networks, albeit with increased computational overhead.
Taeri et al. [30] focused on network-based inference to uncover phishing URLs masquerading as legitimate entities,
while Mao et al. [31] employed CSS-based similarity metrics to detect visually deceptive websites. Subsequent re-
search advanced ML performance through neural architectures and feature engineering. Feng et al. [32] reported
high accuracy using a Monte Carlo-trained neural network, while Rao and Pais [12] combined heuristic URL features
with image-based verification to improve zero-day detection at the cost of runtime efficiency. Hyperlink-based anal-
ysis introduced by Jain and Gupta [11] offered improved discrimination but remained ineffective for non-HTML con-
tent. More complex deep learning models, including capsule networks [33] and CNN-based architectures [34,35],
demonstrated strong detection capability but raised concerns about model complexity and interpretability. Re-
cent studies have explored lightweight and ensemble-based solutions. Random Forest-driven [36] systems such
as CatchPhish [37] achieved competitive accuracy with reduced computational overhead, while regression-based
and hybrid feature transformations [18,38] improved robustness. Emerging approaches leveraging generative ad-
versarial networks and predictive ensembles [39], as well as LLM-based phishing detection systems [40], reflect
growing interest in adaptive models. Nevertheless, challenges such as dataset imbalance, dependence on third-
party sources, limited generalization, and high computational requirements persist.

2.2.3. Hybrid and Advanced Detection Approaches

Hybrid phishing detection approaches integrate multiple feature sources and classification techniques to capi-
talize on their complementary strengths. Do et al. [41] and Feng et al. [42] emphasized hybridization as a means to
improve resilience against evasion tactics and enhance coverage across heterogeneous website components. Venu-
gopal et al. [43] combined URL and HTML features within an ensemble framework; however, the reported per-
formance (95.3%) was lower than that of certain standalone classifiers, highlighting that hybridization does not
inherently guarantee improved accuracy. In contrast, Aljofey et al. [44] achieved 96.76% accuracy using a URL-
HTML hybrid approach, though performance deteriorated when handling multilingual content. Vecliuc et al. [45]
observed only marginal gains (96.5%) from integrating URL, HTML, and logo-based features, suggesting diminish-
ing returns with increasing feature complexity. Recent deep learning-driven hybrids have reported higher detec-
tion accuracy. Web2Vec [42] integrated URL, HTML, and Document Object Model (DOM) features using CNN and
LSTM architectures, achieving 99.05% accuracy. Despite strong performance, the approach suffers from black-box
behavior, prolonged training time, and limited flexibility. Similarly, WebPhish [46] employed deep embeddings of
raw URLs and HTML content, reporting 98.1% accuracy but showing reduced robustness to manipulated or ob-
fuscated web content. Hybrid systems incorporating screenshots and logo analysis [18,47] further improved de-
tection capability but exhibited susceptibility to false positives and visual obfuscation attacks. Collectively, these
findings indicate that while hybrid models can enhance robustness, they often introduce trade-offs in efficiency,
interpretability, and adaptability.

Beyond feature fusion, string-based URL analysis remains a core strategy, exploiting the observation that phish-
ing URLs exhibit identifiable lexical patterns [48,49]. Empirical studies reveal a surge in phishing campaigns hosted
on free website builders, accounting for approximately 81.7% of malicious domains [50]. Additionally, financially
motivated malicious applications have proliferated through unregulated distribution channels such as SMS and in-
stant messaging platforms [51,52]. Despite implementation differences, these malicious artifacts exhibit common
behavioral traits, including sensitive data exfiltration and covert network activity. Investigations of malicious soft-
ware repositories, such as PyPl and NPM, reveal shared authorship, reused codebases, and common remote content
fetching mechanisms, highlighting coordinated attack strategies [53-55]. Advanced reinforcement learning-based
techniques have framed phishing detection as a sequential decision-making problem. Double Deep Q-Networks
(DDQNs) have shown promise in addressing class imbalance and concept drift in malicious URL datasets through
adaptive learning [56]. Complementary to academic research, online security services such as VirusTotal provide
large-scale, multi-engine analysis of URLs and files, enabling the detection of diverse threats including phishing, mal-
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ware, and Trojans [57-60]. However, reliance on external services introduces dependency risks and limits real-time
detection capabilities. Thus, existing hybrid and advanced phishing detection approaches demonstrate notable im-
provements in accuracy and robustness but often lack interpretability, computational efficiency, and cross-dataset
generalization. These limitations motivate the need for a lightweight, interpretable hybrid framework that balances
detection performance with adaptability to evolving phishing tactics.

2.3. Review of Hybrid Models in Machine Learning for Detecting Phishing URLs

Hybrid machine learning models have emerged as a promising solution to the limitations of single-feature
phishing detection approaches. By integrating complementary information sources, these models can capture both
structural and behavioral indicators of phishing activity. Prior studies highlight several advantages of hybridization,
including improved detection performance through the combination of URL and hyperlink features, dynamic fea-
ture extraction capable of adapting to evolving phishing patterns, and increased versatility in identifying phishing,
spoofing, and zero-day attacks. Furthermore, client-side implementations of hybrid models reduce dependency on
external services, thereby minimizing latency and enhancing user privacy.

Despite these advantages, existing hybrid approaches exhibit notable limitations that restrict their practical de-
ployment. First, empirical evidence regarding the effectiveness of hybridization remains inconsistent; while some
studies demonstrate performance gains over standalone models, others report marginal improvement or even per-
formance degradation. This inconsistency suggests that hybrid effectiveness is highly dependent on feature selec-
tion and integration strategy. Second, the trade-off between detection accuracy and computational efficiency is in-
sufficiently explored, particularly in real-time and resource-constrained environments. Third, robustness against
evasion techniques, including URL obfuscation and adversarial manipulation, is rarely evaluated systematically,
limiting confidence in real-world resilience. Finally, many existing frameworks lack scalability and modularity, im-
peding adaptation to emerging phishing strategies and evolving web technologies.

These unresolved challenges underscore the need for a hybrid phishing detection framework that achieves
a balance between accuracy, efficiency, interpretability, and robustness. Addressing this gap, the present study
proposes a lightweight and modular hybrid machine learning approach that integrates URL-based and hyperlink-
derived features, focusing on client-side applicability and adaptability. By emphasizing explainable feature engi-
neering and flexible model integration, the proposed framework seeks to advance both the theoretical understand-
ing and practical deployment of hybrid phishing detection systems.

3. Materials and Research Methodology
3.1. Research Framework

The development of the proposed hybrid feature-based URL phishing detection system integrates two com-
plementary methodologies: the Cross-Industry Standard Process for Data Mining (CRISP-DM) and Object-Oriented
Programming (OOP). The CRISP-DM framework provided a structured and iterative process for data understanding,
preparation, modeling, evaluation, and deployment, ensuring systematic handling of the dataset and reproducibil-
ity of results. Conversely, the OOP paradigm was employed to design a modular, scalable, and maintainable system
architecture, thereby facilitating seamless integration of multiple algorithms and future model enhancements. The
synergy between CRISP-DM and OOP enabled the system to effectively capture and analyze data-driven behavioral
patterns associated with phishing activities. The hybrid model integrates outputs of the three base learners (Ran-
dom Forest, Gradient Boost, and Logistic Regression) using a soft-voting ensemble approach, where class probabili-
ties from individual models are averaged to yield the final classification. This method leverages the interpretability
of logistic regression and the non-linear decision power of tree-based models. During the classification phase, the
hybrid model was trained using preprocessed data, validated on independent test data, and subsequently deployed
for real-time predictions on unseen URLs. This process follows the standard supervised learning approach, wherein
the algorithm learns to differentiate between legitimate and phishing instances through iterative optimization. Fig-
ure 1 illustrates this conceptual workflow, analogous to traditional email classification processes where models
distinguish between “spam” and “ham” (non-spam) categories.
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Figure 1. An instance of a Classification Model.

3.2. Dataset Description and Model Training

The experimental evaluation utilized the Kaggle phishing websites dataset as the primary benchmark for model
training and validation. The dataset comprises 11,430 URL samples, evenly distributed between phishing and le-
gitimate instances (50% each), thus ensuring balanced class representation. (i) Each URL is characterized by 87
distinct features drawn from three major categories: (ii) Structural and syntactic features (56): capturing lexical
and morphological characteristics of the URL; (iii) Content-based features (24): derived from the HTML and page
content of the corresponding websites; and (iv) external service features (7): obtained from WHOIS and other
third-party sources to provide contextual metadata. Three ML classifiers: Random Forest (RF), Gradient Boosting
(GB), and Logistic Regression (LR), were integrated into the hybrid model to leverage both linear and non-linear
relationships within the data. These algorithms were trained and evaluated using the preprocessed dataset. A
representative sample of the dataset is presented in Figure 2.

having_IP_Address URL_Length Shortining_Service having_At Symbol double_slash_redirecting Prefix_Suffix having_Sub_Domain §SLfinal_State_Deomain
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19 b1 b1 b1 b1 b1 b1 b1 b1

20 rows x 31 columns

Figure 2. A screenshot of the Kaggle dataset for Phighing websites.
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The classification of websites is done using values 1 and -1, where 1 represents legitimate sites and -1 indicates
phishing sites. Values typically range between two or three options, indicating the attribute’s intensity or strength
from low to high (Table 1).

Table 1. URL Attribute Classification.

Attribute Attribute Type Value
UsingIP, ShortURL, Symbol@, Redirecting, PrefixSuffix, DomainRegLen, Favicon, NonStdPort, HTTPS DomainURL,

RequestURL, InfoEmail, AbnormalURL, StatusBarCust, DisableRightClick, UsingPopupWindow, IframeRedirection, Categorical {-1,1}
AgeofDomain, DNSRecording, PageRank, GoogleIndex, StatsReport

LongURL, SubDomains, HTTPS, AnchorURL, LinksInScriptTags, ServerFormHandler, WebsiteTraffic, LinksPointingToPage Categorical {1,0,1}
WebsiteForwarding Categorical {0,1}

3.2.1. Data Pre-Processing

In this study, the preprocessing involves traditional machine learning operations—normalization and token-
ization—to convert URL strings into numerical vectors. The term ‘embedding’ here does not refer to language model
embeddings (LLM) but rather to a fixed-length numerical representation suitable for classical ML algorithms. The
data preprocessing phase encompassed a series of critical operations designed to ensure data consistency, integrity,
and suitability for model training. These operations included data normalization, tokenization, and word embed-
ding. Initially, the Kaggle dataset was examined to confirm the absence of missing or inconsistent values. Sub-
sequently, all numerical features were normalized to a uniform scale to prevent disproportionate influence from
variables with larger magnitudes. For textual transformation, a character-level tokenization approach was imple-
mented to convert URL strings into numerical representations. This was achieved using the Tokenizer function
provided by the Keras library, which vectorizes text sequences into machine-interpretable arrays. To maintain uni-
form input dimensions, a fixed sequence length of 60 characters was adopted, reflecting the observed average URL
length of 25-50 characters. URLs exceeding this threshold were truncated, while shorter URLs were zero-padded
to ensure dimensional consistency. The dataset was divided into training and testing sets using an 80-20 split, with
80% allocated for training the model and 20% reserved for evaluating its performance on new, unseen data. This
configuration aligns with standard machine learning practices for ensuring reliable model generalization.

3.2.2. Feature Extraction

Following preprocessing, a feature extraction module was developed to transform labeled raw URLs into
embedding-based feature representations, facilitating effective model learning. Since machine learning classifiers
cannot directly process textual input, this step converted URLs into structured numerical feature sets. Although
the Kaggle dataset includes 87 features, this study employed a subset of 25 hybrid features (URL and hyperlink-
based) relevant to client-side detection. The reduction aimed to eliminate third-party and server-dependent fea-
tures, ensuring independence from external APIs and improving system scalability for real-time implementation.
A total of 25 discriminative features were extracted and organized into two primary categories: URL-based fea-
tures, capturing lexical, structural, and syntactic properties of the URLs, and Hyperlink-based features, reflecting
internal and external link behaviors within web pages. These extracted features, summarized in Table 2, served
as the foundation for the classification of web pages into legitimate or phishing categories. The study exclusively
utilized client-side features, thereby eliminating dependencies on third-party APIs and search engines—an ap-
proach that enhances privacy, independence, and system scalability. Feature values were encoded in a binary
format, where 0 represents legitimate instances and 1 indicates phishing behavior.

Table 2. Categorical Features Used in This Study.

S/N Category Features Name Total Features

Domain-URL, Count of Subdomains-URL, IP Address-URL, “@” Symbol-URL, Length of URL,

Depth of URL, Redirection “//”-URL, “http/https”-Domain Name, HTTPS Scheme, URL

Shortener services (e.g., TinyURL), Prefix or Suffix “-” Domain, Presence of Sensitive Words,

Presence of Popular Brand Names, Uppercase Letters usage, Number of Dots in URL.

Missing hyperlink, Site-internal link ratio, off-site Hyperlink Ratio, Embedded/Linked CSS,

2 Hyperlink-based features Questionable form submission, Blank Hyperlink, Favicon type (Internal/External logo), Page 10
duplication rate, Duplicate footer links, HTTP request handler

1 URL-based features 15
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3.2.3. URL-Based Features

A Uniform Resource Locator (URL) is a standardized format used to specify the location of digital resources
such as web pages, images, audio, and video files on the Internet. Figure 3 depicts the typical URL structure, which
includes several components that together define the resource’s exact location and access method. URLs start with
a protocol identifier, for example, HTTP, HTTPS, or FTP, which designates the communication protocol for fetch-
ing the resource. Of these, HTTPS (Hypertext Transfer Protocol Secure) is regarded as the most secure, providing
encryption and authentication to ensure data integrity during transmission.

| http s:l//IcommunityNh obspot#:omﬂtS/G roups/ct-p/groups

Protocol Sub- Domain Primary Top-Level Path Segment
Domain

Domain

Figure 3. URL Pattern.

After the protocol, the hostname indicates the server that hosts the requested resource. The hostname (IP
address) itself can be broken down into three levels: the subdomain, which comes before the main domain and
often points to a specific service or department; the primary domain, representing the main organization or entity;
and the top-level domain (TLD), which can be either generic (gTLD) like .com or .org, or country-code (ccTLD) such
as .ng or .uk. Following this is the path segment, which designates the exact location of the resource within the
server’s directory, separated from the domain by a single forward slash (‘/”). URLs may also contain optional parts:
a query string, beginning with a question mark (‘?"), that carries additional parameters or user information, and
a fragment identifier, starting with a hash symbol (‘#"), which usually points to a specific section of the webpage.
Recognizing these URL components is crucial because phishing sites often exploit elements like subdomains, TLDs,
or query strings to trick users and imitate legitimate websites. Therefore, analyzing these URL features is vital for
effective phishing detection. The standard URL format is as follows:

<Protocol>://<Subdomain>.<Primarydomain>.<TLD>/<Pathdomain><?query><#fragmnt>

Phishing detection often involves identifying URL manipulations that trick users into believing they are on
legitimate websites. Attackers use URL obfuscation techniques, altering key components such as the primary do-
main, subdomain, and path to mask malicious intent. This study extracts and encodes various URL-based features
to effectively distinguish phishing from legitimate sites.

i Domain Name: The full domain, excluding the “www.” prefix, is extracted but omitted from model training due
to its low discriminative value.

ii.  Subdomain Count: Counts the number of dots in the hostname; legitimate URLs usually have two dots (ex-
cluding “www”). URLs with three dots are labeled suspicious (value = 0.5), and those with more than three
are labeled phishing (value = 1).

iii. IP Address in Domain: Using an IP address in place of a domain is a strong phishing indicator, as legitimate
sites rarely do this.

iv..  “@” Symbol: The presence of “@” causes browsers to ignore preceding parts of the URL, a tactic phishers
exploit. Its presence scores 1 (phishing), absence scores 0 (legitimate).

v.  URL Length: Phishing URLs tend to be unusually long. URLs over 75 characters but under 100 are suspicious
(0.5), while longer ones are classified as phishing.

vi. URL Depth: Measures the number of directory levels in the path; deeper paths are common in phishing URLs.

vii. Double Slash “//”: An extra “//” beyond the protocol may indicate redirection to a phishing site; presence
scores 1, absence 0.

viii. “http/https” in Domain: Appearance of these tokens within the domain suggests phishing (1), else (0).
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ix. HTTPS in Scheme: “https” presence suggests legitimacy (0), absence or insecure protocol suggests phishing
(1), though fake certificates reduce reliability.

x.  URL Shorteners: Use of shortening services (e.g., TinyURL) is flagged as phishing (1), otherwise (0).

xi.  Hyphen “-” in Domain: Hyphens are uncommon in legitimate domains but frequently appear in phishing URLs.

xii. Existence of Sensitive Words: Phishing URLs frequently contain trigger terms such as login, update, validate,
activate, or secure to induce user urgency. A curated list of 18 such terms is used; the feature value is 1 if any
term appears, otherwise 0.

xiii. Existence of Trendy Brand Names: Phishers often incorporate recognizable brand names within URLs to de-
ceive users into believing they are visiting official sites. A list of 19 frequently targeted brands is maintained
for detection.

xiv. Existence of Uppercase Letters: Legitimate URLs typically use lowercase characters. The presence of upper-
case letters within a URL is treated as a phishing indicator.

xv. Number of Dots: More than two dots generally increase phishing likelihood.

3.2.4. Hyperlink-Based Feature

This section examines hyperlink properties extracted from the website’s source code, using the Document
Object Model (DOM) tree structure to analyze hyperlinks hierarchically and systematically (see Figure 4).

l <html>

e E—
r 1

l <head> l <body>
\ —r

s s—
T 1 T T 1

[ <link> [ <script> l <form> l<img src> l <a href>
—— | I —— — —
Favicon dava
Script

CSs

1 T
action Own Foreign Own Foreign
attribute Domain Domain Domain Domain

Figure 4. HTML DOM Tree.

The DOM facilitates the dynamic access and manipulation of web elements such as tags, IDs, classes, attributes,
and structures within a webpage. During feature extraction, the DOM is instrumental in identifying and analyzing
elements such as links, forms, source (src) attributes, and anchor (a) tags. Figure 4 illustrates a typical DOM tree
structure. From the DOM, ten hyperlink-based features were extracted to capture structural and behavioral differ-
ences between legitimate and phishing websites.

i. Number of Hyperlinks: Legitimate websites usually have many web pages and corresponding hyperlinks,
while phishing sites tend to have fewer or hidden links. As noted in Figure 4, genuine sites generally con-
tain at least one hyperlink in their source code. This feature counts all href, link, and src tags. A count of zero
indicates phishing (value = 1), while any nonzero count indicates legitimacy (value = 0).

ii.  Internal Hyperlink Ratio: Internal links point to the same base domain. Phishing sites often copy legitimate
templates and retain internal links to the original domain. This ratio is calculated by dividing internal links
by total links. A ratio of 0.5 or higher suggests a legitimate site (value = 0), and a ratio below 0.5 suggests
phishing (value = 1).

iii.  External Hyperlink Ratio: External links direct users to different domains. Phishing websites often have a
higher proportion of external links to redirect users or load content. Legitimate sites keep this ratio low. Ratios
below 0.5 are marked legitimate (0), and 0.5 or above are flagged phishing (1).

iv.  Internal/External CSS Links: CSS files define a webpage’s appearance. Attackers often use external CSS copied
from real sites to create convincing phishing pages. If CSS files link to external domains, the feature is set to 1
(phishing); if internal, 0 (legitimate).

v.  Suspicious Form Links: Phishing pages may use deceptive login forms pointing to external URLs, PHP scripts,
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vi.

vii.

viii.

iX.

or placeholders like # or javascript: void(). Legitimate forms link to their own domain. This binary feature
marks external or placeholder actions as suspicious (1) and local actions as legitimate (0).

Null Hyperlinks: Phishing sites frequently use anchor tags linking back to the same page (e.g., <a href="#">) to
trap users. This ratio of null links to total anchors above 0.34 indicates phishing (1); otherwise, it is legitimate
(0).

Internal/External Favicon: Favicons indicate site identity. If a favicon is linked from an external domain, it
usually signals phishing, as attackers copy favicons to appear authentic. Internal favicons score 0 (legitimate),
external ones score 1 (phishing).

Common Page Detection Ratio: Phishers tend to redirect many anchors to a few pages, resulting in a high ratio
of repeated links. A higher ratio raises suspicion of phishing.

Common Page in Footer Section Ratio: Focused on footer links, this metric detects phishing by identifying
repetitive or limited links commonly found in phishing footers.

Server Form Handler (SFH): The SFH attribute in form tags is examined. Empty, placeholder, or external
domain values indicate phishing. This ternary feature assigns 0 for legitimate, 0.5 for suspicious, and 1 for
phishing.

3.2.5. Hybrid Features

To boost classification performance, URL-based and hyperlink-based features were combined into a hybrid set

of 25 attributes. The domain name was excluded due to its non-numerical nature and limited relevance. Supervised
ML algorithms—RF, GB, and LR—were trained on labeled datasets to map feature patterns to the categories of
legitimate or phishing websites. Models were validated on unseen data to improve detection accuracy.

3.3. High-Level Model Overview

The high-level model provides a broad view of the system’s architecture, outlining key components, workflows,

and interactions involved in phishing detection (Figure 5).
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Figure 5. High-Level Model Overview.
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The hybrid architecture adopts a soft-voting ensemble strategy. Each base learner (Random Forest, Gradi-
ent Boost, and Logistic Regression) outputs class probabilities. These probabilities are averaged to form the final
classification decision. This ensures that both linear and non-linear decision boundaries are captured effectively.
The ensemble operates in a parallel fashion rather than a stacked meta-classifier, thereby minimizing model com-
plexity while preserving interpretability. The proposed phishing detection system combines both URL-based and
hyperlink-based features and incorporates a blend of linear and non-linear machine learning algorithms—RE, GB,
and LR—as depicted in Figure 5. This hybrid framework delivers a robust and comprehensive strategy for identi-
fying and countering phishing threats across varied web contexts.

i. Comprehensive Feature Extraction: The system uses a dual extraction process that captures both URL-level
and hyperlink-level features, enabling it to detect a wide range of phishing indicators. This includes recogniz-
ing suspicious keywords, misleading domain structures, and unusual use of URL shorteners, thus improving
detection of both traditional and new phishing methods.

ii.  Hybrid Learning Strategy: The approach combines the advantages of linear and non-linear models. Logis-
tic Regression offers interpretability and models linear relationships, while ensemble methods like Random
Forest and Gradient Boosting handle complex non-linear interactions. Their integration enhances model ro-
bustness and reduces overfitting risks.

iii. Adaptability and Continuous Learning: The system is designed to dynamically adapt to evolving phishing
strategies by retraining on updated datasets. Continuous model evaluation ensures that new patterns in phish-
ing behavior are incorporated, thereby maintaining model relevance in the constantly changing cybersecurity
landscape.

iv.  Enhanced Accuracy and Reduced False Positives: The integration of multiple algorithms in a hybrid archi-
tecture enhances detection accuracy. The system effectively balances interpretability and predictive power,
achieving improved classification performance while minimizing false positives. This reduces unnecessary
disruptions to legitimate users and strengthens confidence in automated phishing detection.

v.  Economic and Operational Benefits: The deployment of the proposed system yields tangible operational and
economic advantages. By proactively preventing phishing-induced financial losses, data breaches, and rep-
utational harm, organizations can achieve significant returns on investment (ROI). Additionally, enhanced
detection performance contributes to a safer user experience and fosters long-term trust in online platforms.

3.3.1. Hybrid Model Design and Prediction Workflow

(1) Hybrid Model Integration: Outputs from individual machine learning models are aggregated into a unified
hybrid framework. This ensemble approach capitalizes on the predictive capabilities of both linear and non-
linear models to deliver higher accuracy and generalizability across datasets.

(2) Prediction and Output Generation: The prediction process involves several key steps: (i) Extraction of features
from the new URL using the established preprocessing pipeline. (ii) Feeding of the extracted feature vector
into the trained hybrid model. (iii) Generation of a binary classification output—phishing or legitimate—
accompanied by a probability-based confidence score.

3.3.2. System Architecture

Figure 6 illustrates the system'’s architecture. The process begins with input URLs destined for classification
as legitimate or phishing. Feature extraction modules analyze attributes such as IP addresses, URL length, domain
components, and favicon presence to build a structured feature vector. This vector encodes values as 1, 0, or -1,
reflecting feature presence, irrelevance, or absence. These encoded features are fed into the ensemble classifiers—
Logistic Regression, Gradient Boosting, and Random Forest—which are trained on labeled data to identify distinc-
tive patterns. The combined hybrid classifier then assesses new URLs, producing classification results. Model
performance is measured using accuracy, precision, recall, and F1-score to confirm the system’s effectiveness in
realistic phishing detection environments.
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Figure 6. System Architecture.
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A system sequence diagram (SSD) is a specific type of UML sequence diagram focused on illustrating the se-
quence of events generated by external actors interacting with the system, as shown in Figure 7. While typical
sequence diagrams depict event progression over time, SSDs provide detailed sequences for distinct use case sce-
narios. Use case diagrams, by contrast, represent user interactions in a broader sense. The SSD focuses on the
step-by-step flow within a particular use case instance.

User URL Input Module Classifier Engine Feature Extractor Model Loader Prediction Engine Output Layer
Enter URL to classify
Send URL (Input)
Extract features from URL
>
Return extracted features
e Load trained model
Model loaded
Send features for prediction
@ >
Return predicted class
Send prediction result
(5] >
Display output\n(Phishing or Legitimate)
User URL Input Module Classifier Engine Feature Extractor Model Loader Prediction Engine Output Layer

4. Discussion and Results

4.1. Model Performance Metrics

Figure 7. Sequence Diagram.

Model performance was assessed using key metrics, with their formulas presented in Equations (1)-(4):

Accuracy (Equation 1):
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A _ TP+TN 1
CCUratY = TP Y TN + FP + FN (1)
Precision (Equation 2):
Precision = i 2
recision = TP T FP (2)
Recall (Equation 3):
Recall = e 3
C = TP Y FN (3)
F1-score (Equation 4):
F1 5 precision * Recall 4
—_ = *
score Precision + Recall (4)

i. Input Format: The input format of the system is designed to accept datasets or URLs from users. Figure 8
illustrates an example of an admin inputting the dataset for training on the system.

ii.  Output Format: The output format shows the result of the data that the system collected from the user. Figure
9 is a display format for an uploaded dataset.

Phishing Woebsite Detection Train  Check Phishing  Logout

Login successfult %

Upload Dataset

Choose File  No file chosen

Upload,

Uploaded Datasets

Dataset Name Actions
dataset_ohishing.csv m

Figure 8. Input format for uploading a dataset.

Uploaded Data

url length url length hostname ip nb dots nb_hyphens nbat nbgm nband nbor mbeq nb underscore

30cfa 130604121034 n 3 1

k com/ap/29e6a3b4b0s3bed 126 50 14

cks/gateway-motorsperts-park 55 15 0 2 2 0 0 0 0

V4 /validation/ba4b8bddd7958ecb8772c836c2969531 81

blogspot.com 2 £ o 2 0 0 ) o )

5836/joshwigler/the-amazing-race-host-phil-keoghan-previews-the- 104 10

10 asp 0 0
n a 0

12 joader-app-for-android-free-music-download; ] 4 01 9 C 0 0

3 3

" 2 16 0 0 0

15 3/7logon=myposte 51 23 0 3 ] 0 1 0 ] 1

Figure 9. Output format of the uploaded dataset.
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Dataset Selection: The initial phase involved choosing an appropriate dataset, sourced from the Kaggle repos-
itory, due to several advantages:

i. The dataset’s large size offers a comprehensive foundation for training.
ii. It contains 30 features, providing a broad feature space that can improve prediction accuracy (see Figure 10
for details).
iii. URLs are approximately evenly distributed between legitimate and phishing classes, ensuring balanced train-
ing data.
1 having_IP_Address 16 SFH
2 URL_Length 17 Submitting_to_email
3 Shortining_Service 18 Abnormal URL
4 having_At_Symbol 19 Redirect
5 double_slash_redirecting 20 on_mouseover
6 Prefix_Suffix 21 RightClick
7 having_Sub_Domain 22 popUpWidnow
8 SSLfinal State 23 Iframe

Domain_registeration

9 ength 24 age_of domain

10 Favicon 25 DNSRecord

11 port 26 web_traffic

12 HTTPS_token 27 Page_Rank

13 Request_URL 28 Google_Index

14 URL_of_Anchor 29 Links_pointing_to_page
15 Links_in_tags 30 Statistical_report

Figure 10. The features in the dataset.
Source: Kaggle (https://www.kaggle.com).

4.1.1. Feature Extraction

Feature values were extracted with Python libraries such as whois, requests, socket, re, ipaddress, and Beauti-
fulSoup to obtain information on IP addresses, URL length, domain name, subdomains, favicon presence, and others.
These features are stored as a list matching the dataset’s format. When a new URL is input, it is converted into a
Python list containing 30 elements representing these features, which the trained classifiers—Logistic Regression,
Random Forest, and Gradient Boosting—then analyze for classification.

4.1.2. Feature Importance and Ablation Study

Feature importance was analyzed using the Gini impurity scores from the Random Forest model. The most
influential features included URL length, presence of the ‘@’ symbol, number of dots, HTTPS usage, and domain
age. To further validate feature contribution, an ablation study was conducted by iteratively removing top-ranked
features and measuring the performance drop. The F1-score declined by 4.1% when the top five features were
excluded, confirming their strong predictive relevance.

4.2. Hardware and Software Requirements

Hardware:

i. CPU: Multi-core processor with at least 2.5 GHz
ii. ~ RAM: Minimum 8 GB
iii.  Storage: Atleast 64 GB
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iv.  0S: 64-bit Windows or Linux
V. Peripherals: Mouse, SVGA monitor, enhanced keyboard

Software:

vi. Programming language: Python (version 3.2 or higher)
vii. ML libraries: scikit-learn, TensorFlow, or PyTorch

viii. Data processing: Pandas, NumPy

ix.  Visualization: Matplotlib, Seaborn

x.  Dataset: Balanced set of phishing and legitimate URLs
xi.  IDE: PyCharm or Visual Studio Code

xii. Database: MySQL

xiii. Browsers: Chrome or UC Browser

4.3. Results

This section outlines the results of the study. The evaluation of the hybrid model combining RF, GB and LR
yielded promising results with balanced metrics across the board. By using the Equations (1)-(4) where: TP = 940;
FP =209; FN = 160 and TN = 977, we obtain the values in Table 3. Thus, the phishing detection system evaluation
of the hybrid model can be seen in Table 3.

Table 3. Evaluation result of the hybrid model.

Precision Recall Accuracy F1-Score ROC AUC
0.85 0.86 0.84 0.84 0.91

The evaluation results indicate a promising phishing detection system with balanced performance across var-
ious metrics. Here’s a detailed breakdown;

i. Precision: 0.85 indicates a high proportion (85%) of flagged phishing attempts are indeed phishing sites. The
system avoids a large number of false positives that could inconvenience users.

ii.  Recall: 0.86 indicates the system identifies 86% of actual phishing attempts, demonstrating some success in
catching malicious URLs.

iii. F1-Score (0.84): This balanced metric reflects the trade-off between precision (avoiding false positives) and
recall (catching phishing attempts).

iv.  Accuracy (0.84): This signifies the system correctly classified 84% of URLs in the test data. It demonstrates a
good overall ability to distinguish between phishing and legitimate websites.

v.  ROCAUC (0.91): This is a very high score. An AUC of 0.91 indicates exceptional ability to distinguish between
phishing and legitimate URLs overall, even though the accuracy is low.

4.3.1. Baseline Performance Comparison

To demonstrate the benefit of hybridization, Table 4 is a short results table comparing the individual model
performances (accuracy, precision, recall, F1-score, AUC) versus the hybrid model, that is, the baseline compar-
isons with individual classifiers (Random Forest, Gradient Boost, and Logistic Regression). The results (Table 4)
show that the hybrid ensemble achieved an accuracy of 84%, outperforming individual models. This confirms that
hybridisation improves classification performance.

Table 4. Baseline Comparison of Individual Classifiers vs. Hybrid Model.

Model Accuracy Precision Recall F1-Score AUC
Logistic Regression 77% 78% 79% 78% 0.84
Random Forest 81% 82% 83% 82% 0.88
Gradient Boost 80% 81% 82% 81% 0.87
Hybrid (Proposed) 84% 85% 86% 84% 0.91
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Logistic Regression, while interpretable, captures linear patterns and therefore performs moderately. Random
Forest and Gradient Boosting perform better due to their ability to model nonlinear relationships, but both still fall
short of the hybrid approach. The hybrid model integrates the strengths of both linear and non-linear classifiers,
resulting in improved generalization and higher discriminative capability. The hybrid achieved a 4-7% relative im-
provement across key metrics, confirming that the hybridisation strategy delivers measurable performance gains.

4.3.2. Experimental Analysis

(1) Confusion Matrix (CM)
The confusion matrix is a visual representation that summarizes a classifier’s correct and incorrect predic-
tions, helping evaluate its performance. As depicted in Figure 11, the matrix consists of True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives (FN). Figure 12 shows the confusion matrix
specific to the hybrid model used in this study.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

Figure 11. Confusion Matrix.

Confusion Matrix

- 600
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500

400

- 300

-200

Predicted

Figure 12. Confusion Matrix of the hybrid model.

(2) The Correlation Map
The correlation map illustrates the relationships between discrete values, with lighter boxes indicating strong
positive correlations and darker boxes indicating weak or negative correlations. If all values were strongly
correlated, classification might be unnecessary for making accurate predictions. However, the classifier lever-
ages the differences in correlations to identify patterns and find an optimal solution. Notably, the map reveals
low correlations between certain features, such as URL depth and domain length or dots in the domain and
entropy. This particular feature combination proved challenging to interpret, as reflected in the map. The
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lack of correlation between URL length and domain length suggests that URL lengths are arbitrarily chosen,
regardless of page depth. This is evident in the varying URL lengths, which can range from short to extremely
long (up to 80 or 100 characters) without a discernible pattern. The correlation map for the hybrid model is
presented in Figure 13.

Correlation Table
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Figure 13. Correlation Map.

(3) ROC Curve
The Receiver Operating Characteristic (ROC) curve is a graphical tool that assesses the hybrid model’s ability
to distinguish between phishing (positive) and legitimate (negative) classes over various threshold settings.
Figure 14 illustrates the ROC curve for the hybrid model, highlighting its discriminative power across different
classification cutoffs.

Receiver Operating Characteristic (ROC) Curve

True Fositive Rate

w— ROC curve (arca = 0.91)

0.0 T T T
0.0 0.2 0.4 0.6 0.8 10

False Positive Aate

Figure 14. ROC Curve.
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4)

(5)

Classification Report
The classification report compiles the hybrid model’s performance results on the binary classification of phish-
ing versus legitimate URLs. It includes key metrics such as Precision, Recall, F1-score, and Support:

i. Classes: The model is evaluated on two categories—phishing (positive) and legitimate (negative).

ii. Precision: This measures the proportion of URLs labeled as phishing that are genuinely phishing. It
reflects the model’s ability to reduce false positives, calculated as the ratio of true positives to the sum
of true and false positives. In other words, it answers: “Of all URLs predicted to be phishing, how many
were correct?”

iii. Recall (True Positive Rate): Recall indicates how effectively the model detects actual phishing URLs.
It’s the ratio of true positives to the sum of true positives and false negatives. It answers: “Of all phish-
ing URLs present, how many were identified?”

iv. F1-Score: The F1-score harmonizes precision and recall, providing a single balanced measure of classi-
fication accuracy, particularly valuable when false positives and negatives carry similar costs. Higher
F1 values indicate better overall performance.

V. Support: This metric shows the number of samples for each class in the evaluation set, offering insight
into the class distribution and ensuring meaningful evaluation

The classification report of the hybrid phishing detection model is presented in Figure 15, illustrating how
effectively the ensemble approach—combining Random Forest, Gradient Boosting, and Logistic Regression—
balances detection accuracy, precision, and recall across both classes. This performance analysis validates the
hybrid model’s reliability and its potential for practical deployment in real-time phishing detection systems.

Classification Report

-0.855
04

-0.850

1
0.845
0.840

accuracy
0.835

macro avg
0.830
0.825

weighted avg

precision recall fl-score

Figure 15. Classification Report.

These results suggest a well-functioning hybrid model with balanced performance in identifying phishing
attempts while minimizing disruptions through false positives. However, there is room for improvement, es-
pecially in reducing misclassifications.

10-Fold Cross-Validation Results

To enhance evaluation reliability, we applied 10-fold cross-validation (Table 5). The dataset was randomly
partitioned into 10 equal subsets; in each fold, 9 subsets were used for training and 1 for testing. This process
was repeated 10 times, and the final performance metrics were computed as the mean * standard deviation
across the folds.
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Table 5. 10-Fold Cross-Validation Results (Mean * SD).

Model Accuracy Precision Recall F1-Score ROC-AUC

Logistic Regression 0.772 £ 0.015 0.778 £ 0.018 0.781+0.017 0.779 £ 0.016 0.842 +0.014
Random Forest 0.815+0.012 0.823+0.014 0.831+0.013 0.824 + 0.015 0.881 +0.011
Gradient Boosting 0.802 +0.014 0.812 +0.017 0.819 £ 0.016 0.814 +0.015 0.873 £0.013
Hybrid Model 0.842 +0.010 0.853+0.012 0.861 +0.011 0.848 + 0.012 0.912 + 0.009

Figure 16 is the 10-fold cross-validation accuracy boxplot.
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Figure 16. 10-fold Cross-Validation Accuracy Distribution.

(6) Comparative Analysis with State-of-the-Art Models
To contextualize the performance of the proposed hybrid model, we compared our results with benchmark
performance values reported in existing literature for CNN, LSTM/GRU, and Transformer-based phishing de-
tection models (Table 6). Although these deep-learning architectures generally achieve higher accuracy due
to their ability to capture sequential and contextual information, they require significantly more computa-
tional resources and lack interpretability. In contrast, the proposed hybrid model maintains a balance of ac-
curacy, lightweight implementation, and interpretability suitable for client-side phishing detection.

Table 6. Comparison of the Proposed Hybrid Model with Benchmarks Reported in Literature.

Model Accuracy F1-Score Source

Proposed Hybrid (RF + GB + LR) 0.84 0.84 This study
CNN-based URL Classifier 0.83 0.82 Xiao etal. [34]
LSTM/GRU URL Sequence Model 0.97 0.97 Roy etal. [61]
Transformer-based URL Embedding Model (URLTran BERT) 0.997 0.997 Maneriker et al. [62]
Random Forest (baseline) 0.81 0.80 Alkawaz et al. [63]

4.4. Limitations

Although the proposed hybrid model demonstrates competitive performance, several limitations remain. First,
the evaluation relies on a single publicly available dataset, which may limit generalizability to zero-day or highly ob-
fuscated phishing URLs. Second, the method focuses exclusively on client-side URL and hyperlink features; server-
side properties, website content, and DOM-level features were not incorporated. Third, the lightweight ML models
used, while interpretable and efficient, may not capture complex sequential or contextual patterns as effectively as
deep learning or transformer-based architectures.

5. Conclusions

Phishing has become a major cybersecurity challenge in today’s fast-evolving digital world. With the widespread
adoption of cashless payments, online business activities, and paperless systems, phishing threatens the integrity
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and trustworthiness of digital transactions. Increasingly sophisticated phishing attacks are eroding users’ confi-
dence in conducting secure financial and online operations. This study highlights the effectiveness of ML in coun-
tering phishing threats by analyzing key features and applying classification techniques. Utilizing ML's predictive
power, data can be transformed into actionable insights to protect digital environments. The research centers on de-
tecting phishing websites through a hybrid ML model that combines RF, GB, and LR algorithms. Developed in Python
within the Visual Studio IDE, the model emphasizes affordability, scalability, and ease of access. By harnessing both
linear and non-linear classifiers, the hybrid system improves detection accuracy. Experimental results reveal a high
AUC, indicating a strong ability to distinguish phishing from legitimate URLs while balancing precision and recall
effectively. These outcomes demonstrate that well-designed ML-based phishing detection systems offer adaptive,
robust defenses against evolving cyber threats. The fusion of URL-based and hyperlink-based features creates a
comprehensive framework that supports real-time phishing detection with valuable practical applications. While
this study utilized a single Kaggle dataset, future research will expand evaluation using cross-domain datasets (e.g.,
UCI Phishing, PhishTank) and simulated zero-day attacks to enhance robustness and adaptability. Future work will
also explore richer feature representations, experimenting with transformer-based URL embedding models, and
assessing the system’s resilience to adversarially crafted phishing attacks.

To further increase the proficiency, resilience, and adaptability of the proposed phishing detection system, the
following recommendations are proposed:

i. Regular Monitoring and Evaluation: Continuously evaluate the system'’s performance against emerging phish-
ing patterns. Regular assessments ensure that the model remains responsive to evolving attacker strategies
and maintains high detection accuracy over time.

ii.  Model Refinement: Enhancement of the hybrid model can be achieved through: Hyperparameter Tuning: Op-
timize the parameters of each classifier (RF, GB, and LR) to improve predictive accuracy and computational
efficiency. Feature Engineering: Expand the feature space to include additional phishing indicators, such as
content-based attributes or behavioral metrics, when sufficient data becomes available.

iii.  Data Quality and Diversity: Ensure that the dataset used for model training is balanced and representative of
both legitimate and phishing instances. To address class imbalance, data augmentation or synthetic sample
generation techniques can be employed to enrich the dataset with varied phishing examples, improving model
robustness.

iv.  Integration and Deployment: Future work should explore the deployment of the model within web browsers,
email gateways, and real-time filtering systems to provide active protection against phishing threats in prac-
tical use cases.
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