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Abstract: Backdoor attacks pose a critical and increasingly realistic security threat to deepneural networks (DNNs),
enabling adversaries to implant hidden behaviors that remain dormant under normal conditions while preserving
high performance on benign data. Although numerous defenses have been proposed, most works treat the interac‑
tion between attackers and defenders in isolation, without a principled mechanism to analyze their strategic inter‑
play under realistic resource constraints. This paper introduces BGCost, a zero‑sum game‑theoretic framework that
formalizes backdoor attack–defense dynamics with explicit cost‑aware utility functions. The attacker seeks tomax‑
imize Attack Success Rate (ASR) while maintaining Clean Data Accuracy (CDA) above an acceptance threshold to
remain stealthy, whereas the defender aims to limit ASR and preserve CDAwhileminimizing the computational and
accuracy costs induced bymitigation. By embedding resource consumption directly into the utilities of both players,
BGCost provides a structured benchmark to study equilibrium strategies across unconstrained, balanced, and high‑
cost operational regimes. Through numerical simulations, we show that cost‑aware gamemodeling fundamentally
alters equilibrium behavior: unconstrained settings drive extreme strategies, costly defenses weaken robustness,
costly attacks suppress adversarial impact, and balanced configurations yield deployment‑friendly equilibria with
low ASR and high CDA. Rather than proposing a new algorithmic defense, BGCost serves as a decision‑theoretic tool
that complements existing mechanisms by revealing how cost constraints shape optimal attacker–defender behav‑
ior in practice, guiding the design of realistic and resource‑efficient protections against backdoor threats.
Keywords: Adversarial Machine Learning; Backdoor Attacks; Backdoor Defenses; Game Theory; Deep Neural Net‑
works; AI Security; Attack‑Defense Strategies

1. Introduction
Deep Neural Networks (DNNs) have recently demonstrated outstanding performance across diverse and critical

domains, such as computer vision [1], autonomous driving [2], finance [3], healthcare [4], and many other fields [5].
This rapid expansion, however, has increased concerns regarding their security. At each phase of the DNN lifecycle—
from data collection and preprocessing to architecture design, training, and deployment—adversaries may exploit
weaknesses [6,7] to undermine reliability. A well‑known example is adversarial examples, where carefully crafted
inputs at test time can cause models to misclassify [8]. Threats are not limited to inference, as attackers may also
compromise the training process. Moreover, the substantial computational needs and large‑scale data requirements
of DNN training, coupled with limited expertise, often drive practitioners to rely on third‑party resources such as
Machine Learning as a Service (MLaaS) or pre‑trained models [9]. While these solutions increase accessibility and
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efficiency, they simultaneously reduce user control and introduce new security risks [8].
Backdoor attacks pose a critical threat to the security of DNN. These attacks involve training amodel to respond

to a specific trigger pattern by giving incorrect outputs [10,11], such that during inference, any input containing
the trigger is misclassified accordingly as illustrated in illustrated in Figure 1. The attacker’s goal is twofold: first,
to ensure that the compromised model performs normally on benign samples to maintain high performance and
evade detection; and second, to induce misclassification whenever a trigger is present. Backdoor injection can
occur at various stages prior to inference [8], including poisoning the training data [12], alteringmodel parameters
during training [13], or manipulating the model at deployment time [14]. Moreover, transfer learning introduces
vulnerability, as pre‑trained models can inherit backdoors when fine‑tuned on new tasks [15].

Figure 1. Illustration of backdoor behavior: A clean input is accurately identified as a “cat,” but after the addition
of a trigger (e.g., a “red circle”), the model incorrectly labels it as a “dog”.

A common strategy for launching backdoor attacks is training data poisoning [12,16], where manipulated sam‑
ples containing a trigger pattern are injected into an otherwise benign dataset, causing the model to learn incorrect
associations between the poisoned samples and their target. Depending on the attack design, the labels of poisoned
samples may be modified [17] (poison‑label attacks) or left intact [16,18] (clean‑label attacks), with the latter mak‑
ing detection harder during dataset inspection. Such attacks have been demonstrated acrossmultiple domains [8,19],
including NLP [20], audio [21], and computer vision [8,22]. Beyond this distinction, backdoor methods vary widely,
spanning class‑agnostic and class‑specific settings [17], employing diverse trigger types [8], and even adopting prop‑
erties like transparency [12,23]. Several comprehensive surveys provide systematic overviews of these attacks and
their defenses [7,8,10,11,19].

The evolving threat landscape and the ongoing cat‑and‑mouse game between backdoor attackers and defend‑
ers, characterized by the continual emergence of new attacks and defenses [24], motivate this work. Within the
specific context of clean‑label backdoor attacks on image classification [8,16,18], we ask the following question:
Can the interaction between a DNN backdoor attacker and a defender be modeled as a two‑player game, with Nash
equilibria identified and each player’s performance assessed at equilibrium? Related work such as FLGAME [25]
has applied game‑theoretic methods to federated learning, offering early insights into how attacker–defender dy‑
namics can be formalized.

Ourwork takes adifferent directionby focusingon centralized learning andexplicitly embedding cost constraints
into the game‑theoretic framework. This perspective enables a structured analysis of how resource limitations shape
adversarial behavior, while retaining the adversarial rigor of a zero‑sum formulation. In earlier work [26], Kallas et
al. modeled the interaction as a strict zero‑sum game, where the attacker’s gain equaled the defender’s loss. Yet this
simplifying assumption overlooks realistic cases where both players incur costs simultaneously—for instance, when
defensivemeasures degradebenign accuracy orwhenaggressive attacks demand significant computational resources
and increase detection risk.
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Within this framework, the defender’s objective is to maximize Clean Data Accuracy (CDA) while minimizing
the Attack Success Rate (ASR), carefully weighing the cost of deploying defensive measures. Conversely, the at‑
tacker aims to maximize ASR while ensuring CDA remains above a detection threshold, balancing this goal against
the computational cost of injecting and triggering backdoors. By incorporating cost constraints, we refine the strate‑
gic interplay between the players, preserving the adversarial nature of the game while introducing more realistic
considerations of resource limitations.

Our approach maintains the simplicity of a two‑player game and the same set of strategies introduced in our
previous work. By embedding cost considerations directly into the utility functions while preserving the zero‑sum
structure, we examine how these trade‑offs influence optimal strategies and game equilibria. Through numerical
simulations, we demonstrate the impact of cost‑aware decision‑making and analyze attacker‑defender interactions
under realistic resource constraints.

Contributions of this paper include:

1. Introducing a zero‑sum game‑theoretic framework for DNN backdoor attacks and defenses with cost con‑
straints.

2. Embedding cost constraints symmetrically in attacker and defender utility functions to model computational
trade‑offs.

3. Analyzing the equilibrium strategies under cost‑aware conditions using numerical simulations.

This work advances the understanding of adversarial interactions in DNNs, providing a structured approach
to identifying optimal strategies for both attackers and defenders while integrating real‑world constraints into
decision‑making. To make our objectives more explicit, the goal of this paper is to investigate how cost constraints
alter the dynamics of backdoor attacks and defenses in deep learning. We propose the following hypothesis.
H1. Cost‑aware modeling significantly changes equilibrium strategies compared to unconstrained settings.

H2. Balanced cost scenarios yield the most practical trade‑off between security and performance.

H3. Extreme cost conditions (high attack or high defense costs) reduce the effectiveness of one player while creating
vulnerabilities exploitable by the other.

These hypotheses guide our analysis and are examined through the numerical simulations presented in Sec‑
tion 5.

2. Backdoor Attack
This section introduces thebackdoor attackmodel considered in thiswork: a targeted, clean‑label, data‑poisoning

attack in an image classification setting. We provide the rationale for this choice, formally define the attack, and de‑
scribe the adversarial strategies and countermeasures.

2.1. Motivation for Our Threat Model
Backdoor attacks have become a major security threat in deep learning, leading to extensive research on their

techniques and countermeasures [7,8,10,11,19]. In this work, we consider the common case of an attacker compro‑
mising a supervised learning model trained for image classification, a setting widely investigated in the literature.
Early demonstrations, such as BadNets [17], revealed how easily poisoned samples with hidden triggers could cor‑
rupt classification tasks, while later studies highlighted their impact on sensitive domains like face recognition and
other vision‑based applications [7].

The focus here is on targeted backdoor attacks, where the adversary forces the model to consistently mis‑
classify inputs containing a trigger into a specific target class [17]. This differs from untargeted poisoning, which
instead seeks to cause arbitrary misclassifications or broadly reduce model performance, similar to Byzantine at‑
tacks [8]. Among the many possible strategies, we concentrate on data poisoning‑based backdoors, where the
training dataset is manipulated to implant malicious behaviors. Such manipulation can occur at different points in
the pipeline, including data collection, dataset preparation, or when relying on third‑party sources [8,11,17].

Additionally, we assume a clean‑label backdoor setting [18], meaning that while the attacker manipulates the
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input images, the corresponding class labels remain unchanged. This makes the attack highly stealthy, as conven‑
tional dataset validation techniques focus primarily on detecting label inconsistencies, and particularly dangerous,
as clean‑label backdoors maintain high model performance on benign inputs, which makes them difficult to detect
despite embedding harmful behavior. Prior studies [7,8] highlight their effectiveness in compromising deep neural
networks while remaining covert.

Our motivation for selecting this threat model lies in its practical relevance to real‑world, high‑stakes domains
such as autonomous driving and biometric authentication [8,10].

2.2. Formalization

A deep neural network (DNN) is defined as a function ℱ𝜃 trained on a dataset Dtr = {(𝑥𝑖 , 𝑦𝑖)}
𝑁𝑡𝑟
𝑖 = 1, where X =

{xi}
𝑁𝑡𝑟
𝑖 = 1represents input images andY= {yi}

𝑁𝑡𝑟
𝑖 = 1∈C denotes class labels. The network parametersθ are optimized

by minimizing:

argmin
𝜃

𝑁𝑡𝑟
෍
𝑖=1

ℒ(ℱ𝜃(𝑥𝑖), 𝑦𝑖) (1)

The trained model is then evaluated on a test dataset 𝐷𝑡𝑠 = {(𝑥𝑗 , 𝑦𝑗)}
𝑁𝑡𝑠
𝑗 = 1 and its performance is assessed

using Clean Data Accuracy (CDA):

𝐶𝐷𝐴(ℱ𝜃 , 𝐷𝑡𝑠) =
∑𝑁𝑡𝑠
𝑗=1 𝐼(𝑥𝑗 , 𝑦𝑗)

𝑁𝑡𝑠
(2)

where I (𝑥𝑗 , 𝑦𝑗) = 1 if ℱ𝜃(xj) = yj, and 0 otherwise.
A backdoor attackmodifies themodel such that it misclassifies inputs when a specific trigger xt is present. The

attacker poisons the training data by altering a subset P of m samples from 𝐷𝑡𝑟:

𝑃 = {(𝑥̃𝑖 , 𝑦̃𝑖)}𝑚𝑖=1 (3)

𝑖 = (1 − Δ𝑡𝑟) × 𝑥𝑖 + Δ𝑡𝑟 × 𝑥𝑡 (4)
Here, Δ𝑡𝑟 represents the backdoor trigger strength, controlling the trigger’s visibility and xt is the trigger. A 

successful attack increases the Attack Success Rate (ASR)while keeping themodel’s CleanData Accuracy (CDA) high
to evade detection:

𝐴𝑆𝑅(ℱ𝑝𝑜
𝜃 , 𝐷𝑝𝑜

𝑡𝑠 ) =
∑|𝐷𝑝𝑜𝑡𝑠 |
𝑗=1 𝐼(𝑥̃𝑗 , 𝑡)
|𝐷𝑝𝑜

𝑡𝑠 |
(5)

𝐶𝐷𝐴 = (𝐶𝐷𝐴𝑐𝑏 + 𝐶𝐷𝐴𝑐𝑝)/2
𝐴𝑆𝑅 = (𝐴𝑆𝑅𝑐𝑏 + 𝐴𝑆𝑅𝑐𝑝)/2

(6)

We further distinguish two variants of the metrics used throughout the paper. CDAcb denotes clean‑data ac‑
curacy on the clean test set (benign samples), while CDAcp denotes accuracy on the poisoned test set (samples con‑
taining the trigger) after being cleaned. Similarly, ASRcb and ASRcp are computed on clean and poisoned partitions,
respectively. The total CDA and ASR values are defined as the average of their two components, as shown in Eq. (6),
which balances benign and poisoned behavior into a single indicator. This separation and subsequent averaging
provide finer insight into how strategies impact both normal performance and attack persistence.
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2.3. Summary of Notation
Table 1 summarizes the notation used throughout the paper.

Table 1. Table of Notations.

Dtr Training Dataset
Dts Testing Dataset
𝐷𝑝𝑜
𝑡𝑟 Poisoned Training Dataset

𝐷𝑝𝑜
𝑡𝑠 Poisoned Testing Dataset
ℱ𝜃 Deep Learning Model
ℱ𝑃
𝜃 Backdoored Deep Learning Model
ℒ Loss Function
C Number of Classes

CDA Clean Data Accuracy
ASR Attack Success Rate
Δ𝑡𝑟 Attack Strength During Training
Δ𝑡𝑠 Attack Strength During Testing
𝛼𝑡𝑟 Fraction of Poisoned Training Samples
𝛼𝑑𝑒𝑓 Fraction of Samples Processed by Defense
Δ𝑑𝑒𝑓 Defense Strength
𝑥𝑡 Backdoor Trigger

𝐵𝐺𝐶𝑜𝑠𝑡 Backdoor Game with Cost‑Constrained Control
𝜇𝐴 Attacker’s Utility
𝜇𝐷 Defender’s Utility
𝑆∗𝐴 Attacker’s Strategy at Equilibrium
𝑆∗𝐷 Defender’s Strategy at Equilibrium
λA Cost Coefficient for Attacker
λD Cost Coefficient for Defender
CA Attacker’s Cost Function
CD Defender’s Cost Function
PA Attacker’s Mixed Strategy Probability Distribution
PD Defender’s Mixed Strategy Probability Distribution
𝜇∗𝐴 Attacker’s Utility at Equilibrium
𝜇∗𝐷 Defender’s Utility at Equilibrium

𝐴𝑆𝑅𝑐𝑏 Attack Success Rate on Clean Data
𝐴𝑆𝑅𝑐𝑝 Attack Success Rate on Poisoned Data
𝐶𝐷𝐴𝑐𝑏 Clean Data Accuracy on Clean Data
𝐶𝐷𝐴𝑐𝑝 Clean Data Accuracy on Poisoned Data

1[CDA > 𝐶𝐷𝐴𝑖𝑛𝑓] Indicator for CDA Threshold
SA Attacker’s Strategy Set
SD Defender’s Strategy Set

2.4. Adversarial Strategies: Attack and Defense
Attacker Strategy. We consider the SIG attack [16], where the backdoor trigger is a sinusoidal or ramp signal

embedded into images. The attacker:

• Selects a target class t.
• Applies a structured trigger to a fraction 𝛼𝑡𝑟 of images.
• Ensures the poisoned dataset 𝐷𝑝𝑜

𝑡𝑟 trains the model to associate 𝑥𝑡 with class 𝑡.

Defender Strategy. We assume a reverse‑engineering‑based defense that estimates and removes the trigger
using:

𝑥𝑐𝑙 =
𝜒𝑖𝑛𝑖 − Δ𝑑𝑒𝑓 × 𝑥̂𝑡

1 − Δ𝑑𝑒𝑓
(7)

Here, 𝑥̂𝑡 is the estimated trigger, and Δ𝑑𝑒𝑓 controls the defense strength.

3. Game Theory in a Nutshell
Game theoryprovides a formal framework for analyzing strategic interactions inwhich rational decision‑makers,

or players, select actions to maximize their expected payoffs. Since its introduction by von Neumann and Morgen‑
stern [27], it has been widely applied in domains such as security, economics, and machine learning. The central
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premise assumes rational players seeking to optimize their utility, though in practice this can be limited by bounded
rationality or other behavioral factors that cause deviations from idealized strategies [28].

3.1. Normal‑Form Games
A normal‑form game models strategic interactions by defining available strategies and payoffs. A two‑player

game is given by:

𝐺 =< 𝑆𝐴, 𝑆𝐷 , 𝜇𝐴, 𝜇𝐷 > (8)
where:

• 𝑆𝐴 and 𝑆𝐷 are the strategy sets available to the attacker (A) and defender (D).
• 𝜇𝐴, 𝜇𝐷 are the utility functions, mapping strategy profiles to numerical payoffs.

In zero‑sumgames, the gain of one player directly corresponds to the loss of the other,meaning𝜇𝐷 =−𝜇𝐴. These
models are purely adversarial scenarios, such as cybersecurity, where improving an attack’s success directly harms
the defender’s efforts.

3.2. Equilibrium Concepts
A Nash equilibrium [29,30] represents a situation where no player can improve their outcome by changing

their strategy unilaterally, assuming the other player’s strategy remains fixed. Formally, it satisfies:

𝜇𝐴(𝑆∗𝐴, 𝑆∗𝐷) ≥ 𝜇𝐴(𝑆𝐴, 𝑆∗𝐷) ∀𝑆𝐴 ∈ 𝑆𝐴
𝜇𝐷(𝑆∗𝐴, 𝑆∗𝐷) ≥ 𝜇𝐷(𝑆∗𝐴, 𝑆𝐷) ∀𝑆𝐷 ∈ 𝑆𝐷

(9)

In zero‑sum games, the equilibrium corresponds to a saddle point, where neither player can improve their
outcome.

There are two primary types of equilibria: ‑ Pure strategy Nash equilibrium: Players choose a single action
deterministically. ‑ Mixed strategy Nash equilibrium: Players randomize over actions, balancing unpredictability
and optimality.

3.3. Solving Normal‑Form Games
A game is dominance solvable [30] if dominated strategies can be iteratively eliminated. More generally, Nash

equilibria in two‑player zero‑sum games satisfy:

max
𝑠𝐴

min
𝑠𝐷

𝑢𝐴(𝑠𝐴, 𝑠𝐷) = min
𝑠𝐷

max
𝑠𝐴

𝑢𝐴(𝑠𝐴, 𝑠𝐷) (10)

These can be computed using linear programming or specialized algorithms like Lemke‑Howson for bimatrix
games.

For mixed strategies, where players randomize over available actions, the expected utility is:

𝑈𝐴(𝑃𝐴, 𝑃𝐷) = ෍
𝑠𝐴 ,𝑠𝐷

𝑃𝐴(𝑠𝐴)𝑢𝐴(𝑠𝐴, 𝑠𝐷)𝑃𝐷(𝑠𝐷)

𝑈𝐷(𝑃𝐴, 𝑃𝐷) = ෍
𝑠𝐴 ,𝑠𝐷

𝑃𝐴(𝑠𝐴)𝑢𝐷(𝑠𝐴, 𝑠𝐷)𝑃𝐷(𝑠𝐷)
(11)

Mixed‑strategy equilibria ensure optimality when pure strategies lack a stable solution.
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3.4. Implications for Adversarial Machine Learning
Game theory provides a structured approach for modeling the interactions between attacker and defender in

adversarial machine learning. By formulating backdoor attacks and defenses as a zero‑sum game, we can derive
optimal strategies for both sides (players). Introducing cost constraints further enhances the realism of the model
by incorporating practical trade‑offs between attack strength and computational resources.

This game‑theoretic foundation underpins the Backdoor Gamewith Cost‑Constrained Control (BGCost), extend‑
ing previous work [26] to incorporate practical computational constraints.

4. Zero‑Sum Cost‑Constrained Backdoor Game
4.1. Overview

We frame the interaction between a backdoor attacker and a DNN defender as a two‑player zero‑sum game
with cost constraints, where both players are assumed to act rationally with full knowledge of the game’s structure,
butwithout certainty about the other player’s selected strategy. In contrast to earlier formulations that emphasized
only adversarial objectives, our model explicitly incorporates cost‑aware decision‑making, requiring both attacker
and defender to weigh resource limitations when optimizing their strategies.

Within this framework, the defender’s objective is to preserve clean data accuracy (CDA) while suppressing
the attack success rate (ASR), yet must do so under the burden of computational overhead and the risk of accuracy
degradation caused by defensive measures. Conversely, the attacker seeks to maximize ASR while keeping CDA
above a rejection threshold to remain stealthy, and simultaneously minimize the computational expense of poison‑
ing data or deploying triggers. These competing trade‑offs mirror real‑world scenarios, where stronger attacks or
defenses inevitably demand greater resources and carry higher risks.

Following the different scenarios presented by Kallas et al. [26], we adopt the Backdoor Game with Maximum
Control (BG Max) as our starting framework and extend it to the Backdoor Game with Cost‑Constrained Control
(𝐵𝐺𝐶𝑜𝑠𝑡). This new formulation captures real‑world limitations where both attackers and defendersmust optimize
not only for effectiveness but also for computational efficiency. By embedding cost considerations directly into the
utility functions, ourmodel better reflects the strategic balancing acts encountered in practical adversarial environ‑
ments.

Despite introducing cost constraints, the game remains zero‑sum because:

• The fundamental adversarial structure is preserved, where an increase in ASR corresponds to a proportional
decrease in CDA.

• Costs are symmetrically embedded into both players’ utility functions, ensuring that constraints do not intro‑
duce asymmetry.

• Optimal strategies at equilibrium remain dictated by competitive interactions, with both players adapting to
resource limitations while maintaining opposing objectives.

Thus, the 𝐵𝐺𝐶𝑜𝑠𝑡 framework extends the previous maximum control scenario while embedding practical con‑
straints, offering a structured and realistic model for analyzing attack‑defense interactions under computational
and operational limitations.

4.2. Formal Definition of the Game
The Backdoor Game with Cost‑Constrained Control (𝐵𝐺𝐶𝑜𝑠𝑡) is formulated as a two‑player zero‑sum game,

where the attacker (A) and the defender (D) engage in a strategic interaction defined as follows:

𝐵𝐺𝐶𝑜𝑠𝑡 =< 𝑆𝐴, 𝑆𝐷 , 𝜇𝐴, 𝜇𝐷 > (12)
where:

• SA and SD are the strategy spaces of the attacker and defender, respectively.
• μA: SA × SD →ℝ is the attacker’s utility function.
• μD : SA × SD →ℝ is the defender’s utility function, where μD = −μA, ensuring the zero‑sum property.
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The strategy spaces are defined as:

𝑆𝐴 = (𝛼𝑡𝑟 , Δ𝑡𝑟 , Δ𝑡𝑠) ∈ [0, 1]3, 𝑆𝐷 = Δ𝑑𝑒𝑓 ∈ [0, 1] (13)
The attacker’s strategies include adjusting the poisoning ratio 𝛼𝑡𝑟 during training and controlling the trigger

strengths Δ𝑡𝑟 and Δ𝑡𝑠 . The defender, in response, can adjust their defense strength Δ𝑑𝑒𝑓 .

4.3. Constructing a Utility Function
To integrate cost constraints while preserving the zero‑sum structure, we define cost‑constrained utility func‑

tions for both players.
Attacker’s Utility:

𝜇𝐴 = 𝐴𝑆𝑅 × 1[𝐶𝐷𝐴 > 𝐶𝐷𝐴𝑖𝑛𝑓] − 𝜆𝐴𝐶𝐴(𝛼𝑡𝑟 , Δ𝑡𝑟 , Δ𝑡𝑠) − 𝜆𝐷𝐶𝐷(Δ𝑑𝑒𝑓) (14)
where:

• ASR is the attack success rate.
• 1[CDA > CDAinf] ensures that the attacker’s success is counted only if the defender does not reject the model.
• 𝐶𝐴(𝛼𝑡𝑟 , Δ𝑡𝑟 , Δ𝑡𝑠 ) = 𝛼𝑡𝑟 (Δ2𝑡𝑟 + Δ2𝑡𝑠) represents the attacker’s computational cost, increasing quadratically with

trigger strengths and linearly with poisoning ratio.
• 𝐶𝐷 (Δ𝑑𝑒𝑓) = log(1 + Δ𝑑𝑒𝑓) represents the defender’s cost, increasing logarithmically as the defense intensity

grows.
• 𝜆𝐴 and 𝜆𝐷 are weight parameters that control the influence of cost constraints on the attack and defense, re‑

spectively.

Defender’s Utility:

𝜇𝐷 = −𝜇𝐴 (15)
It ensures that the game remains strictly zero‑sum.
Figure 2 shows the attacker’s utility under the balanced 𝐵𝐺𝐶𝑜𝑠𝑡 setup with λA = λD = 1.0. Lower thresholds

(e.g., CDAinf = 0.1) leave the attackerwith a broad region of positive utility, while higher thresholds (e.g., CDAinf = 0.9)
restrict this region considerably. This shows how selecting a proper acceptance criteria𝐶𝐷𝐴𝑖𝑛𝑓 by the defender can
directly constrain the attacker’s effective strategy space.

Figure 2. Balanced 𝐵𝐺𝐶𝑜𝑠𝑡 utilities for different CDAinf under λA = λD = 1.0.

4.4. Cost Constraints and Game Dynamics
The introduction of cost constraints preserves the zero‑sum structure of the gamewhile compelling both play‑

ers to strategically allocate their resources. In our formulation, the coefficients λA and λD weight decision‑theoretic
trade‑offs inside the utilities: λA captures the attacker’s budget pressure (e.g., how costly it is to increase poisoning
ratio or trigger strengthwhile staying stealthy), and λD captures the defender’s budget pressure (e.g., how costly it is
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to raise defense intensity without harming benign accuracy). Importantly, these costs are not direct measurements
of runtime or memory; rather, they are design weights that shape optimal strategies under resource awareness
within the game.

Key cost drivers reflected in the utilities include:

• Computational effort (attack side): Higher poisoning rates and stronger (Δ𝑡𝑟 , Δ𝑡𝑠) imply greater effort/risk
for the attacker, which is penalized via CA(·) and scaled by λA.

• Training/processingeffort (defense side): Stronger defenses (largerΔ𝑑𝑒𝑓 and coverage𝛼𝑑𝑒𝑓 ) are penalized
via CD (·) and scaled by λD , capturing the budgetary impact of more intensive mitigation.

• Energy/operational footprint: Both intense attacks and defenses imply higher operational burden; the cost
terms encourage budget‑aware choices when such burden matters.

Our utilities are evaluated using the same training/evaluation pipeline as the underlying model; 𝐵𝐺𝐶𝑜𝑠𝑡 intro‑
duces no additional asymptotic time/space complexity beyond sweeping the strategy grid. Empirical profiling of
wall‑clock time or peak memory is therefore orthogonal to the game definition and can vary with hardware and
implementation. Inference latency and memory are not explicitly modeled here; instead, Table 2 provides repre‑
sentative settings for (λA, λD ) that let practitioners encode their own operational constraints. By embedding these
weights in a structured zero‑sum framework, 𝐵𝐺𝐶𝑜𝑠𝑡 offers a resource‑aware perspective on adversarial interac‑
tions, guiding strategy selection without prescribing a specific runtime or memory budget.

Table 2. Cost Constraint Configurations and Their Effects.

Scenario λA (Attack Cost) λD (Defense Cost) Expected Behavior

Unconstrained 0.1–0.5 0.1–0.5 Minimal cost impact, aggressive strategies.
Balanced 0.5–1.5 0.5–1.5 Trade‑off between performance and cost.

Costly Attacks 1.0–3.0 0.1–0.5 Attackers favor low‑cost triggers.
Costly Defenses 0.1–0.5 1.0–3.0 Defenders avoid expensive defenses.
High Constraints 2.0–5.0 2.0–5.0 Both players optimize for low‑cost strategies.

5. Simulation Results and Discussion
The experimental framework used in this study is presented in this section. Beginning with the dataset and

model architecture, followed by a formal definition of the game setup. We then analyze the resulting utilitymatrices
and discuss the equilibrium strategies that emerge. A summary of the key findings obtained from the simulations
is presented at the end.

5.1. Dataset and Models
To explore strategic interactions in backdoor attacks within our game‑theoretic framework, we rely on the

MNIST dataset in our simulations, as its controlled environment makes it ideal for clearly evaluating both attack
and defense strategies.

Our experimental setup employs a shallow convolutional neural network (CNN) architecture composed of four
main components: a first convolutional layer with 64 filters followed by max pooling, a second convolutional layer
with 128 filters andmax pooling, a fully connected layer with 256 neurons, and an output layer of 10 neurons. Both
convolutional layers use kernels of size 5with ReLU activations. In each game scenario and for each strategy profile,
the CNN is trained for 100 epochswith a batch size of 64. Following training, utilities are derived from the observed
clean data accuracy (CDA) and attack success rate (ASR), with each value contributing to the entries of the utility
matrix. For reference, the baseline test accuracy of the benign model ℱ𝜃—in the absence of any attack—reaches
99.07%.

5.2. Game Setup
As explained in Section 4, the BFcost framework models the interactions between attackers and defenders

while accounting for the cost of their actions. The attacker controls the parameters Δ𝑡𝑟 and Δ𝑡𝑠 , which define the
trigger strength during training and testing, respectively. The defender, in turn, controls Δ𝑑𝑒𝑓 , determining the in‑
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tensity of defensive countermeasures. Unlike previous game setups, BGCost explicitly integrates the cost associated
with each player’s actions, influencing their strategy selection and optimal choices.

Table 3 presents the key parameters in the strategy set for 𝐵𝐺𝐶𝑜𝑠𝑡 , along with their respective value ranges,
which define the space in which both players optimize their strategies while balancing performance and resource
costs. To ensure a consistent evaluation of how varying cost constraints influence equilibrium strategies and game
outcomes, we analyze different cost scenarios by setting λA and λD to the average values of their respective inter‑
vals for each scenario, as shown in Table 2. Additionally, for each game instance, we quantize the attacker’s and
defender’s overlay powers to ensure a structured evaluation of strategic choices. The maximum overlay power Δ𝑡𝑟
is empirically selected based on the highest achievable ASR in the absence of defense. This enables precise analysis
of how cost constraints shape decision‑making in adversarial settings, revealing optimal strategies under various
budget conditions.

Table 3. Parameters and Value Ranges in 𝐵𝐺𝐶𝑜𝑠𝑡 Strategy Set.

Player Parameter Range

Attacker Δ𝑡𝑟 {0.01,⋯, 0.09} ∪ {0. 1,⋯, 0.5}
Attacker Δ𝑡𝑠 {0.01,⋯, 0.09} ∪ {0. 1,⋯, 0.5}
Attacker 𝛼𝑡𝑟 {0.05, 0. 1,⋯, 0.9, 1.0}
Defender Δ𝑑𝑒𝑓 {0.01,⋯, 0.09} ∪ {0. 1,⋯, 0.5}
Defender 𝛼𝑑𝑒𝑓 {0.05, 0. 1,⋯, 0.9, 1.0}

5.3. Analysis of the Utility Matrices
Unconstrained Game: In the Unconstrained Game scenario (Figure 3), where the cost parameters are set to

λA = 0.3 and λD = 0.3, both players operate with minimal cost constraints, allowing for greater strategic flexibility.
The utility matrix reveals distinct patterns, with dark blue zones appearing at the bottom and in the rightmost
columns where 𝛼𝑑𝑒𝑓 > 0.8, indicating low utility for the attacker and a strong advantage for the defender. Column‑
wise analysis shows that as Δ𝑑𝑒𝑓 increases, the defender’s utility improves, particularly at Δ𝑑𝑒𝑓 = 0.5, explaining the
vertical dark blue lines that highlight the likelihood of high Δ𝑑𝑒𝑓 values being chosen at equilibrium. Conversely,
yellow zones, which signify high attacker utility, are concentrated in rows corresponding tomedium‑to‑high values
of 𝛼𝑡𝑟 and Δ𝑡𝑟 , suggesting that the attacker prefers these strategies in pure or mixed strategy equilibria.

Figure 3. 𝐵𝐺𝐶𝑜𝑠𝑡 Unconstrained: 𝜇𝐴 and sine trigger.

This equilibrium behavior happens because the low‑cost setting encourages more aggressive play from both
sides, attacker and defender. The attacker can increase𝛼𝑡𝑟 andΔ𝑡𝑟 without significant penalties, leading to stronger
backdoor strategies. Meanwhile, the defender responds by leveraging highΔ𝑑𝑒𝑓 , attempting to neutralize the attack
while minimizing damage to benign samples. As a result, both sides adopt strategies, making intense interactions
more likely at equilibrium.
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Balanced Game: In the Balanced Game scenario (Figure 4), where the cost parameters are set to λA = 1.0
and λD = 1.0, the introduction of cost constraints leads to a significant expansion of the dark blue zones in the
utility matrix. This shows that both players prefer to balance performance and cost, making them less likely to
choose extreme strategies. Compared to the unconstrained game (Figure 3), the attacker’s aggressive strategies
are considerably reduced, as shown by the reduced presence of yellow areas, which correspond to high utility for
the attacker. This suggests that the attacker now favors lower values of 𝛼𝑡𝑟 and Δ𝑡𝑟 , ensuring that the backdoor
remains effective while minimizing costs.

Figure 4. 𝐵𝐺𝐶𝑜𝑠𝑡 Balanced: 𝜇𝐴 and sine trigger.

On the defender’s side, the strategy becomes more calculated yet remains proactive. The defender exhibits
higher 𝛼𝑑𝑒𝑓 and Δ𝑑𝑒𝑓 values in comparison to the attacker’s relatively conservative strategy, as evidenced by the
dark blue regions concentrated at higher defense levels. This suggests that while the defender does not fully maxi‑
mize their defensive efforts due to cost considerations, they still adopt relatively strong countermeasures to main‑
tain control over ASR. The equilibrium in this setting reflects a more structured strategic balance, where both play‑
ers avoid extreme moves and instead aim for cost‑efficient yet effective strategies that align with their objectives
without overspending resources.

Costly Attacks Game: In the Costly Attacks scenario (Figure 5), where attack costs are high (λA = 2.0) and
defense costs are low (λD = 0.3), the attacker is forced to adopt low‑cost strategies, meaning minimal values for
𝛼𝑡𝑟 , Δ𝑡𝑟 , and Δ𝑡𝑠 to reduce resource expenditure. This causes the attacker to adopt weaker strategies, which are
less effective but more sustainable under the cost constraints. Meanwhile, the defender, benefiting from a low‑cost
defense environment, takes advantage of the attacker’s reduced aggressionbydeploying stronger countermeasures,
reflected in higher values of 𝛼𝑑𝑒𝑓 and Δ𝑑𝑒𝑓 . This strategic imbalance is evident in the expanded yellow zones in
the utility matrix, which indicate that the attacker’s most viable strategies now lie in low‑value profiles, while the
defender freely strengthens its defenses without significant cost.

CostlyDefensesGame: Conversely, in the Costly Defenses scenario (Figure 6), where λA = 0.3 and λD = 2.0, the
roles are reversed. The defender, now facing significant cost constraints, must limit the intensity of its defensive
actions, resulting in lower values of 𝛼𝑑𝑒𝑓 and Δ𝑑𝑒𝑓 . The weakened defense creates an opening for the attacker,
who, while still favoring low‑cost strategies, faces less resistance and thus maintains a minimal but persistent level
of effectiveness. This contrast between costly attacks and costly defenses underscores the fundamental impact
of resource constraints on strategic decision‑making: when attacks are costly, the attacker weakens, allowing the
defender to dominate, whereas when defenses are costly, the defender is forced to scale back, giving the attacker
more room to operate.
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Figure 5. 𝐵𝐺𝐶𝑜𝑠𝑡 Costly Attacks: 𝜇𝐴 and sine trigger.

Figure 6. 𝐵𝐺𝐶𝑜𝑠𝑡 Costly Defenses: 𝜇𝐴 and sine trigger.

High Constraints Game: Finally, in the High Constraints scenario (Figure 7), both the attacker and defender
face significant cost restrictions, with λA =2.0 and λD =2.0, forcing them toprioritize low‑cost strategies tomaximize
their respective utilities, as indicated in Equations 14 and 15. This cost‑driven limitation explains the prevalence
of dark blue zones in the utility matrix, indicating low attacker utility and relatively higher defender utility. Since
high‑cost strategies are no longer viable, both players adopt a conservative approach, with the attacker favoring
lower values of 𝛼𝑡𝑟 , Δ𝑡𝑟 , and Δ𝑡𝑠 , while the defender reduces its defense intensity by decreasing either 𝛼𝑑𝑒𝑓 , Δ𝑑𝑒𝑓 ,
or both. The result is a fragile equilibrium, where neither the attacker nor the defender can assert significant in‑
fluence, leading to weak attacks met by equally weak defenses—a situation that minimizes extreme outcomes but
compromises overall model robustness.
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Figure 7. 𝐵𝐺𝐶𝑜𝑠𝑡 High Constraints: 𝜇𝐴 and sine trigger.

5.4. Analysis of Equilibrium Strategies
5.4.1. Unconstrained Game

With minimal cost penalties (λA = λD = 0.3), both attacker and defender can pursue aggressive strategies. The
attacker distributes probabilities across medium–high poisoning ratios (𝛼𝑡𝑟 , Δ𝑡𝑟) and adapts the test‑time trigger
strength Δ𝑡𝑠 to trade stealth for reliability. Notably, as shown in Figure 8, the strategy (0.8, 0.4, 0.06) carries the
largest probabilitymass (0.621637), suggesting a preference for stealthy yet effective configurations. The defender
respondswith strong countermeasures, concentrating on (1.0, 0.5)with the samehigh probability (0.621637). This
equilibriumsuppressesASRbut does so at the expense of benignperformance: CDA=0.892with𝐶𝐷𝐴𝑐𝑏 =0.893 and
𝐶𝐷𝐴𝑐𝑝 = 0.892 (Table 4). While attacks are partially neutralized, the drop in CDAmakes deployment unattractive
since defensive intensity harms model reliability.

Figure 8. Mixed Strategy Equilibrium for Unconstrained 𝐵𝐺𝐶𝑜𝑠𝑡 with Sin Trigger.

5.4.2. Balanced Game

Under symmetric constraints (λA = λD = 1.0), players converge to cost‑efficient pure strategies. The attacker
consistently adopts (0.05, 0.01, 0.01), while the defender chooses (0.7, 0.4), both with probability 1.0, as illustrated
in Figure 9. This equilibrium is favorable: the ASR remains low (0.109) while CDA is preserved at 0.937, outper‑
forming all other cases. The outcome alignswith the heatmap analysis and highlights this configuration as themost
deployment‑friendly, achieving strong mitigation without excessive accuracy loss.
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Table 4. Performance at the Equilibrium for Different 𝐵𝐺𝐶𝑜𝑠𝑡 Cases.

Metric Unconstr. Balanced Costly Att. Costly Def. High Const.

𝐴𝑆𝑅𝑐𝑏 0.134 0.101 0.170 0.102 0.086
𝐴𝑆𝑅𝑐𝑝 0.130 0.117 0.101 0.123 0.112
𝐶𝐷𝐴𝑐𝑏 0.893 0.960 0.795 0.844 0.786
𝐶𝐷𝐴𝑐𝑝 0.892 0.914 0.870 0.798 0.807
ASR 0.132 0.109 0.135 0.113 0.099
CDA 0.892 0.937 0.832 0.821 0.796

Figure 9. Mixed Strategy Equilibrium for Balanced 𝐵𝐺𝐶𝑜𝑠𝑡 with Sin Trigger.

5.4.3. Costly Attacks Game

When attacks are expensive (λA high) and defenses remain affordable (λD low), the attacker is forced to retreat
to the weakest configuration (0.05, 0.01, 0.01) with probability 1.0, as shown in Figure 10. The defender seizes
this opportunity, escalating to (1.0, 0.5) with probability 1.0 (see Figure 10). This dynamic reduces ASR to 0.135,
but the aggressive defense significantly degrades CDA, which falls to 0.832 overall (𝐶𝐷𝐴𝑐𝑏 = 0.795). The result
demonstrates that excessive defense can backfire by harming benign accuracy; more calibrated defenses would
strike a better balance between robustness and usability.

Figure 10. Mixed Strategy Equilibrium for Costly Attacks 𝐵𝐺𝐶𝑜𝑠𝑡 with Sin Trigger.

5.4.4. Costly Defenses Game

Here, the defender faces high costs (λD large), restricting their options. As presented in Figure 11, the equi‑
librium settles on (0.4, 0.5) with probability 1.0, a moderate defense that avoids over‑expenditure. The attacker,
unchanged from the costly attack case, sticks to (0.05, 0.01, 0.01). The outcome is modest: ASR = 0.113 and CDA =
0.821. While not catastrophic, this case reflects the limitations imposed by expensive defenses: the system avoids
collapse but cannot achieve strong guarantees, emphasizing the need for lightweight and adaptive defense strate‑
gies.
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Figure 11. Mixed Strategy Equilibrium for Costly Defenses 𝐵𝐺𝐶𝑜𝑠𝑡 with Sin Trigger.

5.4.5. High Constraints Game

Finally, under strong cost pressure on both sides (λA = λD large), neither player can afford high‑intensity strate‑
gies. Both settle onminimal‑effortmoves: the attacker uses (0.05, 0.01, 0.01), while the defender employs (0.2, 0.5),
each with probability 1.0, as can be seen in Figure12. This equilibrium results in the lowest ASR (0.099) but also
the weakest CDA (0.796). The low investment produces a fragile equilibrium: attacks are limited, but so is defense,
leaving the model simultaneously underperforming and underprotected (Figure 13, Table 4). This configuration
is the least attractive for deployment, as it sacrifices both robustness and accuracy.

Figure 12. Mixed Strategy Equilibrium for High Constraints 𝐵𝐺𝐶𝑜𝑠𝑡 with Sin Trigger.

Figure 13. ASR and CDA at the Equilibrium for Different 𝐵𝐺𝐶𝑜𝑠𝑡 Cases.
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5.5. Summary of Findings
Practical Guidelines & Limitations

• Preferred operating point: The Balanced scenario delivers themost favorable ASR–CDA trade‑off under cost
awareness.

• Defense calibration: Avoid over‑defending in Unconstrained/Costly‑Attacks settings—track 𝐶𝐷𝐴𝑐𝑏 and set
guardrails on Δ𝑑𝑒𝑓 .

• Budget‑aware choices: In Costly‑Defenses/High‑Constraints, prioritize lightweight screening, acceptance
thresholds (𝐶𝐷𝐴𝑖𝑛𝑓), and post‑deployment monitoring.

• Stealthy triggers: Expect low‑power (Δ𝑡𝑟 , Δ𝑡𝑠); incorporate trigger‑aware audits and anomaly checks around
target classes.

• Limitations: Results shown for MNIST and a single model family; extension to richer datasets/models and
non–zero‑sum variants is left to future work.

To consolidate these insights, we provide in Table 5 and the accompanying summary box a compact overview
of the main findings, deployment‑oriented guidelines, and limitations. These items synthesize the trends observed
in Figure 13 and the per‑scenario equilibria, allowing readers to quickly grasp the strategic implications of each
cost setting.

Table 5. Quick‑reference synthesis of findings, guidelines, and limitations across 𝐵𝐺𝐶𝑜𝑠𝑡 scenarios.

Scenario Key Findings Practical Guidelines Limitations/Caveats

Unconstrained
Aggressive play on both sides; defender
tends to push high Δ𝑑𝑒𝑓; CDA
degradation noticeable while ASR
remains non‑negligible.

Avoid deploying with weak cost controls; if
used, cap defense strength to preserve CDA
and rely on monitoring/rollback.

Sensitive to over‑defense (CDA drops);
cost‑agnostic tuning may not generalize
to resource‑limited settings.

Balanced
Best trade‑off: low ASR with high CDA;
pure strategies emerge with modest 𝛼𝑡𝑟 ,
Δ𝑡𝑟 and moderate (𝛼𝑑𝑒𝑓 , Δ𝑑𝑒𝑓).

Recommended default for deployment;
prioritize moderate defense and verification
against stealthy, low‑power triggers.

Still scenario‑specific; assumes reliable
estimation of λA , λD and a stable
operating domain.

Costly Attacks
Attacker backs off to low‑cost triggers;
defender can afford stronger
countermeasures; CDA declines if
defense is too aggressive.

Exploit attacker’s cost pressure; prefer
calibrated (not maximal) defenses to avoid
unnecessary CDA loss.

Over‑defending can erode benign
accuracy; watch CDAcb to prevent
unacceptable quality drops.

Costly Defenses
Defender scales back; attacker retains
minimal but persistent effectiveness;
ASR modest, CDA also modest.

Use lightweight, selective defenses (e.g.,
pre‑filtering, targeted inspection) and
trigger‑aware QA gates.

Budget‑bound defenses risk residual
backdoors; continuous monitoring is
needed to catch low‑power attacks.

High Constraints
Both sides conservative; ASR low, but
CDA also lowest among settings; fragile
equilibrium, limited robustness.

Avoid for production if possible; if
unavoidable, enforce strict acceptance
thresholds and fail‑safe policies.

Under‑investment by both players leaves
the model brittle, with limited headroom
to react to shifts.

Our results show that cost constraints fundamentally shape attacker and defender behavior in deep learning
security. When both sides must account for resource limitations, their strategies shift markedly. Equilibrium analy‑
sis suggests that defenders should prioritize moderate‑cost defenses—overly aggressive defenses harmmodel per‑
formance, while minimal ones let attacks persist. Attackers facing high costs tend to scale back, favoring low‑cost,
stealthy strategies, whichmakes subtle anomaly detection a promising countermeasure. In contrast, unconstrained
settings encourage stronger attacks and aggressive defenses, but at the expense of degrading CDA.

Among all scenarios, the Balanced configuration emerges as the most practical for deployment. It minimizes
ASRwhile preserving strongmodel performance, without incurring excessive resource costs. By contrast, the costly
defenses scenario highlights how resource limitations impair the defender’s ability to apply robust countermea‑
sures, leaving the model vulnerable to persistent but less aggressive attacks. The costly attacks scenario weakens
the attacker but may slightly degrade CDA, while the high constraints case is the least desirable: severe restrictions
on both players lead toweak attacksmet with equally weak defenses, producing an ineffective equilibrium. Overall,
the Balanced scenario stands out as the most viable for real‑world deployment, achieving an optimal compromise
between security, model accuracy, and computational feasibility.
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6. Conclusions
This paper presented 𝐵𝐺𝐶𝑜𝑠𝑡 , a game‑theoretic framework for modeling the interaction between an attacker

and a defender in deep learning backdoor attacks, explicitly incorporating the limitations imposed by cost con‑
straints. By framing the problem as a two‑player zero‑sum game—where the attacker’s gain directly corresponds
to the defender’s loss—we analyzed how strategic decisions evolve under varying cost scenarios and demonstrated
how both players adapt their behaviors when accounting for resource limitations. The framework defines utility
functions that integrate Clean Data Accuracy (CDA) and Attack Success Rate (ASR), enabling a structured evalu‑
ation of equilibrium strategies. Through numerical simulations, we showed how cost constraints shape optimal
decision‑making, underscoring the pivotal role of resource‑aware trade‑offs in adversarial interactions.

A key insight from our study is that cost constraints fundamentally alter the attack‑defense dynamics. Un‑
constrained settings lead to aggressive strategies from both players, while cost‑balanced scenarios encourage a
more defensive equilibrium. High attack costs discourage attackers from engaging in strong backdoor strategies,
giving defenders an advantage, whereas high defense costs weaken the defender’s ability to neutralize attacks ef‑
fectively. The high constraints scenario resulted in a fragile equilibrium where neither player could act optimally
due to extreme cost restrictions. Across all settings, the balanced scenario emerged as the most practical for real‑
world deployment, offering the best trade‑off between security andmodel performance. These findings underscore
the need for cost‑aware modeling in adversarial machine learning and highlight the importance of flexible defense
strategies that can adapt to maintain security without exceeding computational limits.

It is important to emphasize that 𝐵𝐺𝐶𝑜𝑠𝑡 is not proposed as a new algorithmic defense but rather as a bench‑
marking and analysis framework. Its contribution lies in providing a structured game‑theoretic perspective where
different backdoor attacks and defenses can be embedded as player strategies and systematically analyzed un‑
der cost constraints. In this way, 𝐵𝐺𝐶𝑜𝑠𝑡 complements—rather than replaces—established defenses by offering
a decision‑theoretic lens through which their trade‑offs can be compared.

In deployment scenarios, the cost‑aware perspective reflects realistic trade‑offs across industry applications.
For example, cloud‑basedmedical AI systemsmay toleratemoderate computational overhead to ensure robustness
against backdoor risks, as reliability is critical in healthcare. Conversely, autonomous driving platforms require de‑
fenses thatminimize latency and computational burden, prioritizing real‑time responsivenesswhile still mitigating
adversarial threats. Our results suggest that balanced defenses, instead of extreme strategies, offer the most prac‑
tical compromise between performance, security, and resource consumption, making them especially suitable for
real‑world deployment where both robustness and efficiency are essential.

Future work could expand on this framework in several directions. First, evaluating the model on more com‑
plex datasets such as ImageNet and domain‑specific benchmarkswill help assess its robustness across different ap‑
plications. Second, exploring non‑zero‑sum game formulations could provide deeper insights into scenarios where
both attackers and defenders incur losses, such as in federated learning environments, going beyond the current
strictly zero‑sum assumption. Third, incorporating multiple attackers and/or defenders would introduce richer
dynamics and collective behaviors, potentially requiring more advanced Bayesian or cooperative gamemodels. An‑
other promising avenue is dynamic adaptation, where players adjust their strategies over time based on observed
behaviors, leading tomore realistic sequential or reinforcement learning‑based approaches. Further investigations
into information asymmetry, where one player has more information than the other, could also quantify the impact
of strategic uncertainty, offering insights into how varying levels of awareness influence optimal decision‑making.
Finally, real‑world deployment of cost‑aware defenses should consider adaptive cost mechanisms, where defend‑
ers allocate resources dynamically in response to real‑time attack detection, ensuring an optimal balance between
security and computational efficiency. Together, these directions will advance adversarial learning research and
contribute to more effective, resource‑efficient defenses against backdoor attacks.
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