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Abstract: Understanding public opinion at scale is both a scientific challenge and a practical necessity in the digital
era, as the proliferation of online communication platforms has created unprecedented opportunities to monitor
attitudes in near real time. Early work in subjectivity detection and semantic orientation laid the methodologi‑
cal foundations for automated sentiment extraction, focusing on distinguishing objective from subjective content
and determining polarity. Contemporary applications, however, face far more complex requirements, demand‑
ing systems capable of processing massive, noisy, and dynamic data streams while integrating multimodal signals
from text, images, audio, and video. This paper presents a historical review of sentiment analysis and opinion
monitoring through the lens of artificial intelligence, tracing developments from the early 1990s to the present
and classifying approaches from lexicon‑based heuristics to classical machine learning, deep neural architectures,
transfer learning, and multimodal fusion, with an emphasis on both technical and conceptual advances. Extensive
tables summarize algorithms, datasets, and case studies across various domains, including politics, finance, and
entertainment, highlighting practical lessons and performance trends. The review also addresses pressing ethical
concerns, including bias, fairness, and transparency, and considers the implications of rapidly evolving AI capabili‑
ties. We conclude by outlining future directions that emphasize adaptability, context awareness, and the seamless
integration of emerging technologies into scalable and reliable opinion analysis systems.
Keywords: SentimentAnalysis; PublicOpinionMonitoring; Lexicon‑BasedTechniques; DeepLearning;Multimodal
Sentiment Integration

1. Introduction
Public opinion shapes elections, markets, and policymaking. Traditionally, surveys and focus groups have

served as the primary tools for gauging sentiment; however, limited sample sizes and temporal sparsity have con‑
strained the effectiveness of these methods. The rise of blogs, microblogs, and online reviews in the late 1990s
and early 2000s created an unprecedented reservoir of opinionated data. Researchers quickly recognized the need
for automated techniques to transform raw text into actionable insights. The terms sentiment analysis and opinion
miningwere formalized in seminal papers byNasukawa and Yi [1] andDave et al. [2], though earlierwork on lexical
semantics, subjectivity, and metaphor detection had already laid critical foundations. A 2002 study by Turney ap‑
plied pointwise mutual information (PMI) to classify reviews without labeled data [3], while Pang et al. [4] showed
that support‑vector machines outperform Naive Bayes and maximum‑entropy classifiers for movie reviews. Since
then, the field has exploded, encompassing lexicon construction [5], supervised and semi‑supervised learning [6,7],
pre‑trained neural models [8,9], multimodal fusion [10,11]. Real‑time opinion monitoring systems [12–15]. The
goal of this survey is to synthesize this trajectory and provide researchers and practitioners with a comprehensive
reference.
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The evolution of sentiment analysis has spanned several decades, as illustrated in Figure 1. Early work in
the 1990s focused on subjectivity detection. Hatzivassiloglou and McKeown [16] investigated polarity prediction
based on linguistic constraints. Building on this, Turney [3] and Pang & Lee [4] advanced the field with unsuper‑
vised and supervised sentiment classification techniques. Nasukawa and Yi [1] subsequently formalized the notion
of sentiment analysis. The introduction of neural embeddings like Word2Vec (2013) and GloVe (2014) [17, 18]
revolutionized feature representation, while Vaswani et al.’s Transformer [19] enabled scalable attention mecha‑
nisms that paved the way for BERT (2018) [8], a context‑aware language model. Most recently, ChatGPT (2022)
exemplified the integration of generative AI with sentiment‑aware capabilities, marking a significant shift toward
interactive, contextually aware opinion mining.

1990s
Early Subjectivity Studies: Pioneered the
distinction between obj. and subjective lan‑
guage in text. 1997

Hatzivassiloglou & McKeown: Predicted
adjective polarity based on conjunction pat‑
terns in corpora.2002

Turney, Pang & Lee: Int. unsupervised
PMI‑based and supervised SVM‑based sen‑
timent classifiers. 2003

Nasukawa & Yi: Coined the term “senti‑
ment analysis” as it related to opinion min‑
ing.2013

Word2Vec: Enabled dense, unsupervised
vector representations of words through
neural embeddings. 2014

GloVe: Combined global co‑occurrence
statistics with local context for word em‑
beddings.2017

Transformer: Introduced self‑attention
mechanisms, eliminating recurrence and
improving scalability. 2018

BERT: Pretrained deep bidirectional trans‑
former for context‑aware sentence under‑
standing.2022

ChatGPT: Demonstrated large‑scale gen‑
erative AI integration for interactive and
context‑sensitive sentiment applications.

Figure 1. Timeline of relevant milestones in sentiment analysis.

The rest of this paper is organized as follows. Section 2 outlines the early foundations of sentiment analy‑
sis, focusing on lexicon‑based methods, subjectivity detection, and semantic orientation. Section 3 covers classical
machine learning techniques. Section 4 explores deep learning approaches, including neural networks and trans‑
former architectures. Section 5 examines transfer learning, domain adaptation, and multimodal sentiment anal‑
ysis. Section 6 investigates intelligent public opinion monitoring, detailing system architectures, key application
domains, lessons learned, and illustrative case studies. Section 7 addresses ethical challenges, including bias, pri‑
vacy, and representativeness. Section 8 discusses the limitations of our review. Section 9 concludes with practical
takeaways and outlines future research directions in explainability, cross‑lingualmodeling, multimodal integration,
and ethical AI for opinion mining.
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To compile this review, we conducted a structured search of peer‑reviewed journals, conference proceedings,
and academic repositories spanning the period from 1990 to early 2025. Search terms included “sentiment analy‑
sis”, “opinion mining”, “multimodal sentiment”, “transfer learning”, and “domain adaptation”. We prioritized works
that introduced influential algorithms, benchmarked performance acrossmultiple datasets, or demonstrated novel
applications across domains and languages. While not exhaustive, the selection captures representative methods
and milestones across technologies and applications.

Unlike earlier surveys that examined lexical, machine‑learning, or deep‑learning approaches in isolation, our
review integrates these perspectives, emphasizing the transition toward multimodal sentiment analysis and real‑
time opinionmonitoring. We also discuss ethical considerations and practical lessons to provide a holistic perspec‑
tive for researchers and practitioners.

To complement the timeline in Figure 1, Table 1 summarizes representative NLP models and their core in‑
novations, highlighting how advances in representation learning and architectures underpin modern sentiment
analysis.

Table 1. Representative NLP models and their core innovations.

Model Year Core Innovation

Word2Vec 2013 Neural embeddings capturing distributional semantics via continuous bag‑of‑words
and skip‑gram architectures.

GloVe 2014 Global word co‑occurrence statistics integrated with local context to produce robust
embeddings.

Transformer 2017 Self‑attention architecture enable parallel processing and long‑range dependencies
without recurrence.

BERT 2018 Deep bidirectional transformer pre‑trained via masked language modeling and
next‑sentence prediction.

GPT (2–4) 2018–2023 Autoregressive transformer decoders trained with generative objectives, enabling
zero‑shot and few‑shot tasks.

ChatGPT 2022 Large‑scale generative AI fine‑tuned with reinforcement learning from human
feedback for interactive dialogue and sentiment‑aware responses.

2. Early Foundations
Before delving into the specific techniques that shaped the nascent field of sentiment analysis, it is instructive

to set the stage. The early foundations of the area were rooted in linguistics and semantic orientation, where re‑
searchers sought to understand how words and phrases convey subjectivity and polarity. This section surveys the
seminal contributions that laid the groundwork for the transition from handcrafted lexica and linguistic heuristics
toward more sophisticated computational models.

2.1. Lexicon and Linguistic Approaches
The earliest sentiment analysis research drew inspiration from linguistics and semantics. Wiebe et al. [20]

annotated subjectivity in corpora, distinguishing subjective expressions from objective facts. Hatzivassiloglou and
McKeown [16] demonstrated that the conjunctions linking adjectives (e.g., “good and bad” versus “good but bad”)
can reveal their polarity, leading to algorithms that predict the semantic orientation of adjectives. Turney [3] ex‑
tended this idea tomulti‑word phrases by applying PMI. Early lexicon‑basedmethods compiled lists of positive and
negative words, often manually or through bootstrapping from seed sets [21,22]. Building on these resources, Bac‑
cianella et al. [5] released SentiWordNet, a widely used lexicon that assigns sentiment scores to WordNet synsets.
Cambria et al. [23] later introduced SenticNet, which leverages commonsense knowledge for concept‑level senti‑
ment analysis.

Lexicon approaches compute sentiment scores by summing or averaging the polarities of words. Given a docu‑
ment containingwords𝑤1, … , 𝑤𝑛 with base polarity 𝑠𝑖 and context‑dependentweight 𝛼𝑖 (to account for intensifiers
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and negation), a simple scoring function is

Score =
𝑛

෍
𝑖=1

𝛼𝑖𝑠𝑖 (1)

and words like “very” and “extremely” act as intensifiers (𝛼𝑖 > 1), while negation flips the sign of subsequent sen‑
timent words. Although transparent and interpretable, lexicon methods struggle with domain‑specific vocabulary,
sarcasm, and context dependency.

2.2. Subjectivity and Semantic Orientation
Identifying whether a sentence expresses an opinion or a fact—known as subjectivity classification—is a cru‑

cial task in sentiment analysis. Wiebe et al. [20] developed one of the first gold‑standard corpora for subjectivity.
Riloff and Wiebe [24] used bootstrapping to learn subjective words and patterns from unannotated data. Wilson
et al. [7] introduced the notion of contextual polarity, noting that the sentiment of a word can shift depending on
context (e.g., “not bad”).

Turney’s unsupervised PMI algorithm remains influential. It computes the semantic orientation of a phrase 𝑝
relative to seed words 𝑝+ (e.g., “excellent”) and 𝑝− (e.g., “poor”):

SO(𝑝) = PMI(𝑝, 𝑝+) − PMI(𝑝, 𝑝−) (2)

where PMI(𝑥, 𝑦) = log 𝑝(𝑥,𝑦)
𝑝(𝑥)𝑝(𝑦) . A document is labeled positive if the average semantic orientation of its phrases

exceeds zero [3]. This method requires only unannotated corpora and a set of seeded words.

3. Classical Machine Learning Techniques
The rise of supervised learning marked a turning point from handcrafted heuristics to data‑driven sentiment

models. Classical machine learning methods rely on transforming text into numerical feature vectors and using
statistical algorithms to infer polarity from labeled examples [25]. This section reviews traditional approaches
to sentiment classification, including supervised and semi‑supervised learning, ensembles, and lexicon expansion
strategies, highlighting their strengths and limitations.

3.1. Feature Engineering and Supervised Learning
With the availability of labeled datasets, researchers increasingly employed machine learning algorithms for

sentiment classification. Pang et al. [4] compared Naive Bayes, maximum‑entropy, and SVMs, demonstrating that
SVMs outperformed the alternatives on movie review classification. They represented documents using a bag‑of‑
words approach and bigrams, combined with term frequency–inverse document frequency (TF–IDF) weighting.
Pang and Lee [6] later formulated star rating prediction as an ordinal regression problem.

Given a document vector x extracted from text features (e.g., n‑grams, part‑of‑speech tags, syntactic patterns),
classifiers estimate the probability of a document being assigned a positive label using logistic regression:

𝑃(𝑦 = 1 ∣ x) = 𝜎(w⊤x+ 𝑏) = 1
1 + 𝑒−(w⊤x+𝑏) (3)

Herew and 𝑏 are parameters learned from training data. SVMs similarly learn a decision boundary that maximizes
themargin betweenpositive andnegative classes. Traditionalmodels rely heavily on feature engineering: unigrams,
bigrams, part‑of‑speech tags [7], dependency relations, and syntactic patterns [24]. Feature selection andweighting
(e.g., mutual information or chi‑square) have been extensively studied.

3.2. Ensemble Methods and Semi‑Supervised Learning
To enhance robustness, researchers have combinedmultiple classifiers. For instance, Boiy andMoens [26] inte‑

grated a polarity lexicon with an ensemble of SVMs, which improved classification performance. Semi‑supervised
approaches exploit unlabeled data; both the expectation‑maximization algorithm and self‑training have been ap‑
plied to expand training sets. Furthermore, domain adaptation techniques aim to align distributions between la‑
beled source domains (e.g., movie reviews) and unlabeled target domains (e.g., tweets) by identifying pivot features
shared across domains [27].
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3.3. Sentiment Lexicon Expansion
Extensive lexicons provide valuable resources for traditional classifiers. Mohammad and Turney [28] devel‑

oped the NRC Emotion Lexicon through crowdsourcing, which associates words with eight basic emotions. Bac‑
cianella et al. [5] constructed SentiWordNet, assigning sentiment scores to all WordNet synsets. Other notable re‑
sources include SentiCircle [29], SenticNet [23], and VADER (Valence Aware Dictionary and sEntiment Reasoner),
which integrate lexical knowledge with heuristic rules for punctuation and emoji, making them particularly effec‑
tive for analyzing informal and social media text.

4. Deep Learning Approaches
Recent advances in neural computation have revolutionized sentiment analysis. Deep learning models auto‑

matically learn hierarchical and distributed representations of language from large corpora, capturing subtle se‑
mantic and syntactic patterns that eludemanual feature engineering [30]. We begin by reviewing the development
of word embeddings and early neural architectures, then discuss the advent of attention and transformer models,
and conclude with aspect‑level and targeted sentiment analysis, which offers fine‑grained insights [31].

4.1. Word Embeddings and Neural Networks
The adoption of distributed representations has fundamentally changed sentiment analysis. Mikolov et al. [17]

introduced Word2Vec, which learns dense vector embeddings that capture semantic relationships. Pennington et
al. [18] proposed GloVe, which combines global co‑occurrence statistics with local contextual information. These
embeddings serve as effective inputs for neural classifiers. Socher et al. [32] developed recursive neural networks
(RNNs) over parse trees to model compositionality, while Kim [33] applied convolutional neural networks (CNNs)
to sentence classification, achieving competitive performance with minimal parameter tuning. Recurrent neural
networks (RNNs) and long short‑term memory (LSTM) units further address sequential dependencies, enabling
the modeling of variable‑length inputs.

4.2. Attention and Transformer Models
Attentionmechanisms allowmodels to concentrate on themost informative parts of the input. Bahdanau et al.

[34] introduced the attention mechanism for machine translation, which was subsequently adopted in sentiment
analysis to emphasize sentiment‑bearing phrases. The transformer architecture, proposed by Vaswani et al. [19],
relies on multi‑head self‑attention and positional encoding, giving rise to large pre‑trained models such as BERT
[8], RoBERTa, and XLNet. These models are trained onmassive corpora using masked language modeling and next‑
sentence prediction objectives, and are later fine‑tuned for sentiment analysis tasks. Radford et al. [9] further
advanced this paradigm through generative pre‑training with GPT‑2, which demonstrated strong transferability to
classification problems. Comprehensive surveys by Young et al. [35] and Qiu et al. [36] summarize these develop‑
ments. Although deep learning models frequently achieve state‑of‑the‑art performance, they require substantial
computational resources and are prone to overfitting when applied to small datasets.

4.3. Aspect and Targeted Sentiment Analysis
Beyond overall polarity detection, fine‑grained sentiment analysis identifies opinions directed toward specific

aspects (e.g., battery life or service quality) or targets (entities). Early aspect extraction methods subsequently in‑
troduced attention mechanisms to capture target‑specific information better; for example, Tang et al. [37] applied
neural attention for aspect‑based sentiment classification. More recently, BERT‑based models have been adapted
to jointly extract aspects and predict their corresponding sentiment, providing amore integrated and accurate anal‑
ysis.

5. Transfer Learning, Domain Adaptation, and Multimodal Sentiment Analysis
Models trained on a particular dataset or modality often fail to generalize to new domains, languages, or com‑

munication channels because the underlying feature distributions differ. Transfer learning and domain adaptation
techniques reuse knowledge learned from source data to improve performance on related tasks or domains [38]. In
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parallel, multimodal sentiment analysis integrates heterogeneous signals—text, audio, and visuals—to capture sen‑
timent beyond written language. Combining these fields highlights a common challenge: handling distributional
shifts across domains and modalities while leveraging shared structures.

5.1. Transfer Learning and Domain Adaptation
Sentiment classifiers often experience performance degradation when applied to new domains or languages

due to distribution shifts. Domain adaptation techniques address this issue by mapping feature spaces across do‑
mains.

Blitzer et al. [27] proposed the Structural Correspondence Learning (SCL) framework using pivot features,
while Daumé III [39] suggested feature augmentation for more straightforward adaptation.

For cross‑lingual sentiment analysis, researchers have employed strategies such as translating training corpora
or mapping embeddings across languages using bilingual dictionaries [40]. Chen et al. [41] developedmultilingual
variants of SentiWordNet.

Unsupervised domain adaptation with adversarial training introduces a domain classifier to encourage do‑
main‑invariant features [42]. In this minimax setup, the sentiment classifier learns to predict labels, while the
domain discriminator attempts to distinguish between source and target domains. Joint training encourages the
shared representation to preserve sentiment information while remaining invariant to domain differences.

5.2. Multimodal Sentiment Analysis
Human communication extends beyond text; prosody in speech and facial expressions also conveys sentiment.
Early studies in emotion recognition combined speech and facial cues [43]. Poria et al. [10] developed a multi‑

modal CNN to fuse visual, auditory, and textual features for emotion recognition in video. Tian et al. [11] proposed
reinforcement learning to weight modalities adaptively, while Felbo et al. [44] trained deep models on billions of
emoji occurrences to learn universal representations.

Multimodal sentiment analysis remains challenging due to the heterogeneous nature of data sources and the
need for effective synchronization and fusion. Datasets such as CMU‑MOSI and CMU‑MOSEI have played a central
role in advancing this field.

6. Smart Public Opinion Monitoring
Modern sentiment analysis does not occur in isolation; it is a core component of end‑to‑end systems that gather,

analyze, andpresent public opinion innear real time. These “smart”monitoringplatforms ingestmassive streamsof
socialmedia posts, news articles, and other user‑generated content, process themwith sentiment and topicmodels,
and aggregate the results into actionable insights. In this section, we outline typical system architectures, review
the wide range of application domains, distill lessons learned from practice, and conclude with a set of illustrative
case studies [45].

6.1. System Architecture
An innovative opinion‑monitoring system typically consists of (i) data acquisition throughAPIs or scraping, (ii)

preprocessing to filter noise, remove spam, detect language, and normalize text, (iii) sentiment and topic analysis
via classifiers described in previous sections, (iv) aggregation to produce time series or geographic distributions,
and (v) visualization and decision support. Modern systems processmillions of posts per day andmust handle con‑
cept drift and adversarial content. Temporal smoothing (e.g., moving averages or Kalman filters) reduces volatility,
as demonstrated by O’Connor et al. [14]. Topic modeling (e.g., Latent Dirichlet Allocation) helps identify salient
issues and subpopulations within a dataset. Many systems also integrate opinion scores with external indicators
(such as poll results or sales numbers), thereby enabling predictive analytics.

6.2. Applications and Domains
Opinionmonitoring has influenced politics, finance,marketing, public health, and disaster response. Tumasjan

et al. [15] found that the volume of tweets mentioning political parties during the German federal election aligned
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closelywith election outcomes. Asur andHuberman [12] showed that tweet rate and sentiment predictedbox‑office
revenue. Bollen et al. [13] correlated public mood with stock market indices. Ceron et al. [46] applied sentiment
analysis to Italian political tweets to track approval of government decisions. Pak and Paroubek [47] built a Twitter
sentiment corpus using emoticons as distant supervision. Kouloumpis et al. [48] investigated the role of features
such as hashtags and emoticons. Go et al. [49] used distant supervision to train sentiment classifiers on tweets.
Chen et al. [50] used sentiment to forecast stock prices. These diverse applications illustrate both the promise and
the challenges of interpreting noisy, user‑generated text.

6.3. Lessons Learned
Lessons from practice include: (i) Volume matters—tweet count often correlates with outcomes as much as

sentiment does [15]; (ii) Preprocessing and smoothing reduce noise and improve correlations [14]; (iii) Domain
adaptation is essential—models trained on one domain rarely generalize well to another; (iv) Combining senti‑
ment with other features (such as user influence, temporal patterns, and network structure) often yields better
predictions; (v) Ethical and privacy considerations are indispensable.

6.4. Case Studies
Table 2 summarizes representative sentiment analysis techniques, highlighting their characteristics, advan‑

tages, and limitations. Table 3 presents a broad sample of case studies spanning different domains. To provide a
broad sense of progress over time, Table 4 reports indicative accuracy ranges for different model families across
common benchmarks. These indicative ranges demonstrate a clear trend: as approaches evolve from lexicon‑based
heuristics to classicalmachine learning, deep neural networks, andmultimodal fusion, accuracy tends to increase—
albeit at the cost of larger datasets, more complex models, and higher computational overhead.

Table 2. Comparison of sentiment analysis techniques. Typical characteristics are listed alongside advantages and
limitations.

Category Example
References Typical Characteristics Advantages Limitations

Lexicon based [5,21,23]

Lists of positive/negative
words and rules for
intensifiers and negation;
scores computed by
aggregating word polarities

Transparent and
interpretable; requires no
labeled data; simple to
implement

Domain‑dependent;
struggles with context,
sarcasm, and irony; lexicon
maintenance overhead

Classical ML [4,7,26]

Hand‑crafted features
(n‑grams, part‑of‑speech
tags, syntactic patterns);
supervised algorithms such
as SVMs and Naive Bayes

Works with small datasets;
flexible feature engineering;
efficient training

Requires labeled data;
feature selection and tuning
are labor‑intensive; limited
semantic understanding

Deep learning
(CNN/RNN/LSTM) [32,33]

Pre‑trained embeddings (e.g.,
Word2Vec, GloVe) fed into
neural architectures such as
CNNs, RNNs, or LSTMs

Learns representations
automatically; captures local
and long‑range
dependencies; delivers
strong accuracy

Data‑hungry; less
interpretable;
computationally expensive;
prone to overfitting on small
domains

Transformer models [8,9,35]

Multi‑head self‑attention and
positional encoding; large
pre‑trained models (e.g.,
BERT, GPT) fine‑tuned for
downstream tasks

Excellent transfer learning;
captures long‑range
interactions; often state of
the art

Requires massive
computational resources;
potential for encoded biases;
limited interpretability;
fine‑tuning can be costly [51]

Multimodal fusion [10,11,44]

Joint modeling of text with
audio, visual, or
physiological signals via
multimodal encoders or
fusion networks

Exploits non‑textual cues
(prosody, facial expressions);
improves robustness on
video/audio data

Necessitates synchronized
multimodal datasets;
architectures are complex;
scarcity of large multimodal
corpora
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Table 3. Illustrative case studies of sentiment analysis for public opinion monitoring. For each study, we outline
the domain, describe the data and methodology, report key outcomes, and give the principal reference.

Study Domain Data and Methodology Outcome Key Reference

O’Connor et al. (2010) Politics
Data: 1M tweets/day; Method:
sentiment scoring plus Kalman
smoothing

Sentiment time series correlated up
to 80%with consumer confidence
and presidential approval

[14]

Tumasjan et al.
(2010) Elections

Data: 100 k German election
tweets; Method: LIWC lexicon and
mention counts

Tweet volume predicted vote share;
sentiment reflected political
orientation

[15]

Asur & Huberman
(2010) Entertainment

Data: pre‑ and post‑release tweets;
Method: tweet rates and sentiment
via regression

Pre‑release tweet volume predicted
opening‑weekend revenue;
sentiment improved predictions

[12]

Bollen et al. (2011) Finance
Data: millions of tweets; Method:
mood scores derived with
OpinionFinder and GPOMS

Including mood dimensions
improved Dow Jones forecasting
accuracy to 87.6%

[13]

Ceron et al. (2014) Politics Data: Italian political tweets;
Method: supervised classifiers

Sentiment trends matched public
approval of government policies [46]

Pak & Paroubek
(2010) Social media

Data: 1.6M tweets labeled via
emoticons; Method: Naive Bayes
classifier

Created publicly available Twitter
corpus; baseline accuracy of 62% [47]

Kouloumpis et al.
(2011) Social media

Data: tweets with hashtags,
emoticons, punctuation, and POS
tags; Method: feature combination

Emoticons and hashtags were
strong indicators; lexical features
alone performed poorly

[48]

Go et al. (2009) Social media
Data: tweets labeled by emoticons;
Method: linear classifiers with
distant supervision

Achieved 80% accuracy using
simple features; established distant
supervision paradigm

[49]

Baccianella et al.
(2010)

Lexicon
evaluation

Data: cross‑language benchmark;
Method: evaluate SentiWordNet
lexicon

Demonstrated lexicon usefulness
across domains; highlighted
limitations in neutrality detection

[5]

Chen et al. (2014) Finance
Data: news and social media
sentiment; Method: regression
models with macroeconomic
variables

Combining sentiment with
macroeconomic variables improved
stock index forecasting

[50]

Poria et al. (2015) Multimodal
Data: YouTube reviews with text,
audio, and video; Method: deep
CNN with multimodal fusion

Achieved significant gains over
unimodal baselines; introduced
concept‑level fusion

[10]

Table 4. Indicative accuracy ranges for common sentiment analysis model families. The ranges are approximate
and vary across datasets and domains.

Model Family Typical Accuracy Range Notes

Lexicon‑based 50–65% Effective for coarse polarity but limited by domain vocabulary and sarcasm.
Classical ML (e.g., SVM,
Naive Bayes) 60–80% Dependent on feature engineering; robust on specific domains with

curated features.

CNN/RNN/LSTM 70–85% Benefit from distributed embeddings; capture local and sequential
dependencies.

Transformer‑based (e.g.,
BERT, GPT) 80–90% Pre‑trained language models fine‑tuned for sentiment; strong

generalisation but computationally intensive.

Multimodal fusion 70–95% Combines text, audio, and vision; performance depends on modality
alignment and data quality.

7. Ethical Considerations and Challenges
As sentiment analysis systems increasingly inform high‑impact decisions—spanning elections, financial fore‑

casting, andpublic health responses—ethical considerations havemoved to the forefront. Models trainedonhuman
language corpora can reflect and amplify social biases, infringe on individual privacy, andmisrepresent public opin‑
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ion due to sampling noise. The following subsections discuss the key ethical and practical challenges that must be
addressed to ensure fair, responsible, and trustworthy sentiment analysis [52].

7.1. Bias and Fairness
Sentiment classifiers trained on existing corpora may encode societal biases. Such models can inadvertently

perpetuate stereotypes (e.g., associating specific namesor dialectswithnegative sentiment). Efforts tomitigate bias
include curating balanced training data, employing debiasing techniques, and applying fairness metrics to ensure
equitable outcomes. Algorithmic transparency is also crucialwhen sentiment analysis is used to informhigh‑impact
decisions.

7.2. Privacy and Consent
Opinionmonitoring often relies on publicly available socialmedia posts, but usersmay not anticipate that their

expressions will be analyzed at scale. Aggregation and anonymization reduce privacy risks, yet questions remain
regarding informed consent. Regulations such as the GDPR impose strict requirements for data processing and
storage. Researchers must also consider ethical guidelines and institutional review procedures when collecting
and analyzing user‑generated [53].

7.3. Representativeness and Noise
Social media users do not accurately represent the general population, as their demographics tend to skew to‑

ward younger andmore technologically engaged individuals. Bots and spammers further distort sentiment signals.
Filtering, bot detection, anddemographicweighting canmitigate these issues, but they arenot foolproof. Triangulat‑
ing social media sentiment with traditional surveys and other data sources can providemore reliable and balanced
insights.

8. Limitations of the Review
While this survey strives to provide a comprehensive overview, several limitations warrant acknowledgment.

First, our literature search cannot cover all papers published in the rapidly expanding field of sentiment analysis. We
selected representative works based on citation impact and methodological diversity, meaning that some relevant
studiesmay not be included. Second, performance figures reported here summarize typical ranges across datasets;
individual results vary depending on preprocessing, model tuning, and domain. Third, our survey focuses primarily
on English‑language sources and high‑resource languages; sentiment analysis in low‑resource languages and cross‑
cultural contexts remains underexplored. Finally, we donot provide exhaustive coverage of all emerging techniques,
such as large‑scale generative models and few‑shot prompting strategies, which continue to evolve rapidly.

9. Conclusions
Sentiment analysis has matured dramatically over the past three decades. What began as handcrafted lexicon

lookups and simple statistical heuristics has evolved into a rich ecosystem of algorithms spanning classical and
deep learning, domain adaptation, andmultimodal fusion. In this paper, we have traced this evolution, linking early
linguistic insights to the data‑driven paradigms that now power commercial opinion monitoring systems. Along
the way, we reviewed representative techniques, summarized their strengths and weaknesses in modern tables,
and examined case studies that demonstrate both the promise and pitfalls of deploying sentiment models in real‑
world applications. Our review also highlighted the ethical considerations of public opinion mining, including bias,
fairness, privacy, and representativeness. Taken together, these threads paint a holistic picture of a field that bridges
linguistics, machine learning, human–computer interaction, and social science. Continued progress will hinge not
only on technical breakthroughs but also on responsible deployment that respects individual rights and societal
norms.

The following practical takeaways distill these insights for researchers and practitioners:
• Align method with domain and data: Lexicon‑based and traditional machine‑learning approaches are suffi‑

cient for coarse sentiment analysis in well‑defined domains. In contrast, deep learning and transformer‑based
models excel when large, labeled datasets and computational resources are available.

21



Journal of Intelligent Communication | Volume 04 | Issue 02

• Mitigate domain shift: Employ transfer learning and domain adaptation techniques—including adversarial
training and cross‑lingual embedding alignment—when applying models across domains or languages.

• Leverage multimodality: Where possible, combine textual signals with audio, visual, or physiological cues to
capture richer sentiment expressions and improve robustness.

• Prioritize fairness and privacy: Use balanced datasets, debiasing strategies, and anonymization to mitigate
bias and protect user privacy in opinion monitoring applications.

Future Directions
Future research should address several open challenges: Explainability: developing interpretable models that

revealwhyapredictionwasmadewill increase trust and facilitatedebugging. Low‑resource languages: cross‑lingual
transfer and multilingual pre‑training can democratize sentiment analysis beyond English [40]. Multimodal un‑
derstanding: integrating text with images, audio, and physiological signals will enable richer sentiment detection.
Real‑time adaptation: models must adapt to concept drift and emerging slang without extensive retraining. Causal
inference: distinguishing correlation from causation in opinion dynamics could transform how sentiment informs
policy and marketing. Ultimately, ethical frameworks for data use and algorithmic fairness must evolve in tandem
with technical advancements.
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