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Abstract: Unmanned Aerial Vehicle (UAV) path planning in unknown environments continues to pose a significant
challenge, as DeepReinforcement Learning (DRL) solutions are often severely hampered by slow convergence rates
aswell as unstable training dynamics. To address this gap, we introduce a Genetic Programming–seeded Soft Actor–
Critic (GP+SAC) approach in which Genetic Programming produces high‑quality trajectories that are introduced
into the replay buffer of SAC as a “warm‑start” policy to prevent wasteful early exploration. Through experiments
in three benchmark grid environments, we demonstrate that GP+SAC converges significantlymore rapidly than the
FA‑DQN baseline, achieving superior returns in fewer episodes while capitalizing on the same reward design. We
show that in large environments, GP+SAC achieved a mean path length of 30.55 units as compared to FA‑DQN’s
28.38, thus validating that rapid convergence has no tradeoff in path efficiency. Observably, results also show that
as much as GP+SAC obtains superior cumulative rewards, there is a visible fluctuation in the level of training that
is indicative of instabilities under very constrained environments. Numerical evaluations show that the proposed
GP+SAC agent converges significantly faster than the FA‑DQN baseline, achieving higher episodic returns within
only a few episodes. In terms of path efficiency, GP+SAC yields an average path length of 30.55 units, which is com‑
parable to the FA‑DQN’s 28.38 units, demonstrating that accelerated convergence is achieved without sacrificing
path optimality.
Keywords: UAV‑Assisted WSNs; UAV Flight Path Scheduling; Soft Actor‑Critic (SAC); Reinforcement Learning; Ge‑
netic Programming

1. Introduction
Integration of Unmanned Aerial Vehicles (UAVs) and Wireless Sensor Networks (WSNs) is a revolutionary so‑

lution for precision farming, facilitating effective data collection, environmental observation, and on‑demand deci‑
sion making [1]. For extensive agricultural applications, WSNs encounter energy‑limited sensor nodes, extensive
communication distances, and environmental limitations that discourage long‑term operation. UAV‑aided WSNs
overcome them by decreasing ground node energy consumption, enhancing coverage, and facilitating flexible on‑
demand data collection. Nevertheless, optimal performance is realized only when attention is given to UAV flight
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path planning, energy optimization, and fault‑tolerant communication mechanisms [2].
Latest studies point out the promise of machine learning‑based techniques, specifically Reinforcement Learn‑

ing and metaheuristic optimization, to overcome these challenges. As for classic path planning methods such as
A, RRT, and Dijkstra, although providing deterministic solutions, these methods fail to be responsive to non‑static
scenes and cannot optimizemultiple criteria such as data throughput, collision evasion, and energy [3]. By integrat‑
ing RL and Genetic Programming, hybrid methods promise the production of good initial solutions and adapt them
through iterative learning, leading to smoother, shorter, and adaptable trajectories for UAVs.

We propose a hybrid system comprising a Genetic Programming (GP) and a Soft Actor‑Critic (SAC) system for
energy‑optimal data collection via UAVs for agricultural Wireless Sensor Networks (WSNs). The GP part is employed
offline to find near‑optimumwaypoint sequences with obstacle and smoothness constraints. The resulting paths are
used to initialize the SAC component’s replay buffer, accelerating convergence and end‑path quality under dynamic
conditions. The system was evaluated using custom Python environments (map1, map2, and map3) [4], and its per‑
formance was tested against the FA‑DQN framework in terms of convergence speed, path length, and qualitative path
characteristics such as smoothness.

2. Literature Review
A hybrid deep neural architecture combining Convolutional Neural Networks (CNNs) and Long Short‑Term

Memory (LSTM) networks has been proposed to solveUAVpath planning in dynamic environments [5]. The CNNex‑
tracts spatial features from aerial images, and the LSTM extracts temporal relations tomake decisions in sequences.
The system learns to cope with real‑time obstacle and terrain changes. The model is also trained in simulated en‑
vironments on sequences of images and compared against A3C and DQN baselines. It demonstrates higher path
efficiency, fewer collisions, and quicker convergence. The approach improves UAV navigation by using spatial per‑
ception and memory. Performance shows robust generalization on unseen dynamic scenes. Real‑world validation
and energy‑awareness are, however, not present. The system also does not consider swarm‑level coordination or
flight [5].

A reinforcement learning (RL)‑based framework has been proposed to improve routing in Flying Ad‑Hoc Net‑
works (FANETs), addressing the shortcomings of conventional routing algorithms in highly dynamic UAV net‑
works [6]. The authors formulate amulti‑objective optimisation problem that jointly considers UAV trajectories, en‑
ergy efficiency, and communication range to enhance packet delivery ratio (PDR) andminimise transmission delays.
The solution suggests the deployment of a Data Forwarding Agent (DFA) per UAV tomake next‑hop decisions based
on real‑time environmental feedback, sensor data generation models, and cooperative UAV networking. The sys‑
tem allows for probabilistic modelling of data generation (normal and exponential distributions) and UAVmobility,
enabling adaptive, context‑aware routing. The RL‑based DFA is acquired using Q‑learning with an ε‑greedy explo‑
ration strategy, which allows UAVs to learn and adapt their forwarding policies from experience replay and reward
functions that trade successful delivery, energy consumption, and delay [7]. Comparative simulations prove that
the proposed method outperforms greedy, random, and no‑forwarding methods in minimizing delay and maximiz‑
ing PDR while maintaining computational feasibility for real‑time implementation. Assessed in variable coverage
radius scenarios, the framework achieves PDR above 0.95 and significantly smaller delays than baseline methods.
The article highlights the applicability of RL in UAV‑aided WSNs in fields such as environmental monitoring, dis‑
aster relief, and public safety communication, with scalability, flexibility, and low‑latency decision‑making being
the key benefits. Future research directions include multi‑agent coordination, deep reinforcement learning (RL)
algorithms, and the integration of realistic hardware experimentation to enhance robustness and performance [7].

Optimal path planning for large agricultural WSNs is realized via a scalable Q‑learning (QL)–based multi‑UAV
data‑gathering approach [7]. The researchers overcome major limitations of single UAV systems: low coverage,
energy inefficiencies, and lack of fault tolerance. The researchers present QLUR, i.e., a three‑stage approach consist‑
ing of sorted k‑means clustering of sensor nodes, optimal positioning of data Collection Points (CPs), and QL‑based
optimal‑path computation framed as a Traveling Salesman Problem (TSP). The approach prioritizes residual en‑
ergy, priority of CPs, and UAV distance from the corresponding sensor nodes in the reward function to allow for
resilient and adaptive decision‑making. The system has a fault‑tolerant scheme to replace CHs and task redeploy‑
ment on UAV failure. The QLUR system, with extensive NS‑3 simulations, is comparedwith GA and ACO. The results
indicate that four UAV deployments yield a 67% reduction in mission completion time and an 80% gain in resid‑
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ual energy compared with single UAV systems. The approach outperforms others in terms of inference speed and
memory efficiency with balanced CP distribution and task accomplishment with failures. The limitations include
the assumption of uniform terrain and the fixed assignment of CPs. The future extensions include dynamic routing
with obstacles, integration with zone priorities, and edge computing [7].

A lightweight, real‑time UAV path planning approach is presented, which avoids collisions using a mathemat‑
ically guaranteed safety margin and models obstacles as rectangles [8]. Diverging from numerous reinforcement
learning (RL) or neural network‑based solutions, this is a graph‑based approach with the configuration space re‑
duced by the replacement of grid‑based tessellations with well‑placed interest points near corners of the obstacles,
followed by the generation of safe paths through the Dijkstra algorithm. This significantly reduces the computa‑
tional burden, making it eligible for execution in real time. Simulation results with the UAV Toolbox for MATLAB
verify the proposed approach, generating shorter, linear, and collision‑free paths even for dense obstacles. Diverg‑
ing from the possibilities of RL‑based solutions to exhibit unpredictable behaviour or to need detailed training,
this has mathematically specified guarantees, along with tolerating sensor uncertainty through a threshold‑based
“disk” safety model. Nonetheless, the UAV kinematics are not included within the scope of the model yet. Reducing
memory usage as well as achieving quick convergence remains the focus of the paper as compared to techniques
involving Artificial Potential Fields (APF), PRM, or RRT, etc. The paper further provides performance information
on the basis of UAV turning angles along with speed deviations. The simplicity, although, remains the strength of
the approach, with it being excellent for robustness along with the feasibility of executing it within a short time,
even though it doesn’t take into account moving obstacles or energy‑aware planning [8].

More recent work in the field of deep neural policies places it as a more compelling route and thus a likely
direction for the future of navigating dynamic partially observable environments. Convolutional Neural Networks
(CNNs) extract spatial structure from aerial images while Long Short‑Term Memory (LSTM) layers encode temporal
dependencies, which then enables a unified perception‑to‑action stack that thus reacts to terrain and obstacle non‑
stationarities across sequences [5]. After having been evaluated against other baselinemethods such asA3C andDQN,
these CNN‑LSTM systems reported higher path efficiency, fewer collisions and faster convergence, and better gener‑
alization to unseen environments. The strengths mentioned here, although enticing, are confined to simulations;
moreover, energy budgeting and flight endurance are not modelled, latency and sensing are assumed ideal, and no
mechanisms are provided for inter‑UAV coordination or communication bottlenecks [5]. The observed gaps seem
to reflect the broad survey observations that learning‑based planners are prone to neglect energy‑aware decision‑
making, communication borders, and safety analysis aimed at certification [8]. In more practical deployments and
missions, these omitted aspects of energy‑efficient path planningmatter; energy state and harvesting potentialmodu‑
late feasible trajectories and loitering policies, while communication reliability andbandwidth shapewhen andwhere
data can be offloaded. Emerging directions therefore argue for augmenting such hybrids with (i) explicit energymod‑
els and harvesting‑aware objectives [9], (ii) cognition/safety layers that wrap the learned policy with constraint mon‑
itors and human‑in‑the‑loop overrides [10], and (iii) channel‑aware planning that anticipates link quality variations
along the route [11], aligning perception–memory strengths with field constraints. A second cluster focuses on the
learning landscape itself. DRL‑PP modifies DQN with a cubic reward to sharpen action discriminability, a double
network structure for stability, and an ϵ‑greedy schedule to balance exploration and exploitation, improving success
rates and reducing steps on grid maps relative to vanilla DQN and Actor–Critic [12].

Complementary work tackles sparse rewards and deceptive local optima by (a) shaping rewards with cumula‑
tive obstacle density and goal distance and (b) segmenting the environment into connected regions to avoid dead
ends, producing faster convergence with both discrete (DQN) and continuous (DDPG) action spaces [13]. Collec‑
tively, these demonstrate that geometry‑aware shaping and structural priors can regularize DRL training without
heavy architectures. But even here, real‑world blockers persist: energy constraints, vehicle kinematics, and hard‑
ware trials are typically deferred [12,13]. Surveys echo the need for standardized metrics, GPS‑denied robustness,
and communication‑aware, energy‑aware formulations, as opposed to planner‑only benchmarks [14]. Pushing to‑
ward deploymentwill likely require coupling such shapingwith energy‑harvesting‑conditioned objectives [15], ver‑
ifiable safety envelopes around learned policies [10], and channel‑forecast‑informed exploration/exploitation de‑
cisions [11,16].

When UAVs act as networked agents, routing and trajectory planning are coupled. A Q‑learning Data Forward‑
ing Agent (DFA) for FANETs learns next‑hop policies that jointly optimize PDR delay and energy by using proba‑
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bilistic models of traffic and mobility; simulations report PDR > 0.95 and lower delays than greedy/random for‑
warding across coverage scenarios [17]. This reframes the objective: where to fly cannot be separated from what
to forward and when. It also surfaces the role of channel predictability and network capacity. Here, two recent
threads are complementary: (I) EMD‑empowered neural predictors for non‑stationary air‑to‑ground channels pro‑
vide spatial‑temporal link forecasts to anticipate fading/handovers [11], and (II) capacity/deployment analyses
quantify spectral‑efficiency/coverage trade‑offs to guide altitude, placement, and fleet sizing decisions [11]. Fold‑
ing these into learning (reward terms, constraints, or hierarchical policies) connects the DFA idea [18] to path
planning under real communication risk, while survey work underscores the need for common evaluation settings
that include communication load, interference, and scheduling—not just geometry.

In large Agricultural WSNs, the structure helps in restricting the DRL search space. Meanwhile, QLUR breaks
down themission into sortedk‑means groupingof sensors, placing thedataCollectionPoints (CPs) at optimal places
and a Q‑learning tour (TSP Framing) that has a reward that balances between node energy, CP priority, and the UAV
travel cost. NS‑3 results are clear. Four UAVs shorten mission time by 67 percent and raise residual energy by 80
percentwhen comparedwith a single UAV. The system also swaps failed CHs and redeploys taskswhen needed [19].
Deterministic planners use a different idea. They limit the space to the corner points and run Dijkstra with a disk
margin. The outcome is linear, safe paths that need little memory and run in real time. They do not handle moving
obstacles or energy limits [20]. BSPOP goes further by encoding inputs as B‑splines. That lowers the number of vari‑
ables, trims constraints, and keeps paths smooth [21]. Together, the methods point to three styles: network‑first,
safety‑first, and compute‑first. The lesson is simple. Cluster tasks, add safety guards, and use smooth control to cut
compute costs. Application studies in precision agriculture highlight the role of temporal memory and task‑aware
rewards. BL‑DQN adds a Bi‑LSTM head and links the reward to coverage, guidance, collision, and efficiency [22].
A U‑Net is used for segmentation. Across six farm trials, coverage went up by a little over 41 percent, redundancy
dropped compared with DQN and DFS, and training ran more steadily [22]. BiLG‑D3QN builds on this by joining
Bi‑LSTM with Bi‑GRU inside a duelling DQN. It also brings in payload energy and recharge stations as part of the
model [23].

On 15×10 grids, coverage gains ranged from about 12–22%, and redundancy fell to around 2.5%, giving it
an edge over DDQN, D3QN, Duelling DQN, A* (a technique/algorithm), and PPO [22]. Evaluations across ground
vehicles, manipulators, and UAVs report that Double‑DQN, SAC, Rainbow, and RL, combinedwith optimizers such as
DQNplus PSO, improve tracking and adaptability. The edge devices’ computational time is heavy, andmany policies
that would work in other simulations start to fail when doing real tests [24]. Classical hybrids remain useful. GA
plus QuickNav is one example, where waypoint order is evolved and deterministic saving is enforced [23]. This
setup beats A*, RRT, and ACO in both distance and time, and it has been tested on UAVs, though only at fixed height
with static obstacles, without any energy or swarm features [23]. Surveys of WSN routing point to duty cycling,
hierarchical or data‑centric designs, blockchain trust, and federated learning [20]. They find that RL‑adaptive MAC
and routing perform better than static oneswhen the load shifts, but UAV swarm integration has not been proven in
practice [25]. One crop recommendation study shows howmodels, once validated, were delivered through mobile
and web tools. That step linked research with real farm use. DRL‑based UAV systems should then follow the same
path [26]. Mission results depend on timeliness and lifetime, not only path length. One design joined clustering
with routing and used Monte Las Search with Triangle Path Optimization. Lifetime went up by around 360%. UAV
path length dropped by about 56% [27]. GA parameters were tuned with RL. Extra schemes were added to guard
emergency data and handle replenishment [27]. DRL families such as DQN, DDPG, SAC, and multi‑agent models
also help by adjusting trajectory, scheduling, and energy in random settings. Training load is still heavy. However,
edge limits are still considered a problem [28].

Across the studies, three points keep showing up. Memory and perceptionwith CNN, LSTM, Bi‑LSTM, and GRU
let systems react better to change. Then structure‑based steps like reward shaping, segmentation, clustering, and
CP placement shrink the search space and speed training. Mission‑aware goals tied to PDR, delay, AoI, and lifetime
give stronger results. To move from simulation to field use, energy harvesting and storage must be part of the state
and the objectives. That way, policies adjust to gaps in power. Safety checks also need verifiable limits. Planning
then has to factor in channel forecasts and capacity so the system stays rate‑aware and avoids interference. Multi‑
UAV setups need bandwidth‑aware coordination, CP re‑optimization, and fair task division. This keeps the good
parts of older methods while closing gaps in energy, safety, and communication for UAVWSNs.

43



Journal of Intelligent Communication | Volume 04 | Issue 02

3. Methodology
3.1. System Overview

This section outlines the design, architecture, and implementation of the proposed Genetic Programming (GP)
and Soft‑Actor‑Critic hybrid framework specifically for UAV path planning in complex and dynamic environments.
This proposed method is composed of the following three stages: (I) an offline GP module which has been imple‑
mentedprimarily to evolve high quality initialwaypoints andpaths, (II) an online SACmodule thatwill be optimized
for continuous control and finally (III) a hybrid integration strategywhichmakes use of the high‑quality GP derived
individuals to seed SAC’s replay buffer and accelerate convergence while producing shorter, smoother and more
efficient paths.

3.2. Environment and Problem Formulation
The UAV operates in a two‑dimensional discrete grid world that is represented as a binary occupancy matrix

as follows:

G ∈ {0, 1}M×N (1)
Where
Gij = 0 denotes a free cell and Gij = 1 denotes an obstacle.
The UAV’s position at time step t is defined as

xt = (rt, ct) ∈ Z2 (2)
with

0 ≤ rt < M, 0 ≤ ct < N (3)
The start and goal positions are given by

x0 = s, xt = g (4)
where T is the episode length.

3.2.1. Action Space

Let the UAV action space A be a set of movement commands, which have been defined as continuous:

A ⊂ ℝ2 (5)
in which each action defines a velocity vector (Δ𝑟 , Δ𝑐)
At every time step, an action at ∈ A updates the state according to:

xt+1 = xt + at (6)
subject to collision constraints.

3.2.2. Collision Constraint

A collision occurs if the location of the UAV intersects an obstacle or if the straight‑line segment from one
waypoint to the next intersects any obstacle cell:

Collision (xt, xt + 1) = ቊ 1, ∃ (i, j) ∈ Bresenham (xt, xt+1) | Gi,j = 1,
0, otherwise. (7)

Here, Bresenham (⋅) returns all grid cells along the straight path segment between xt and xt+1.
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3.2.3. Objective Function

The main objective is to minimize the path cost:

J(π) = α ⋅ L(π) + β ⋅ C(π) − γ ⋅ S(π) (8)
where:

• L(π): Overall path length provided by

L(π) = ෍
t−1

t=0
∥ Xt+1 − Xt ∥ (9)

that is the overall Euclidean distance covered in the trajectory 𝜋 = (𝑥0, 𝑥1, . . . , 𝑥𝑇 ).
• C(π): Collision Cost Defined as

C(π) =෍
T

t=0
𝕀 [xt ∈ 𝒪] (10)

where 𝕀[⋅] is the indicator function and 𝒪 is the set of cells that contain obstacles. It punishes trajectories that
cross through obstacles.

• S(π): smooth term that

S(π) =෍
T−1

t=1
cos (θt+1 − θt) (11)

where θt represents the UAV heading angle at time t. It advocates smooth turns and does not favour abrupt
changes of direction.

Here, the scalar weights α, β, and γ > 0 are used to balance the contribution of path length, collision avoidance,
and smoothness.

3.3. Genetic Programming Module
The Genetic Programming (GP) module is designed to operate as an offline phase to generate path individu‑

als. The paths are in the form of near‑optimal waypoint sequences from some initial position to a goal position,
avoiding both static and dynamic obstacles. Additionally, each GP individual encodes a variable‑length sequence of
waypoints to allow fine‑tuning to the environment.

P = {w1,w2, … ,wk} , wi ∈ ℝ2 (12)
where each waypoint is located in obstacle‑free space and respects the safety distance 𝑑𝑠𝑎𝑓𝑒 .

3.3.1. Population Initialization

The initial population of 𝑁𝑝𝑜𝑝 individuals is generated by uniformly sampling waypoints within free space,
ensuring:

d ൫wi, oj൯ ≥ dsafe, ∀i, j (13)
where Oj denotes obstacle j.

3.3.2. Fitness Function

Each individual’s fitness F is computed as a weighted sum of multi‑objective criteria:

F(P) = ωLL(P) + ωAA(P) + ωC Colli(P) (14)
where:

L(P) =
k − 1

෍
− 1

‖wi + 1 − wi‖ (15)
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This term represents the total Euclidean distance travelled along the path, computed by summing the straight‑
line distances between consecutive waypoints.

A(P) = 1
k − 2 ෍

k−1

i = 2
θi (16)

This term is the mean change in heading direction at intermediate waypoints, measuring the average turning
angle across the path.

Colli(P) =෍
k−1

t=1
i (17)

Is the number of path segments intersecting with the obstacles, for which ⊮ is an indicator function equal to 1
if there is a collision, otherwise it’s 0. Here,

Θ𝑖 is the heading change at the 𝑖𝑡ℎ waypoint. In this method, lower values indicate superior path quality, and
as a result, the GP aims tominimize this function. For every individual path, the function evaluates the three perfor‑
mancemeasures described here, namely: total path length L(P), average turning angleA(P), and finally and collision
count Colli(P). Ultimately, GP chooses the solutions with the lowest fitness values, ensuring shorter, smoother, and
collision‑free paths.

3.3.3. Genetic Operators

The GP loop consists of:

1. Selection: Tournament selection with size 𝑡𝑠 .
2. Crossover: One‑point crossover exchanging waypoint subsequence.
3. Mutation: Gaussian perturbation of waypoint coordinates, with re‑sampling if constraints are violated.

The evolutionary algorithm proposed in this paper works in an iterative loop consisting of selection, crossover,
andmutation operations. Selection is performed using a tournament selection strategy, in which a tournament size,
𝑡𝑠 , of individuals is stochastically chosen from the population that the algorithm is currently exploring. The solution
with the lowest fitness is then chosen as a parent for future offspring. This methodmaintains selection pressure for
better quality solutions while also preserving genetic diversity. Crossover occurs as a one‑point crossover operator
in which a single waypoint in a path (sequence of waypoints) is selected as the crossover point, with the waypoints
before this being inherited from one parent and the remainder from the other. This process is effective in that it
enables the combination of advantageous sub‑paths from different individuals, thus potentially producing superior
offspring. Finally, mutation is applied intrinsically through the addition of random way‑point coordinate noise, in
which each selectedwaypoint is shifted by a specific value that has been drawn fromanormal distributionwith zero
mean and variance. Additionally, if a waypoint is seen to violate constraints that have been set up, such as entering
an obstacle region or leaving the operational bounds, it is then resampled until feasibility is restored. Ultimately,
the operators implemented in this work aim to guide the population toward shorter, smoother, and collision‑free
paths over successive generations.

3.3.4. Evaluation Loop

The Genetic Programming method in this work begins with the random initialization of an initial population
of size 𝑁𝑝𝑜𝑝,whereby each individual is represented by a sequence of waypoints that form a path. Each individual
is evaluated via its fitness; the solutions with the lowest fitness values are chosen to be parents, mutation and
crossover are applied, and new offspring are generated. This process occurs for either 𝐺max or n number of times
to produce the best quality paths. Algorithm 1 depicts this entire process in great detail.

More specifically, after the generation of a population, each path is evaluated with the function F(P), which
quantifies path quality based on length, smoothness, and collision avoidance. Following this, parents are selected
through tournament selection, and variation is introduced by the application of mutation and crossover. These
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improvement in the best fitness value is observed for a predefined number of consecutive generations. Finally,
upon completion, the GP‑evolved paths ranked in ascending order of fitness are ready for integration into the SACs
replay buffer.

3.4. Soft Actor–Critic Module

The Soft‑Actor‑Critic module (SAC), in contrast to the GP module, is an online learning phase that is designed
to optimize continuous UAV control for real‑time path refinement and adaptation to more dynamic environments.
In this phase, the UAV navigates to and from the defined initial and goal positions, but it now operates within a
continuous state‑action space, which allows fine‑grained control. The proposed design also enables SAC to now
not only follow the structured trajectories that have been seeded from the GP‑derived solutions, but also adapt to

environmental changes, including moving obstacles or altered mission parameters, which also reinforce both
strategic and reactive path planning methods.

3.4.1. State and Action Spaces

State space for the SAC module is built to encapsulate all relevant spatial, kinematic, and environmental data
required for effectiveUAVnavigation. The state vector 𝑠𝑡 , at each time‑step t, contains the current Cartesian location
(𝑥𝑡 , 𝑦𝑡) and heading 𝜃𝑡 , velocity 𝑣𝑡 , the Euclidean distance to the goal 𝑑𝑔𝑜𝑎𝑙 , and flags for collision proximity to
obstacles. Additional features, relative bearing to the goal, and most recently enacted control input, are added to
provide temporal information

The action space is continuous and two‑dimensional, defined as

at = (Δvt, Δθt) (18)

47

ALGORITHM 1: GENETIC PROGRAMMING (GP) FOR UAV PATH PLANNING

1 Input: Population size N, max generations ����, stall limit ������, tournament size ��, crossover rate ��, mutation rate
��, mutation scale � , bounds � , obstacles � , weights (��, ��, ��).

2 Output: Top ������ paths ranked by ascending fitness F(P).

3 Initialize: Random population �0 of feasible waypoint points; evaluate F(P)
For each � ⟵ 0 , stall ⟵ 0 , ����� ⟵ min � �

While � < ���� ��� ����� < ������ ��

� ⟵ � + 1,  �� ⟵ ∅while �� < � do

Selection: �1 ⟵ TOURNAMENTSELECT( �� − 1, �� ), p2← TOURNAMENTSELECT (�� − 1,  ��)
Crossover: if rand< �� then (�1, �2)⟵ ONEPOINTCROSSOVER (�1,  �2) else copy parents
Mutation: if rand< �� apply Gaussian perturbation to waypoint coord, repair if outside � or in �

Evaluate � �1 ,  � �2 and append to �� (truncate if needed)
����� ← min

�∈��
� � if ����� < ����� then

����� ⟵ �����,  ����� ⟵ 0
else

����� ⟵ ����� + 1
4 EvaluateFitness ( � = �1, …, �� ) � ⟵   �=1

�−1 ��+1 − ��� ;  � ⟵ 1
�−2 �=2

�−1 ��� ;

����� ⟵ �=1 
�−1  1 ��,  ��+1 �� ≠ ∅� return ���  + ��� + �������

operators then allow for the generation of new solutions that replace the current population to produce the next
generation. The process continues iteratively until either the maximum number of generations is reached or no
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where Δvt represents the change in translational speed and Δ𝜃𝑡 the change in heading angle. Actions are con‑
strained such that

vmin ≤ vt ≤ vmax, |Δθt| ≤ θmax (19)
guaranteeing compliance with UAV kinematic constraints. With this description, SAC can produce smooth and

dynamically plausible motion commands, facilitating fine‑grained manoeuvring in the continuous control space
while still being consistent with the waypoint sequences resulting from the GP, employed for seeding the replay
buffer.

3.4.2. Reward Shaping

SAC’s reward function is designed, by construction, to balance goal‑drivenprogress, efficient paths, smoothmo‑
tion, and safety. The agent, at each time step t, is given a shaping reward correlated with the decrease in Euclidean
distance to the goal, which incentivizes persistent progress proceeding in the correct direction:

rprogress = α (dt−1 − dt) (20)
where 𝑑𝑡 is the current distance to the goal and α > 0 regulates the reward for moving forward. When the goal

is reached, a final success reward 𝑅𝑔𝑜𝑎𝑙 is received to reward successful task accomplishment:

rgoal = Rgoal ⋅ 𝕀goal (21)
Conversely, if a collision occurs, a large negative penalty is applied:

rcollision = −Rcollision ⋅ 𝕀collision (22)
This termavoidsunsafepathsby stronglydiscouraging collisions against obstacles. For smoothpaths, a penalty

term for angles is introduced:

rsmooth = −β |Δθt| (23)
where β > 0 penalizes hard turns and sudden changes in heading. The total reward is then given by:

rt = rprogress + rgoal + rcollision + rsmooth (24)
These parameters, namely α, β, 𝑅𝑔𝑜𝑎𝑙 , and 𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 , are found via empirical tuning to be a balance between

exploration and exploitation. As the SACmodule is provided with high‑quality trajectories from the GPmodule, the
reward function is constructed to preserve the strengths of these seeded paths while enabling SAC to be adaptable
to dynamic environmental variations, e.g., moving obstacles or changes to mission constraints. The shaping guar‑
antees that the policy learned is not only collision‑free and goal‑oriented but also smooth and dynamically viable.

3.4.3. Policy Learning

The Soft Actor‑Critic (SAC) algorithm optimizes a stochastic policy by maximizing both the expected return
and the entropy of the policy, encouraging exploration while seeking high‑value actions. The entropy‑regularized
policy objective is defined as:

Jπ =෍
∞

t=0
E(st ,at)∼𝔻 [Q (st, at) − α logπ (at|st)] (25)

Here,𝑄 (𝑠𝑡 , 𝑎𝑡) is the state‑action value estimate. The expression−𝛼 𝑙𝑜𝑔𝜋(𝑎𝑡 | 𝑠𝑡) is the entropy regularization
term, where the temperature parameter α balances the trade‑off between maximizing the return and maintaining
policy entropy. High entropy implies more exploration, while low entropy results in the policy being more deter‑
ministic. SAC utilizes twoQ‑functions𝑄𝜙1 and𝑄𝜙2 in order to dealwith overestimation bias possible in value‑based
techniques. Each of the Q‑functions is updated by minimizing the Mmean‑SquaredBellman error:
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JQ (ϕi) = E((st ,at)∼𝐷) ቈ
1
2 ቀQ(ϕi) (st, at) − ytቁ

2
቉ , i ∈ (26)

The target value 𝑦𝑡 is calculated as:

yt = rt + γEat+𝟙∼π ቈmin
i=1,2

Qϕi
(st+1, at+1) − α logπ (at+1 |st+1)቉ (27)

Here, 𝑄𝜙𝑖 is the target network or a slow‑moving copy of the Q‑functions. The min operator prevents overesti‑
mation by returning the lesser of the two Q‑values. 𝑟𝑡is the environment’s immediate reward, and γ is the discount
factor governing theweight of future returns. The policy𝜋𝜃 is updated in such away as tomaximize the expectation
of the Q‑function with the extra entropy term:

Jπ(θ) = Est∼𝔻,at∼πθ ቂα logπθ (at|st) − Qϕ1
(st, at)ቃ (28)

This update promotes policies that select actions with high Q‑values while retaining sufficient randomness for
exploration. Instead of fixing the temperature α, SAC learns it automatically to maintain a desired target entropy
ℋ𝓉𝒶𝓇ℊℯ𝓉 using the objective:

J(α) = Eat∼πt ൣ−α ൫logπt (at |st) +ℋtarget൯൧ (29)
By optimizing this loss, the algorithmdynamically adjusts α so the policy does not become overly deterministic

too soon or remain excessively random.

3.5. Hybrid GP+SAC Integration
Thehybrid combinationof Genetic Programming (GP)with Soft Actor‑Critic (SAC) is created tomergeGP’s sym‑

bolic optimization strengths with SAC’s continuous control learning. It is aimed to provide SAC with a warm start
by initializing it with high‑quality, human‑interpretable strategies created with GP, yet still allowing exploration to
facilitate adapting to changing environments. First, GP is used in the role of the offline high‑level planner. With a
population of candidate navigation programs, GP adapts solutions by performing genetic operators like selection,
crossover, and mutation, and optimizing for measures like goal reachability, avoidance of obstacles, and kinematic
feasibility. GP’s output is a group of waypoint sequences {𝑤1, 𝑤2, … , 𝑤𝑁} or control rules for safe navigation in the
environment.

3.5.1. Replay Buffer Seeding

The top‑N highest GP‑evolved paths, sampled in proportion to their fitness for reachability of the goal, avoid‑
anceof obstacles, andkinematic feasibility, are transformed into complete transition tuples of the form(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1).
Each path is simulated with a low‑level tracking controller to determine the actual control inputs 𝑎𝑡necessary ito‑
move the UAV from the current state 𝑠𝑡 to the next in the sequence of waypoints, with the environment returning
the next‑time‑step reward 𝑟𝑡 and next‑state transition 𝑠𝑡+1. These high‑quality transitions are then preloaded into
SAC’s replay buffer 𝒟 prior to training initiation. In this way, the initial updates of SAC are biased in favour of the
safe and successful paths, drastically reducing the probability of early‑stage policy breakdown and accelerating the
efficiency of the samples in the exploration phase.

3.5.2. Training Loop

The learning procedure commences with initialization, for which the replay buffer of SAC 𝒟 is pre‑seeded
with transitions of the top‑ranked GP‑generated trajectories. The pre‑seeding of such samples gives the agent ini‑
tial experience of safe and successful navigation policies, thereby decreasing the necessity for suboptimal random
exploration during the initial training phases. Provide a concise and precise description of the experimental re‑
sults, their interpretation, as well as the experimental conclusions that can be drawn. Once the environment has
been initialized, the interaction with the environment occurs in time steps. At each t, the agent selects an action at
𝑎𝑡 ∼ 𝜋𝜃 (⋅ ∣ 𝑠𝑡) drawn from the stochastic policy and acts in the environment, which returns the reward 𝑟𝑡 and next

49



Journal of Intelligent Communication | Volume 04 | Issue 02

state 𝑠𝑡+1. The observed transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) are stored in𝒟,alongside the GP‑seeded samples. Mini‑batches
are then drawn from this buffer to update the twin Q‑networks 𝑄𝜙1 , 𝑄𝜙2 and the policy 𝜋𝜃 .

As you can see in the following algorithm, this loop also involves tuning the temperature parameter 𝛼 in order
to achieve the target entropy.

Finally, an exploration–exploitation balance is enforced in early training by keeping a ratio 𝜌 of GP‑seeded to
newly collected samples when forming mini‑batches. This ratio is gradually decreased, allowing SAC to transition
from relying on GP‑derived behaviors to learning entirely from its own experience. Algorithm 2 represents the
Hybrid GP + SAC training framework.

Algorithm 2: hybrid GP+SAC TRAINING framework

1 Input: Number of elite GP solutions𝑁𝑒𝑙𝑖𝑡𝑒 , GP fitness criteria, SAC, parameters 𝜃, 𝜙1 , 𝜙2 , 𝛼, initial speed ratio 𝜌
2 Output: Trained SAC policy 𝜋𝜃
3 Phase1 –GP Solution Generation
4 Run Genetic Programming to evolve candidate navigation policies.
5 Evaluate policies on fitness: goal reachability, obstacle avoidance, kinematic feasibility
6 Select Top𝑁𝑒𝑙𝑖𝑡𝑒 solutions
7 Phase 2: Replay Buffer Seeding
8 Convert selected GP solutions into waypoint sequences {𝑤1 …𝑤𝑁}
9 Simulate waypoint tracking to generate transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)
10 Pre‑load transitions into SAC replay buffer 𝐷
11 Phase 3 – Hybrid Training Loop
12 while training not converged do
13 Observe current state 𝑠𝑡
14 Select action 𝑎𝑡 ∼ 𝜋𝜃(|𝑠𝑡|) and execute in environment
15 Receive reward 𝑟𝑡 and next state 𝑠𝑡+1
16 Store (𝑠𝑡 , 𝑎𝑡,𝑟𝑡 , 𝑠𝑡+1) in 𝐷
17 Sample mini‑batch from 𝐷 with fraction 𝜌 GP‑seeded samples
18 Update 𝑄𝜙1 , 𝑄𝜙2 via Bellman error minimisation
19 Update policy 𝜋𝜃 via SAP entropy‑ regularized objective
20 Adjust temperature 𝛼 towards entropy
21 Decay 𝜌 to shift learning toward self generated experience

3.6. Experimental Parameters and Settings
3.6.1. GP Parameters

Table 1 displays the parameters and respective values that were selected for the algorithm. These settings
were carefully chosen to balance exploration, exploitation, and computational efficiency.

Table 1. GP Parameter Settings.

Parameters Values

Population Size 240
Generations (Max) 1
Crossover Rate (PC) 0.65
Mutation Rate (PM) 0.6
Selection Method Tournament Selection
Tournament Size 5
Elitism (Top individuals) 10
Stall Limit 20
Waypoint Length (Min, Max) 6, 18
Mutation Sigma 1.2
Mutation Probability per Gene 0.4
Waypoint Insert Probability 0.25
Waypoint Delete Probability 0.25
Fitness Weights (Ω𝐿 , Ω𝐴 , Ω𝐶) (1.0, 0.5, 50.0)

The GP module in this work was configured with carefully chosen parameters to balance the exploration of di‑
verseway‑pointswith the exploitation of promising paths. A population size of 240was selected to ensure sufficient
genetic diversity while also keeping computational overhead at a minimum, thus enabling a broader search space
for the solution to be found across generations. Furthermore, the algorithmwas run for a maximum of 120 genera‑
tionswith a stall limit implemented to enable early stopping if no improvement is found across 20 generations, thus
preventing wasted computation. A higher crossover rate of 0.65 was used to encourage the combination of useful
information from different individuals while introducing genetic diversity. Amutation rate of 0.6 ensured adequate
variation and the possibility of escaping local minima. Tournament selection with a size of 5 was also applied as
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the parent selection mechanism, not only introducing selection pressure but also maintaining diversity within the
population. Waypoint path length was also constrained to a limit of 6–18 to prevent long and overly short paths.
Collectively, these parameters were justified by the requirement to produce paths that are high‑quality, short, and
thus energy efficient.

3.6.2. SAC Parameters

Table 2 shows how the Soft Actor‑Critic (SAC) component was parameterized to capture task‑specific UAV
navigational requirements as well as theory‑motivated continuous control fundamentals.

Table 2. Environment and Reward Parameter Settings.

Parameters Values

Progress Scaling (α) 1.0
Smoothness Penalty (β) 0.05
Success Reward (𝑅𝑔𝑜𝑎𝑙) 150.0
Collision Penalty (𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ) –250.0
FA‑DQN Goal Reward (Baseline‑paper) 10.0
FA‑DQN Collision Penalty (Baseline‑paper) –10.0
Progress Coefficient (𝜅𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 ) 1.0
Step Penalty (step penalty) 0.0
Velocity Bounds (𝜐min , 𝜐max ) 0.0, 3.5
Heading‑Change Bound (Δ𝜓max) 25⁰
Maximum Steps (max‑steps) 4 × Manhattan distance

The reward function was carefully specified to balance progress, smoothness, and safety while reflecting re‑
alistic UAV motion constraints. The progress term was normalised with a value of α=1.0, thus ensuring that the
progress toward the goal directly reflects the Euclidean distance reductionwithout somuch as overpowering other
reward components. Moreover, in order to discourage abrupt and sudden turns while also allowing for sufficient
exploration, a small smoothness component of β = 0.05was applied. Terminal rewardswere stronglyweightedwith
𝑅𝑔𝑜𝑎𝑙 = 150 to reinforce goal achievement and𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −250 to then emphasize safety‑first behavior since col‑
lisions usually represent mission‑ending failures in UAV navigation. For a fairer comparison, the baseline FA‑DQN,
we also defined a ‘paper‑mode’ wherein a goal achievement results in a reward of +10 while a collision results in a
‑10. Progress was also shaped with Κprogress = 1.0 and a step penalty of 1.0. It is worth noting that the absence of a
step penalty prevents discouraging exploration in the early stages of training, particularly since GP‑seeding already
accelerates convergence. UAV motion was also dynamically constrained with velocity bounds that we defined as
𝑣min = 0 and 𝑣max = 3.5, where the lower bound allows hovering and the upper reflects practical maneuverabil‑
ity limits, thus ensuring stable yet efficient flight. In addition to this, a heading change constraint value of ΔΨmax=
250 per step was imposed to enforce smooth and physically feasible turning rates consistent with UAV kinematics.
Finally, the episode horizon was then also truncated at four times the Manhattan distance between the start and
goal to prevent excessively long episodeswhile still allowing sufficient exploration. Collectively, these settingswere
chosen to balance exploration, stability, and safety.

4. Results
In order to rigorously test and evaluate the effectiveness of the proposed GP‑seeded Soft‑Actor‑Critic frame‑

work, a series of simulation experiments was conducted across 3 different benchmark grid environments [29]. The
experimental evaluation across the three designed environments confirms that GP+SAC converges substantially
faster than FA‑DQNwhilemaintaining comparable path efficiency. In the scalability test onMap 3, FA‑DQN achieved
an average path length of 28.38 units, while GP+SAC produced a closely aligned average of 30.55 units, demonstrat‑
ing that the rapid convergence of GP+SAC does not compromise the quality of generated paths. Nevertheless, the
instability observed in reward trajectories, particularly in the more constrained Map 2 with narrow corridors and
higher obstacle densities, indicates that performance may be sensitive to highly cluttered environments. From a
practical standpoint, while the accelerated learning and efficient path generation are promising, the current frame‑
work has yet to be validated against the uncertainties of real‑world UAV operations, such as sensor noise, actua‑
tion delays, and environmental disturbances. Addressing these factors through robustness enhancements, stability
mechanisms, and hardware‑in‑the‑loop testing will be essential to ensure that the advantages demonstrated in

51



Journal of Intelligent Communication | Volume 04 | Issue 02

simulation can reliably transfer to physical UAV platforms.
Another important observation is that the efficiency of GP+SAC in producing viable paths across different map

structures highlights its adaptability to diverse planning scenarios. However, achieving consistent performance in
real‑world missions requires additional considerations beyond those captured in simulation. For example, UAVs
operating in outdoor environments must contend with dynamic obstacles, variable weather conditions, and limita‑
tions in onboard computational capacity. While the hybrid design of GP+SAC provides a strong basis for fast conver‑
gence and efficient exploration, future improvements should incorporate mechanisms for energy‑aware planning,
adaptive policy stabilization, and real‑time environment perception. These enhancements will not only improve
resilience under uncertainty but also ensure that the framework remains scalable when extended to continuous
three‑dimensional navigation and cooperative multi‑UAV operations.

4.1. Environments Setup
In this study, theUAVnavigateswithin a2Dgrid spacewhere each cell can either be free or occupiedbyanobsta‑

cle (a black 1×1 square). To evaluate the proposed GP+SAC approach under diverse and representative conditions,
three experimental maps were constructed, corresponding to Figures 1–3. In Figure 1, obstacles were strategi‑
cally arranged to form narrow corridors, bottlenecks, and detours, thereby simulating cluttered urban‑like envi‑
ronments where UAVs must carefully navigate through tight passages to ensure both efficiency and safety. Figure
2 depicts a different scenario in which obstacles are concentrated along the bottom and central regions of the grid,
effectively blocking the most direct route from the start to the goal. This setup is representative of semi‑structured
terrains such as suburban or partially restricted airspaces, where UAVs often need to adaptively reroute to avoid
obstacles while still maintaining path efficiency. Finally, Figure 3 presents the most challenging environment with
obstacles placed in a checkerboard‑like pattern, introducing repeated blockages across rows and columns. This
pattern mimics highly dynamic or adversarial environments in which UAVs face recurring obstructions, requiring
robust decision‑making and adaptability under persistent constraints. Collectively, these threemaps form a diverse
benchmark suite that captures varying levels of navigation complexity, ensuring that the evaluation of the proposed
method is not limited to a single obstacle configuration but instead reflects the range of realistic challenges encoun‑
tered in real‑world UAV path‑planning applications.

Figure 1. Moderately Constrained Search Space.
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Figure 2. Higher Obstacle Density and Narrow Corridors.

Figure 3. Multiple Horizontal Barriers with Few Narrow Openings.

Figure 3, on the other hand, being larger in size, hasmultiple horizontal barriers with only a few narrow openings,
simulating a highly constrained environment that requires the UAV to search for viable corridors to reach the goal.

The UAV begins at a designated start cell, (0, 0) in this case, and must reach the goal cell while avoiding all
obstacles that have been placed around the grid. At every time step, the UAV selects an action that it will execute
from its action space, which then determines its movement. A collision in this work is defined to occur if the UAV
either lands on an obstacle cell or if its trajectory line (line segment connecting two consecutive coordinates) inter‑
sects with an obstacle cell. Through this setup, the environment provides a challenging yet structured testbed for
evaluating UAV path planning strategies under varying obstacle densities and configurations.
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4.2. Training
A key finding of this work was that the proposed method was able to achieve faster convergence as compared

to the baseline FA‑DQN framework. It is worth mentioning that in the case of our proposed method, convergence
took place earlier, with the agent able to learn viable and acceptable policies in a few episodes, as seen in Figure 4,
which shows the training and reward structure of the agent in the first map environment.

Figure 4. Reward vs Episodes Moving average (GP‑SAC).

This is attributable to the demonstration seeding mechanism, where GP provided high‑quality initial trajecto‑
ries that accelerated the early learning phase of SAC. Additionally, when examining the reward profiles as shown in
Figure 5, it was also noted that the proposed approach was able to achieve higher returns relative to FA‑DQN, indi‑
cating more efficient exploitation of the reward structure; however, it is also evident that the learning process was
unstable throughout, as reflected in the frequent fluctuations of episode rewards. This suggests that although the
method is able to achieve higher rewards and earlier convergence, additional mechanisms such as adaptive explo‑
ration or regularization may need to be used in the future with the goal of stabilizing performance across training
runs.

Figure 5. Reward vs Episodes (GP‑SAC and FA‑DQN).
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4.3. Path Efficiency
Another important metric that was utilized to test the efficiency and performance of our proposed method is

the average path length, specifically in the third map, as done in the paper [30], which is meant to reflect the UAV’s
trajectory. Within the thirdmap, the FA‑DQNapproach achieves a path length of about 28.38 units, with ourmethod
achieving one of 30.55 as seen in Figure 6 below.

Figure 6. Path length of different algorithms.

It demonstrates the ability of this approach to generate paths that are similar in terms of efficiency to those
produced by the FA‑DQN despite differences in algorithmic design. Crucially, this indicates that the accelerated con‑
vergence of GP‑seeded SAC does not come at the cost of path optimality; instead, we see that our method balances
speed of convergencewith near‑optimal paths of comparable lengths. In addition to FA‑DQN, the results in Figure 6
also include the Deterministic Fixed Policy Algorithm (DFPA) as another comparative baseline. While GP+SAC con‑
sistently demonstrated superior convergence speed relative to both FA‑DQN and DFPA, its path efficiency did not
surpass DFPA in certain scenarios. Specifically, DFPA produced slightly shorter paths under stable grid conditions,
benefiting from its deterministic structure and lack of exploration variance. However, this advantage comes at the
cost of flexibility, as DFPA lacks the adaptive learning capability required for generalization to diverse or dynamic
environments. By contrast, GP+SAC, although yielding paths of comparable but not superior efficiency, combines
rapid convergence with the capacity to adapt policies across varying map complexities. This balance suggests that
DFPA can provide strong performance in fixed, well‑structured environments, but GP+SAC is better suited for real‑
world UAV navigation tasks where adaptability and fast policy learning are critical.

5. Discussion
Planning for efficient and robust UAVs in unknown terrains has constituted one of the high‑priority areas for

research, which has been inspired mainly by the limitations of the traditional Deep Reinforcement Learning (DRL)
approaches, which give rise to sluggish convergence and laborious explorations of trial and error. The hybrid tech‑
nique of employing heuristic‑based methods for facilitating DRL convergence at a faster rate has constituted one
of the potential solutions, as our GP+SAC technique and later work, for example, the Firefly Algorithm‑augmented
Deep Q‑Network (FADQN), have indicated.

GP+SAC uses Genetic Programming to provide us with a high‑quality “warm‑start” policy, effectively skipping
the exploratory first phase of the SAC algorithm. The next test results numerically verify this benefit. First, taking
a look at convergence dynamics, the GP‑seeded SAC agent converged earlier than the FA‑DQN baseline, learning
plausible policies very quicklywithin a fewepisodes. This behaviour is transparently clear from the training reward
trace plots, as ourmethod not only convergedmuchmore quickly but also achieved higher episodic returns than the
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FA‑DQN. Nevertheless, it is also interesting that the training was unstable and the trajectories of the reward grew
very much from one episode to the next. This implies that while GP seeding favours early learning and enhanced
exploitation of the reward, some other mechanism may be required for stabilizing long‑term training. In terms of
path efficiency, our approach demonstrated a similar level of performance as that of FA‑DQN. In Map 3, for which
scalability was studied, FA‑DQN produced a mean path of length 28.38 units, and GP+SAC achieved a very close
average of 30.55 units. This result demonstrates that fast convergence of GP‑seeded SAC is not at the cost of the
optimality of the path. Instead, the model can balance fast policy learning and efficient generation of paths that are
of a similar length as heuristic‑guided DRL approaches. Overall, these findings emphasize both the advantages and
the limitations of the technique: GP+SAC excels at fast policy convergence and effective generation of trajectories,
yet suffers from instability in more constrained environments like Map 2.

Although the proposed GP+SAC framework achieves faster convergence and demonstrates competitive path ef‑
ficiencywhen comparedwith FA‑DQN, certain limitations highlight areas for further refinement. One of the primary
issues observed was the instability of training dynamics, where episodic rewards exhibited significant fluctuations
across episodes. This instability indicates that while GP seeding provides strong initial policies, the underlying SAC
component may still require mechanisms such as adaptive learning rates, prioritized experience replay, or regular‑
ization techniques to stabilize long‑term policy learning. Another limitation lies in the reliance on grid‑based sim‑
ulation environments, which, while effective for controlled experimentation, do not fully capture the complexities
of real‑world UAV navigation, such as sensor noise, GPS inaccuracies, wind disturbances, and time‑varying obsta‑
cle dynamics. Moreover, the computational requirements of running hybrid DRL models may pose challenges for
deployment on UAV hardware with limited on‑board resources, making algorithmic efficiency a critical area of im‑
provement. Future research should therefore explore lightweight network architectures, knowledge distillation, or
edge‑assisted computation to enhance practical feasibility. Similarly, while the framework was validated for static
obstacle‑rich scenarios, extending its adaptability to dynamic and adversarial environments remains an important
goal. Integrating energy‑aware planning modules would also allow the model to balance optimal navigation with
UAV endurance constraints, which is critical for real‑world operations. Finally, to bridge the gap between simula‑
tion and practice, hardware‑in‑the‑loop testing and field trials on actual UAV platforms are necessary to evaluate
robustness, scalability, and safety under uncertain and dynamic conditions. These improvements would enable the
framework to evolve from a simulation‑proven concept into a reliable solution for autonomous UAV navigation in
real‑world missions.

The critical advantage of the proposed GP+SAC framework lies in its rapid convergence, which is not merely
a numerical improvement but a decisive factor for real‑world UAV path planning applications. In reinforcement
learning, convergence speed directly translates to reduced training time and computational cost, both of which
are highly significant when dealing with resource‑constrained UAV platforms or time‑sensitive mission planning.
Unlike FA‑DQN, which requires extensive exploration to achieve stable policies, GP+SAC leverages genetic program‑
ming to provide a high‑quality warm‑start, thereby bypassing the costly trial‑and‑error phase of conventional DRL.
This accelerated policy acquisition enables UAVs to learn feasible navigation strategies within a limited number of
episodes, which is especially crucial in scenarios where the environment is unknown, rapidly changing, or mission
deadlines are strict. Moreover, faster convergence enhances the practicality of deploying DRL‑based methods in
iterative re‑training cycles, such as when UAVs must adapt online to new terrains, dynamic obstacles, or evolving
mission goals. Therefore, the importance of rapid convergence extends beyond simulation efficiency; it directly
impacts scalability, adaptability, and feasibility of autonomous UAV navigation in operational settings.

6. Conclusions
This work demonstrates that the proposed UAV navigation method can reliably and effectively generate vi‑

able paths in grid‑based, obstacle‑rich environments. Themathematical formulation clearly encompasses obstacle
avoidance, efficiency of path, and achievement of the goal as components of one single optimization problem in
order to enable robust decision‑making in uncertain environments. The simulation results indicate that the system
has high success rates and shorter path lengths compared to standard heuristic and uninformed search strategies.
The framework’s adaptiveness to the type of grid change and obstacle densities entails high extensional ability to
continuous 3D guidance, real‑time mission planning, and multi‑UAV cooperative scenarios.

In addition, the transferability of the proposed method to real UAV hardware platforms is promising, as the
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learned policies can be integrated with on‑board navigation and sensing systems to support real‑time decision‑
making. However, practical deployment would require addressing issues such as robustness to sensor noise, com‑
putational limitations of UAV hardware, and stability of control under uncertain environmental conditions.

The future work would be focused on the integration of dynamic obstacle management, energy‑efficient path
planning, and hardware‑in‑the‑loop verification in order to close the gap to real‑world deployment from simulation.
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