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Abstract: Understanding how large‑scale climate circulation influences hydroclimatic factors in both tropical and
extratropical regions is crucial. This study employed empirical methods to identify areas with consistent hydrocli‑
matic signals associatedwith the El Niño/Southern Oscillation (ENSO).We examined the climatic linkages between
thewarm and cold phases of ENSO and precipitation patterns across South Carolina. Spatial coherence values were
calculated using monthly precipitation composites over a 2‑year ENSO cycle, and candidate regions were identi‑
fied using the first harmonic fit. Temporal consistency rates were determined through aggregate composites and
index time series (ITS) to pinpoint core regions. This study identified three core regions: the Upstate Region (USR),
the Pee‑Dee Region (PDR), and the Lowcountry Region (LCR), with the LCR showing the most significant response
to both warm and cold ENSO forcings. During ENSO warm (cold) years, precipitation composites showed above
(below) normal levels in these regions from winter to spring. Spatial coherence rates for El Niño (La Niña) in USR,
PDR, and LCRwere between 0.96 and 0.98 (0.95 and 0.97), and temporal consistency rates ranged from0.72 to 0.83
(0.73 to 0.77). Composite‑harmonic analysis revealed that precipitation anomalies tend to reverse signs between
opposite ENSO phases, with positive anomalies in warm years showing more coherence and stronger responses
compared to negative anomalies in cold years. The findings indicate that South Carolina’s precipitation patterns
are significantly influenced by ENSO, highlighting a climatic teleconnection between large‑scale climate circulation
and middle latitude precipitation.
Keywords: Precipitation; Teleconnection; Climatic Impact; Hydroclimatology

1. Introduction
ElNiño, whichmeans “Little Boy” in Spanish, occurs due toweakened tradewinds leading to thewarmingof sea

surface temperatures in the Equatorial Pacific, including central and eastern tropical regions. This warming causes
warm water to reach the western coast of the Americas, shifting the Pacific jet stream southward and resulting
in increased flooding and rainfall in the Southeast United States, along with drier conditions in the northern U.S.
Conversely, La Niña, meaning “Little Girl” in Spanish, involves the cooling of sea surface temperatures in the central
and eastern tropical Pacific as strong trade winds push warm water westward toward Asia. This cooling often
leads to upwelling along the western coast of the Americas, causing floods and droughts worldwide. The Southern
Oscillation (SO) is a bimodal variation in sea level barometric pressure between two observation stations, which
measures the atmospheric pressuredifferencebetweenDarwin, Australia, andTahiti, FrenchPolynesia. It is derived
from the monthly average pressure anomalies at these two sites. In addition, the El Niño/Southern Oscillation
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(ENSO) is linked to sea surface temperature differences in the Equatorial Pacific, affecting the eastern‑central Pacific
Ocean as a recurring climate pattern. The ENSO cycle, lasting from 1 to 7 years, involves temperature variations of
1 to 3 degrees, with El Niño and La Niña representing its extreme phases [1].

Numerous studies have examined these phenomena on global and regional scales, exploring naturally occur‑
ring events. Consequently, these investigations have amassed extensive information on the effects of ENSO, includ‑
ing major hydrological extremes like floods and droughts worldwide. This data has facilitated the development of
various scientific methods to predict and prepare for hazardous events such as droughts, floods, and rainstorms.
The Southern Oscillation's impact on Indian rainfall was first studied byWalker et al. [2,3]. Since then, many global
studies have explored ENSO's extreme phases, identifying significant links between these phases and global pre‑
cipitation patterns. Berlage [4] found a strong correlation between ENSO extreme events and global precipitation
anomalies, whileRasmusson andCarpenter [5] linked SouthernOscillationphases to precipitation and temperature
patterns. Ropelewski et al. [6,7] examined spatiotemporal ranges, finding consistent global precipitation responses
to both ENSO extreme phases. Kiladis and Diaz [8] confirmed these strong correlations between ENSO phases and
precipitation anomalies. Additionally, to investigate the temporal patterns of maximum daily precipitation, Westra
et al. [9] employed a generalized extreme value analysis (GEV) and found a significant linkage to average global
surface air temperature patterns.

Numerous regional studies have demonstrated the impact of ENSO on low‑ and middle‑latitude climatic vari‑
abilities, including those by Douglas et al. [10], Rasmusson et al. [11], Ropelewski et al. [12], Redmond et al. [13],
and Kahya et al. [14]. Several studies have shown a correlation between ENSO phases and precipitation on amidlat‑
itude regional scale. In the United States, Douglas et al. [10] found that extreme ENSO forces increase Southeastern
precipitation inwinter. Ropelewski et al. [12] explored the climatic linkages betweenNorth American precipitation
patterns and the extreme Southern Oscillation, revealing ENSO‑related patterns, a finding supported by Kiladis et
al. [8]. Regional monthly precipitation anomalies over southern Brazil were examined in association with extreme
phases of the Southern Oscillation (SO) by Grimm et al. [15]. Karabörk et al. [16] identified areas in Turkey where
precipitation anomalies statistically correlated with both ENSO phases. Jin et al. [17] analyzed the effects of ENSO
on precipitation patterns in Korea and Japan, using categorized Southern Oscillation Indexes (SOI) and lead‑lag
correlation analysis. Chandimala and Zubair [18] studied the Kelani River basin in Sri Lanka, focusing on the cli‑
matic linkages among precipitation probability, ENSO episodes, and sea‑surface‑temperature (SST) using principal
component analysis. Power et al. [19] used a coupled general circulation model to investigate the impact of ENSO
on Australian precipitation patterns. Cai et al. [20] studied the effects of ENSO forcing on Australian precipitation,
documenting the variability of tropical/extratropical precipitation associated with variations in tropical Pacific sea
surface temperatures. Lee et al. [21] examined ENSO‑related hydroclimatic signals using monthly midlatitude pre‑
cipitation anomalies, while Wang et al. [22] studied ENSO's effect on the relationship between tropical cyclones
and precipitation patterns in China.

As demonstrated, numerous studies have investigated ENSO on global and regional scales. Despite extensive
research into ENSO‑related climate teleconnections, there is limited knowledge about ENSO events on localized
precipitation variation. Recently, precipitation has become more intense and localized, leading to devastating ef‑
fects, including hydrologic extremes that impact both the natural environment and human life and property. An‑
alyzing how extreme phases of climatic variation influence local precipitation patterns is essential for predicting
and preparing for hydroclimatic extremes. Accordingly, it is essential to systematically investigate how the extreme
phases of ENSO events—El Niño and La Niña—influence local precipitation variability in South Carolina. This study
seeks to provide updated hydroclimatic insights regarding the spatial and temporal extent and intensity of ENSO‑
induced precipitation signals across different regions of the state. The central objective is to analyze precipitation
variability in relation to ENSO extremes using both composite and harmonic analysis techniques. This research
assesses the strength, timing, and geographic scope of the ENSO‑precipitation relationship by exploring seasonal
cycles and spatial distribution patterns. Furthermore, the study offers a comparative assessment of teleconnections
associated with the warm and cold phases of ENSO, emphasizing themagnitude and seasonal timing of climatic sig‑
nals through cross‑correlation and annual cycle analyses.
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2. Methodological Approaches
2.1. Data and Analysis

This study analyzes monthly precipitation records from 46 climate divisions across South Carolina, obtained
from the National Centers for Environmental Information (NCEI), a branch of NOAA responsible for climate data
management in the U.S. (Figure 1).

Figure 1. Climate divisions for precipitation indices.

The dataset spans from 1895 to 2020 and encompasses 29 El Niño and 22 La Niña episodes, reflecting the
extreme phases of historical ENSO activity. To evaluate the consistency of ENSO‑related precipitation anomalies
across the state, two distinct sets of ENSO events—El Niño and La Niña—were selected based on classification
criteria established by Ropelewski et al. [6, 7], Rasmusson et al. [5], and Kiladis et al. [8], as outlined in Table
1(A). The Southern Oscillation Index (SOI), sourced from NOAA’s Climate Prediction Center, is used to represent
large‑scale climatic fluctuations in the central and eastern Pacific Ocean. The SOI is calculated from standardized
sea level pressure differences between Darwin and Tahiti, serving as a key indicator of ENSO phases.
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Table 1. Overall results of harmonic analysis, hypergeometric analysis, and cross‑correlation analysis.

Classification El Niño Events La Niña Events

A. ENSO Event Years

1905, 1911, 1914, 1918, 1923, 1925,
1930, 1932, 1939, 1941, 1951, 1953,
1957, 1963, 1965, 1969, 1972, 1976,
1982, 1986, 1991, 1994, 1997, 2002,
2004, 2006, 2009, 2015, 2018

1910, 1915, 1917, 1924, 1928, 1938, 1950,
1955, 1964, 1971, 1973, 1975, 1985, 1988,
1995, 1998, 2000, 2005, 2007, 2010, 2011,
2017

Total: 29 Total: 22
B. Harmonic Analysis

Core Regions USR PDR LCR USR PDR LCR
Signal Season Sep(0)–

Jan(+)
Oct(0)–
Feb(+)

Nov(0)–
Mar(+)

Oct(0)–
Apr(+)

Nov(0)–
Apr(+)

Nov(0)–
May(+)

Coherence Rates 0.98 0.96 0.97 0.96 0.97 0.95
Total Episodes 29 29 29 22 22 22
Occurrence Episode 23 21 24 17 16 17
Consistency Rates 0.79 0.72 0.83 0.77 0.73 0.77
Extreme Events 11 11 12 7 8 7

C. Hypergeometric Analysis

Case I N 125 125 125 125 125 125
k 66 62 59 65 60 59
n 29 29 29 22 22 22
m 23 21 24 17 16 17
Prob. 0.001 0.003 0.000 0.006 0.010 0.002

Case II N 125 125 125 125 125 125
k 25 25 25 25 25 25
n 25 25 25 22 22 22
m 11 11 12 7 8 7
Prob. 0.002 0.002 0.001 0.031 0.039 0.031

D. Cross‑Correlation Analysis

StrongWarm Phase lag‑0 −0.01 0.27 0.19 −0.02 0.27 0.14
(𝜶 = 0.05) lag‑1 0.30 0.01 −0.18 0.37 −0.03 −0.11

lag‑2 −0.69 −0.55 −0.57 −0.69 −0.53 −0.61
lag‑3 −0.84 −0.75 −0.83 −0.83 −0.79 −0.83
lag‑4 0.43 0.16 0.16 0.41 0.10 0.26

Normal Condition lag‑0 0.03 −0.01 0.02 0.04 −0.01 0.03
(𝜶 = 0.05) lag‑1 0.08 0.04 0.07 0.08 0.05 0.07

lag‑2 −0.02 −0.06 −0.06 −0.02 −0.06 −0.05
lag‑3 0.03 0.03 0.02 0.04 0.02 0.02
lag‑4 0.02 0.04 0.04 0.02 0.05 0.03

Strong Cold Phase lag‑0 0.57 0.47 0.52 0.52 0.46 0.56
(𝜶 = 0.05) lag‑1 −0.52 −0.14 −0.02 −0.49 −0.08 −0.14

lag‑2 0.56 0.66 0.71 0.59 0.66 0.68
lag‑3 −0.07 −0.28 0.16 −0.14 −0.19 0.17
lag‑4 0.47 0.55 0.50 0.45 0.53 0.50

To explore how extreme ENSO forcing influences precipitation patterns across the proposed area, this study
applies empirical methods employed by Ropelewski and Halpert [12], including cross‑correlation analysis and an‑
nual cycle analysis, with modifications and enhancements. Correlation coefficients between the categorized SOI
and percentile‑ranked precipitation time series are calculated using Spearman’s cross‑correlation analysis with a
statistical significance level of 0.05. Figure 2 outlines the analysis process in three stages: initial data processing
to convert raw data into appropriate formats like ranked percentiles, modular coefficients, and categorized SOIs;
followed by the identification of core regions through composite and harmonic analyses, and concludes with a com‑
parative assessment of ENSO‑related precipitation signals using annual cycle and lead‑lag correlation analyses. For
the annual cycle analysis, monthly precipitation values are converted into modular coefficients, a transformation
that removes variance and mean effects to standardize the data. These coefficients represent precipitation as a
percentage of the annual mean, ensuring uniform cyclic patterns across all climate divisions. Seasonal lead‑lag
correlation coefficients are then calculated between precipitation percentiles and categorized SOI values. Four
seasonal groupings are defined—December–February, March–May, June–August, and September–November—by
averaging monthly data within each period. The SOI values are classified into five categories according to their
intensity: strong La Niña (cold), weak La Niña, neutral, weak El Niño (warm), and strong El Niño. Seasonal precipi‑
tation time series are subsequently converted into percentile‑ranked probability values using the Weibull plotting
position method. This approach eliminates periodic trends and corrects for variability across climate divisions.
Monthly precipitation values are sorted in ascending order and normalized by dividing each rank by (n + 1), where
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(n) represents the total number of observations in the dataset.

Figure 2. Flowchart of the methodology.

2.2. Composite and Harmonic Analysis
For each climate zone, monthly precipitation percentile composites are computed over 2 years, beginning in

July of the year preceding the ENSO event and extending through June of the following year. The starting month is
denoted as Jul (–), and the endingmonth as Jun (+), corresponding to the ENSO high or low phase. The composite is
calculated for each SO event, fitting themwith the first harmonic of a theoretical 24‑month SO period (either warm
or cold phases). This approach follows the assumption that a cycle of precipitation anomaly has a high/low point
for an extreme event, and the event corresponds to the annual cycle, as illustrated in Figure 3.

A 2‑year cycle was employed as it encompasses a full cycle of an SO phase [5]. For the first harmonic fit, the
amplitude indicates the strength of precipitation responses linked to ENSO, and the peak timing relative to themean
value is represented by the angular phase, as shown in Figure 3. The theoretical background of the harmonic fits
is based on the Fourier Transform as described in Wilks [23].
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where Pt and P are the monthly and mean precipitation, Ci is the magnitude of the harmonic curve, βi is the peak
time of the harmonic curve, and Ai and Bi are the Fourier coefficients.
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Figure 3. A first harmonic fit to the precipitation ENSO composite for the climate division CD‑45. The amplitude
and the phase of the first harmonic are presented as a harmonic dial (the upper left).

The temporal phase and amplitude of the harmonic curve are depicted as vectors for each climate division
after fitting the climatic division composites with a 24‑month harmonic. In this approach, vectors point towards
periods of wetter‑than‑normal precipitation, corresponding to the positive phase of the cycle. The actual direc‑
tion of the ENSO‑precipitation relationship is determined by examining these composites. This study focuses on
regions in South Carolina that exhibit significant and sustained ENSO‑precipitation correlations overmanymonths.
Climate divisions that are not part of the candidate regions are excluded from further consideration. Harmonic vec‑
tor mapping offers a means of detecting geographic regions that exhibit coherent precipitation responses to ENSO
variability. Regions demonstrating the highest coherence were identified by calculating the ratio of their average
vector magnitude to the overall mean vector magnitude across all areas.

Spatial Coherence =
sqrt(൫∑ V cos θ൯2 + ൫∑ V sin θ൯2)

∑ V (4)

The denominator contains the arithmetic average value of the vector magnitudes, and the numerator is the
average vector magnitude of all harmonic vectors in the chosen regions. V and θ are the magnitude and angle of
the vector. This analysis is restricted to areas where coherence values reach or exceed 0.80 [12], excluding regions
with high‑amplitude but inconsistent phase relationships across climate divisions.

Index Time Series (ITS) were derived by averaging precipitation data both spatially and temporally during key
signal seasons, across multiple ENSO years within selected candidate regions. These ITS values serve as indicators
of the temporal consistency of ENSO‑precipitation relationships. This value was quantified as the proportion of
ENSOyears inwhich a clear signal appeared in the ITS, relative to the total number of ENSO events, thereby isolating
core regions with stable ENSO‑precipitation linkages. The study also investigates extreme precipitation events
associated with ENSO, following methods outlined by Ropelewski et al. [12] and Lee et al. [21] to explore the
climatic connection between ENSO events and extreme precipitation anomalies. Years with ENSO‑related extreme
precipitation are identified within signal seasons. Index Time Series (ITS) data are ranked, normalized across the
dataset, and converted into probability time series to categorize extreme event levels. The lowest and highest ITS
values are assigned probabilities of 20% and 80%, respectively [14].
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2.3. Comparative Analyses
Precipitation responses linked to ENSO are assessed using the hypergeometric distribution test. Originally in‑

troduced by Haan [24], this statistical test evaluates the probability of observing at least m successful outcomes in
n trials from a population of size N, which contains k successes. This cumulative probability serves as an indicator
of statistical significance for precipitation anomalies related to warm and cold ENSO phases. Kahya et al. [14] later
refined the method to examine not only average conditions but also extreme events—both high and low values. In
the present study, two distinct scenarios are analyzed based on the criteria used to define “success”. Scenario I
considers a year a success if its ITS (Index Time Series) value is either above or below the median in association
with ENSO forcing. Scenario II defines success more stringently, identifying years where ITS values fall within the
top or bottom 20% of the distribution. To further explore the influence of ENSO on precipitation variability, an
annual cycle analysis is conducted, examining how both the trend andmagnitude of precipitation anomalies evolve
throughout the year. Monthly precipitation data are transformed into modular coefficients, which normalize the
series by removing variability due to mean shifts and dispersion. These coefficients express monthly values as
percentages relative to the annual mean, allowing for standardized comparison across time and locations. To evalu‑
ate ENSO‑related precipitation signals seasonally, cross‑correlation coefficients are calculated, capturing both pos‑
itive and negative relationships. Five categorized SOI datasets, representing various ENSO indices correlated with
percentile‑ranked precipitation time series. Considering atmospheric and oceanic fluctuations, other ENSO indices,
such as the Oceanic Niño Index (ONI) and the Multivariate ENSO Index, are considered indicators for tropical ENSO
forcing, in addition to the SOI, which is widely used in atmospheric circulation analysis. However, since the ONI and
MEI do not cover the precipitation observation period from 1895 to 2020, these indices are not included further.
The resulting coefficients reflect both the strength and direction of the climatic connections between ENSO phases
and regional precipitation behavior. Additional methodological details regarding data processing and correlation
techniques are outlined in the earlier sections of this study.

3. Results
3.1. Results of El Niño Events

Figure 4 presents a harmonic dial map highlighting candidate regions identified through empirical and statis‑
tical analyses. The precipitation vector map reveals three spatially coherent regions in the study areas with strong
responses to ENSO forcing: the Upstate Region (USR), Pee‑Dee Region (PDR), and Lowcountry Region (LCR). Com‑
posite precipitation indices for these regions are summarized in Table 1(B), reinforcing their sensitivity to ENSO
variability. A closer examination of these indices shows that each region experiences distinct seasonal precipita‑
tion patterns within the ENSO cycle. Figure 5 displays the precipitation index time series for the USR, covering the
period from September (0) to January (+), and averaged across all stations in the region. This time series shows
that 23 out of 29 ENSO events were associated with above‑average precipitation. Notably, 11 of these events pro‑
duced index values at or above the 80th percentile threshold, whereas only one event fell below the 20th percentile.
Temporal consistency and spatial coherence for this region were calculated at 0.79 and 0.98, respectively. Fig‑
ure 6 shows the corresponding time series for the PDR, from October (0) to February (+). During 21 out of 29
ENSO events, precipitation indices were above average. Eleven ENSO years exceeded the 80th percentile threshold;
however, high index values also occurred in 14 non‑ENSO years, indicating some overlap. Only two ENSO seasons
registered below the 20th percentile. The temporal consistency and spatial coherence for this regionwere 0.72 and
0.96. Figure 7 presents the precipitation index time series for the LCR, spanning November (0) to March (+), and
reveals a particularly robust ENSO signal. Based on climate division data, 24 out of 29 ENSO events aligned with
above‑median precipitation. Of these, 12 events exceeded the 80th percentile threshold, providing strong evidence
that ENSO acts as a reliable indicator of precipitation anomalies in this region. The LCR also exhibited the highest
levels of temporal consistency and spatial coherence, measured at 0.83 and 0.97, respectively.
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Figure 4. Harmonic dial map based on the first harmonic of the 2‑year El Niño composites. Scale for the direction
of arrows: south, July(−); west, January(0); north, July(0); and east, January(+). The magnitude of the arrows is
proportional to the amplitude of the harmonics.

(a)

Figure 5. Cont.
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(b)

Figure 5. (a) El Niño aggregate composite for the candidate US region. The dashed line box delineates the season of
possible El Niño‑related responses. (b) The index time series for the US region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.

(a)

(b)

Figure 6. (a) El Niño aggregate composite for the candidate PD region. The dashed line box delineates the season of
possible El Niño‑related responses. (b) The index time series for the PD region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.
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(a)

(b)

Figure 7. (a) El Niño aggregate composite for the candidate LC region. The dashed line box delineates the season of
possible El Niño‑related responses. (b) The index time series for the LC region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.

3.2. Results of La Niña Events
For the22LaNiña events—representing the coldphase of theENSOcycle—monthlyprecipitationdatawere an‑

alyzed using both composite and harmonic methods. Figure 8 presents a harmonic dial map illustrating consistent
precipitation responses across three regions in South Carolina: the Upstate Region (USR), Pee‑Dee Region (PDR),
and Lowcountry Region (LCR). Figures 9 through 11 display ENSO composite precipitation indices for these re‑
gions, with summary statistics provided in Table 1(B). In the USR, standardized precipitation anomalies, averaged
across all climate divisions from October (0) through April (+), show negative departures in 17 of the 22 La Niña
events (Figure 9). Index values at or below the 20th percentile threshold appeared in 7 La Niña years, while only
2 events exceeded the 80th percentile. The region exhibited high spatial coherence (0.96) and moderate temporal
consistency (0.77). In the PDR, analysis of the November (0) to April (+) period revealed below‑average precipita‑
tion in 16 of the 22 La Niña episodes (Figure 10). Eight of these events recorded index values at or beneath the
20% threshold, with none surpassing the 80% mark. Spatial coherence and temporal consistency were 0.97 and
0.73, respectively. The LCR, evaluated from November (0) to May (+), experienced below‑median precipitation in
17 out of 22 La Niña years (Figure 11). Seven events registered at or below the 20th percentile, while one La Niña
season reached or exceeded the 80th percentile threshold. Spatial coherence for this regionwas 0.95, and temporal
consistency stood at 0.77.
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Figure 8. Harmonic dial map based on the first harmonic of the 2‑year La Niña composites. Scale for the direction
of arrows: south, July(−); west, January(0); north, July(0); and east, January(+). The magnitude of arrows is pro‑
portional to the amplitude of the harmonics.

(a)

Figure 9. Cont.
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(b)

Figure 9. (a) La Niña aggregate composite for the candidate US region. The dashed line box delineates the season
of possible El Niño‑related responses. (b) The index time series for the US region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.

(a)

(b)

Figure 10. (a) La Niña aggregate composite for the candidate PD region. The dashed line box delineates the season
of possible El Niño‑related responses. (b) The index time series for the PD region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.
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(a)

(b)

Figure 11. (a) La Niña aggregate composite for the candidate LC region. The dashed line box delineates the season
of possible El Niño‑related responses. (b) The index time series for the LC region for the season previously detected.
El Niño years are shown by solid bars. The dashed horizontal lines are the upper (80%) and lower (20%) limits for
the distribution of ITS values.

3.3. Comparative Analysis Results
The hypergeometric distributionwas applied to evaluate the probability that observedwet or dry seasons dur‑

ing ENSO years occurred by chance. In Case I, both ENSO phases yielded extremely low probabilities (below 0.006),
suggesting a strong association between ENSO and precipitation anomalies. Case II similarly showed low probabil‑
ities for most regions, except La Niña events in the Pee‑Dee (PD) region. Over the 125‑year study period, extreme
wet conditions were found to coincide predominantly with ENSO years. As summarized in Table 1(C), the results
consistently indicate high temporal consistency rates—ranging from 72% to 83% for El Niño events and from 73%
to 77% for La Niña events—demonstrating that the patterns identified in composite analyses are unlikely to be
random. Instead, these relationships are likely driven by systematic factors such as tropical sea‑surface tempera‑
ture patterns. Precipitation data were converted into modular coefficients to facilitate analysis of the annual cycle.
ENSO composites based on these modular series were plotted against the corresponding regional annual cycles,
as illustrated in Figures 12 and 13. The figures illustrate two dominant precipitation response patterns linked to
ENSO phases. During El Niño events, precipitation tends to be suppressed, followed by an increase in the subse‑
quent year. In contrast, La Niña events are associated with amplified precipitation during the ENSO year, which is
then followed by a decline in amplitude in the following year. These fluctuations align with previously identified
wet and dry signal seasons across the three key regions—Upstate, Pee‑Dee, and Lowcountry. Moreover, a clear
divergence inmonthly precipitation trends was observed betweenwarm and cold ENSO phases over the full 2‑year
cycle. These findings suggest that tropical thermal anomalies have a significant influence on the timing and inten‑
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sity of monthly precipitation in South Carolina, acting as a driver of either wetter or drier conditions. Table 1(D)
indicates the resultant cross‑correlation coefficients, which quantify the strength and direction of the relationship
between ENSO forcing and regional precipitation, incorporating five categorized SOI datasets and seasonal time
series expressed as percentile‑ranked probabilities. Statistically significant correlations (p < 0.05) were identified
between seasonal precipitation anomalies and both low and high phases of the SOI.

Figure 12. The comparison between El Niño composite cycles (shown by dashed line) and annual cycles (shown
by solid line) of the US (upper), PD (middle), and LC (lower) regions, based on modular coefficients. Dashed boxes
indicate the beginning and end months of the SO signal season.
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Figure 13. The comparison between La Niña composite cycles (shown by dashed line) and annual cycles (shown
by solid line) of the US (upper), PD (middle), and LC (lower) regions, based on modular coefficients. Dashed boxes
indicate the beginning and end months of the SO signal season.

It should be noted that ENSO is inversely proportional to SOI. This means that a positive correlation between
ENSO and precipitation corresponds to a negative correlation between SOI and precipitation. For strong El Niño
(warm SOI) phases, themost prominent positive (negative for SOI) correlation occurred at lag‑2 and lag‑3 across all
three regions, suggesting delayed but strong precipitation increases. In contrast, during La Niña (cold SOI) phases,
the strongest negative (positive for SOI) correlations appeared at lag‑0, lag‑2, and lag‑4, indicating that reduced pre‑
cipitation often coincideswith or follows these cold eventswith varying delays. These patterns confirm that ENSO’s
influence on South Carolina precipitation operates with a notable lag structure, modulating rainfall increases and
decreases according to the strength and timing of tropical Pacific anomalies.
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3.4. Discussion
Figures 4 to 7 illustrate that this study identifies increased precipitation during El Niño events in the US, PD,

and LC regions in early fall (0) and spring (+) seasons. Particularly in the LC region, the magnitude of this positive
deviation from normal precipitation during El Niño years significantly surpasses non‑El Niño years. Conversely,
Figures 8 to 11 reveal a contrasting pattern during La Niña, where precipitation indicates below‑normal condi‑
tions across the US, PD, and LC regions from the previous fall to the following spring. Notably, the negative anomaly
during La Niña years in the LC region is markedly higher compared to non‑event years. In South Carolina State, the
ENSO‑related precipitation response aligns with findings by Douglas et al. [10] and Ropelewski et al. [12]. They
contended that the impact of ENSO on precipitation patterns is more accurately attributed to direct effects, such as
the strengthening of the subtropical jet stream and the warming of Pacific surface waters. Douglas et al. [10] pro‑
pose that precipitation patterns associated with ENSO could be directly linked to both ENSO itself and the Pacific
North American (PNA) teleconnection pattern. Typically, ENSO‑induced convection occurs over the southeastern
United States, near the equatorial Pacific, which strengthens the westerly winds and leads to increased precipita‑
tion and storm activity in the southeastern US, including the Gulf of Mexico [25]. This direct connection to ENSO
forcing could help explain the consistent precipitation patterns observed across the southeastern United States.
During the peak of ENSO events, Rasmusson andWallace [11] noted a southward shift in the subtropical jet stream,
which had moved from its usual position (1982–1983). This shift intensifies the jet stream and can result in se‑
vere winter storms and flooding across the southern US. They also observed that this shift contributed to unusually
wet conditions during previous ENSO events in this region. The continual presence of high and low sea‑surface
temperatures in the eastern‑central Pacific Ocean during ENSO events creates large‑scale atmospheric circulation
patterns through complex ocean‑atmospheric interactions. As a result, ENSO‑related atmospheric fluctuations in
mid‑latitude regions contribute to significant precipitation anomalies in South Carolina.

4. Conclusions
Using a combination of statistical and empirical techniques, this study explored the teleconnection between

ENSO‑induced thermal anomalies andmonthly precipitation variability across South Carolina. As outlined inTable
1, the study area was delineated into three primary zones: the Upstate Region (USR), the Pee‑Dee Region (PDR),
and the Lowcountry Region (LCR). These regions exhibited strong spatial coherence and high temporal consistency,
underscoring the substantial geographic reach and the ENSO‑related impacts on precipitation. Key findings are
summarized as follows. For El Niño episodes, precipitation was consistently above average across the US, PD, and
LC zones during their respective signal periods—September (0) to January (+) inUSR, October (0) to February (+) in
PDR, andNovember (0) toMarch (+) in LCR. Spatial coherence ranged from0.96 to 0.98, while temporal consistency
varied between 0.72 and 0.83. The LCR displayed the most pronounced positive anomalies for the warm phase of
ENSO events. In contrast, LaNiña phaseswere associatedwith below‑average precipitation across the same regions
during the dry season windows: October (0) to April (+) in USR, November (0) to April (+) in PDR, and November
(0) to May (+) in LCR. Spatial coherence values ranged from 0.95 to 0.97, with temporal consistency rates varying
from 0.73 to 0.77.

Furthermore, comparisonsbetweenwarmandcoldENSOphases revealed inverseprecipitation trends—positive
precipitation signals for the warm events and negative ones for the cold events. El Niño events were marked by
more pronounced above‑normal precipitation than the below‑normal anomalies seen during La Niña. Annual cy‑
cle analysis indicated that fluctuations in South Carolina’s precipitation regime are modulated by tropical heating
and cooling associated with sea surface temperature anomalies. Cross‑correlation results further supported this
relationship, showing that the strongest positive (negative) correlations with seasonal precipitation occurred at
lags of 2 and 3 seasons (0, 2, and 4 seasons) during strongwarm (cold) ENSO phases across all three regions. These
findings suggest that stronger ENSO forcing leads tomeasurable impacts on precipitation, characterized by delayed
seasonal responses. In summary, this study demonstrates that ENSO significantlymodulates precipitation behavior
across South Carolina’s mid‑latitude regions, producing regionally distinct and seasonally consistent hydrological
responses to both ENSO forcings.
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