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ABSTRACT
This study explores how AI technologies enhance public scientific literacy through targeted education initiatives 
and interactive communication tools. Using a mixed-methods approach (2023–2025), it analyzes 11 AI-driven sci-
ence education programs and 8 interactive tools across 9 urban centers (e.g., London, Delhi, Cape Town). Results 
show AI-assisted education increases scientific knowledge retention by 52% vs. traditional methods, with interac-
tive tools (e.g., AI chatbots, VR science labs) boosting engagement by 47% among low-literacy groups. Key predic-
tors of success include personalization (β=0.39, p<0.001) and cultural relevance (β=0.31, p<0.001). The research 
proposes a design framework for AI-enabled science communication tools and highlights their role in bridging 
urban scientific literacy gaps.

Keywords: Artificial Intelligence; Public Scientific Literacy; Science Education; Interactive Communication Tools; VR Science 
Labs; Personalized Learning

1. Introduction

1.1 Research Background
Global public scientific literacy remains persistently low: only 38% of adults in urban areas can 

explain basic scientific concepts (e.g., climate change mechanisms, vaccine efficacy) (UNESCO, 2024), with 
gaps widening in low- and middle-income countries (LMICs)—for example, 62% of Delhi residents lack 
understanding of air pollution’s health impacts (National Council of Educational Research and Training 
[NCERT], 2025). This deficit hinders informed decision-making on critical issues, from public health to 
climate action.

Artificial intelligence (AI) has emerged as a transformative solution. Unlike one-size-fits-all traditional 
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science education (e.g., static textbooks, lecture-based workshops), AI enables personalized learning paths, 
interactive content delivery, and real-time feedback—addressing diverse learner needs across age, literacy, 
and cultural backgrounds. Between 2023–2025, 76% of cities with advanced science engagement programs 
adopted AI tools (OECD, 2025), yet empirical research on their effectiveness and design principles remains 
fragmented.

The Journal of Artificial Intelligence and Science Communication emphasizes the need to unpack AI’s 
role in democratizing scientific knowledge. This study fills this gap by examining how AI enhances science 
education, designing evidence-based interactive tools, and identifying strategies to address urban literacy 
disparities.

1.2 Research Objectives and Questions
This research aims to: (1) evaluate the impact of AI-assisted science education on public scientific 

literacy; (2) develop a design framework for interactive AI science communication tools; (3) assess how 
these tools mitigate literacy gaps in diverse urban contexts.

Key research questions include:
What AI technologies (e.g., chatbots, VR, adaptive learning systems) are most effective for improving 

scientific literacy across different demographic groups?
How do design features (e.g., personalization, cultural adaptation) of AI communication tools influence 

user engagement and knowledge acquisition?
To what extent do AI-driven initiatives reduce scientific literacy disparities between high-income and 

low-income urban populations?

1.3 Significance of the Research
Theoretically, this study advances interdisciplinary dialogue between AI technology, science education, 

and communication—three fields that traditionally operate in silos. Practically, it provides actionable 
insights for policymakers, educators, and tech developers: for instance, Cape Town’s AI-powered mobile 
science lab (2024) increased scientific literacy among township residents by 39% within 8 months, 
demonstrating scalable solutions for LMICs.

Ethically, the research addresses equity concerns: by focusing on low-literacy and marginalized groups, 
it ensures AI tools do not exacerbate existing disparities. This aligns with UNESCO’s (2024) “AI for Inclusive 
Science Literacy” framework, which prioritizes accessible knowledge dissemination.

2. Literature Review

2.1 AI in Public Science Education: Core Technologies and Applications

2.1.1 Key AI Technologies for Science Learning
Recent literature identifies four dominant AI technologies transforming public science education:
Adaptive Learning Systems: These AI platforms (e.g., Khan Academy’s AI Tutor) analyze user 

performance to tailor content—for example, a London-based system (2024) adjusted math-science 
integration exercises for low-numeracy adults, increasing problem-solving skills by 41% (Carter et al., 
2025).

Conversational AI (Chatbots): AI chatbots (e.g., ScienceBot) deliver bite-sized science content via 
messaging apps (WhatsApp, WeChat). Delhi’s 2025 “Science on WhatsApp” campaign used Hindi/English 
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chatbots to reach 2.3 million users, with 68% reporting improved understanding of COVID-19 variants (Patel 
et al., 2025).

Virtual Reality (VR) Science Labs: VR tools (e.g., Labster) simulate hands-on experiments (e.g., 
chemical reactions) that are costly or risky in real settings. Tokyo’s 2024 VR astronomy program increased 
interest in space science by 53% among high school students (Tanaka et al., 2025).

Data Visualization AI: Tools like Tableau’s AI Insights simplify complex scientific data (e.g., climate 
models) into interactive graphs. Cape Town’s 2023 water scarcity campaign used AI visualizations to explain 
reservoir levels, leading to a 28% reduction in household water use (Diop et al., 2024).

2.1.2 Effectiveness and Limitations
Meta-analyses show AI-assisted science education improves knowledge retention by 38–55% vs. 

traditional methods (OECD, 2025), but limitations persist:
Digital Divide: 59% of urban residents in LMICs lack access to smartphones/Internet (World Bank, 

2024), limiting tool reach.
Cultural Misalignment: AI content trained on Western datasets often fails to reflect local contexts—

e.g., a 2024 Indian AI science tool used examples of snowfall (unfamiliar to most Delhi residents), reducing 
engagement by 32% (NCERT, 2025).

Over-Reliance on Technology: 43% of educators in a 2025 survey reported that students using 
AI tools showed reduced critical thinking skills when analyzing scientific claims (Science Education 
International, 2025).

2.2 Interactive Science Communication Tools: Design Principles and User Engagement

2.2.1 Evidence-Based Design Principles
Research highlights three core design principles for effective interactive science tools:
User-Centered Design: Involving end-users in tool development ensures relevance—Cape Town’s AI 

science app (2024) incorporated feedback from township residents to add local language support (Xhosa, 
Zulu), increasing usage by 61% (Diop et al., 2025).

Gamification: Integrating game elements (e.g., quizzes, rewards) boosts engagement. London’s 2025 
“Science Quest” AI game saw 78% of users return weekly, with 54% reporting improved knowledge of 
biology concepts (Carter et al., 2024).

Multimodality: Combining text, audio, and visuals caters to diverse learning styles. Tokyo’s 2024 AI 
science podcast (with animated transcripts) increased comprehension by 42% among visually impaired 
users (Tanaka et al., 2024).

2.2.2 Engagement Challenges for Marginalized Groups
Low-literacy and low-income groups face unique barriers:
Text Overload: 67% of low-literacy users in Delhi reported abandoning AI tools due to excessive text 

(Patel et al., 2024).
Technical Complexity: 58% of Cape Town’s township residents found VR headsets difficult to operate 

without training (Diop et al., 2024).
Trust Deficits: 41% of LMIC urban residents expressed skepticism about AI-generated science 

content, citing fears of misinformation (UNESCO, 2025).

2.3 Public Scientific Literacy and Urban Disparities
Urban centers exhibit stark literacy divides:



Journal of Artificial Intelligence and Science Communication | Volume 1 | Issue 1 | November 2025

19

High-Income Cities: 72% of London adults can explain photosynthesis, compared to 29% in Delhi’s 
low-income neighborhoods (OECD, 2025).

Age and Gender Gaps: Younger urban residents (18–35) show 34% higher scientific literacy than 
those over 55, while men outperform women by 19% globally (UNESCO, 2024).

Impact of Disparities: Low scientific literacy correlates with poor health outcomes—e.g., 52% of low-
literacy urban residents in South Africa fail to follow medication instructions (University of Cape Town, 
2025).

2.4 Gaps in Existing Literature
While studies examine AI in science education or interactive tools separately, few integrate these areas 

with a focus on urban literacy disparities. For example, Carter et al. (2024) analyzed AI chatbots for science 
communication but ignored low-literacy users, while Diop et al. (2025) studied LMIC literacy gaps without 
exploring AI solutions. This research addresses these gaps by providing a holistic analysis of AI’s role in 
equitable scientific literacy enhancement.

3. Methodology

3.1 Research Design
A sequential mixed-methods design was employed across three phases (2023–2025):
Phase 1 (Exploratory): Document analysis of 11 AI science education programs and 8 interactive 

tools to map current practices.
Phase 2 (Quantitative): A survey (n=5,400) of urban residents across 9 cities to measure AI tool 

impact on scientific literacy.
Phase 3 (Qualitative): Interviews (n=180) with users, educators, and developers to explore design 

preferences and challenges.
Cities were selected for diversity in:
Economic Status: High-income (London, Tokyo), middle-income (Delhi, Istanbul), low-income (Cape 

Town, Lagos).
Urban Demographics: Megacities (>10M residents: Delhi, Tokyo) and mid-sized cities (1–5M: Cape 

Town, Manchester).
Literacy Levels: Low-literacy (Lagos: 56% adult literacy) and high-literacy (London: 99% adult 

literacy) (World Bank, 2024).

3.2 Data Collection

3.2.1 Primary Data
3.2.1.1 Survey (Phase 2)
A structured survey was administered online and in-person (for low-digital-access groups) to measure:
Scientific Literacy: 12 items assessing knowledge of core concepts (e.g., “What causes climate 

change?”) (Cronbach’s α=0.87).
Tool Engagement: 8 items measuring frequency of use and satisfaction (e.g., “How often do you use AI 

science tools?”) (Cronbach’s α=0.82).
Perceived Effectiveness: 6 items evaluating knowledge improvement (e.g., “Did AI tools help you 

understand science better?”) (Cronbach’s α=0.85).
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In-person surveys (40% of total) were conducted in community centers and markets, with local 
language translators (e.g., Hindi, Xhosa) present.

3.2.1.2 Interviews (Phase 3)
Semi-structured interviews were conducted with three stakeholder groups:
Tool Users (n=90): Low-literacy adults, high school students, and elderly residents.
Educators (n=45): Science teachers and community educators.
Developers (n=45): AI tool designers from tech firms and research institutions.
Interviews lasted 45–60 minutes, focusing on tool usability, cultural relevance, and literacy impact. All 

interviews were audio-recorded and transcribed.

3.2.2 Secondary Data
Secondary data included:
Academic literature (2023–2025) on AI in science education and literacy.
Policy documents (e.g., UNESCO’s 2024 AI Literacy Framework, India’s National Education Policy 

2025).
Tool performance metrics (e.g., user engagement rates, knowledge retention scores) from developers.
Media coverage of AI science initiatives (n=210 articles, 2023–2025).

3.3 Data Analysis

3.3.1 Quantitative Analysis
Descriptive Statistics: Frequency and mean scores for literacy, engagement, and effectiveness.
Inferential Analysis: Regression models to identify predictors of literacy improvement (e.g., tool type, 

personalization level) using SPSS 29.0.
Cross-City Comparisons: ANOVA to compare outcomes across high-income, middle-income, and low-

income cities.

3.3.2 Qualitative Analysis
NVivo 13 was used for thematic analysis of interviews. Initial codes (e.g., “cultural relevance,” “technical 

barriers”) were derived from research questions, with additional codes (e.g., “trust in AI”) emerging 
inductively. Inter-coder reliability was confirmed (Cohen’s κ=0.83).

3.4 Ethical Considerations
Ethical approval was obtained from University College London’s Research Ethics Committee (Ref: UCL-

2023-057). Safeguards included:
Informed Consent: Participants received plain-language information about the study and could 

withdraw at any time.
Anonymity: Survey and interview data were de-identified (e.g., replacing names with pseudonyms).
Data Security: All data was stored on encrypted servers, with access restricted to the research team.
Equity: Low-digital-access groups were prioritized for in-person data collection to avoid 

underrepresentation.

4. Results

4.1 Impact of AI-Assisted Science Education on Public Scientific Literacy
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4.1.1 Knowledge Retention and Skill Improvement
Survey results showed AI-assisted education significantly outperformed traditional methods:
Overall Knowledge Retention: AI users had a mean literacy score of 78/100, compared to 51/100 for 

traditional method users (t=28.3, p<0.001).
Skill-Specific Gains: Problem-solving skills (e.g., analyzing scientific data) improved by 52%, while 

conceptual understanding (e.g., explaining evolution) improved by 47%.
Tool type influenced outcomes (Table 1): VR science labs scored highest for engagement (mean=4.6/5), 

while adaptive learning systems led to the greatest knowledge retention (mean=82/100).

Table 1: AI Tool Effectiveness by Type

Tool Type Knowledge Retention 
(Mean/100)

Engagement Score 
(Mean/5)

User Satisfaction 
(%)

Adaptive Learning 
Systems 82 4.2 89

VR Science Labs 79 4.6 92
AI Chatbots 75 4.1 85

Data Visualization AI 73 3.8 81

4.1.2 Cross-Demographic and Cross-City Variations
Age: Younger users (18–35) showed higher engagement (mean=4.3/5) than older adults (55+, 

mean=3.1/5), but AI tools reduced the age literacy gap by 28%.
Literacy Level: Low-literacy users gained 59% more knowledge with AI tools than traditional 

methods, compared to 38% for high-literacy users.
Cities: High-income cities (London, Tokyo) had higher baseline literacy (mean=68/100) than low-

income cities (Cape Town, Lagos, mean=39/100), but AI tools increased literacy by 47% in low-income 
cities vs. 32% in high-income cities—narrowing the urban gap.

4.2 Design Features of Effective AI-Driven Interactive Science Communication Tools

4.2.1 Key Design Predictors of Engagement
Regression analysis identified three primary predictors of user engagement (Table 2):

Table 2: Regression Model of Factors Influencing Tool Engagement

Variable β SE p-value

Personalization (Tailored Content) 0.39 0.04 <0.001

Cultural Relevance (Local Examples) 0.31 0.05 <0.001

Multimodality (Text + Audio + Visuals) 0.22 0.04 <0.001

Gamification (Quizzes/Rewards) 0.18 0.05 <0.01

R² 0.67 - -

4.2.2 Cultural Relevance in Tool Design: Case Examples
Cultural adaptation emerged as a critical driver of engagement, with tools incorporating local contexts 

showing 31% higher usage rates than generic alternatives (survey data). Key examples include:
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Delhi’s “Science on WhatsApp” Chatbot (2025): Initially designed with Western examples (e.g., 
explaining photosynthesis via oak trees), the chatbot was revised to use local flora (e.g., banyan trees) 
and regional health concerns (e.g., air pollution-related respiratory issues). Post-revision, user retention 
increased from 42% to 78%, with 63% of users reporting the content “felt relevant to my daily life” 
(interview data).

Cape Town’s Xhosa/Zulu VR Water Science Lab (2024): Developed in collaboration with 
local township educators, the VR tool simulates water scarcity scenarios specific to South Africa (e.g., 
drought impacts on maize farming) and uses local languages for instructions. Among low-literacy users, 
comprehension of water cycle concepts increased by 54%, compared to 29% for the English-only version 
(Phase 2 survey).

Tokyo’s “Space Science for Seniors” AI Podcast (2025): Tailored to elderly residents, the podcast 
links astronomy concepts to traditional Japanese culture (e.g., explaining constellations via folk tales) and 
uses slow, clear narration. Engagement among adults over 65 increased by 41%, with 72% reporting the 
cultural references “made science feel less intimidating” (Phase 3 interviews).

4.2.3 Addressing Low-Literacy Barriers: Design Adjustments
Tools targeting low-literacy groups required specific modifications, with three strategies proving most 

effective:
Audio-First Content: Replacing text with voice narration and sound effects—e.g., Lagos’ 2025 AI 

health science tool uses audio stories (in Yoruba) to explain vaccine benefits, reaching 1.2 million low-
literacy users and increasing vaccination intent by 38%.

Visual Simplification: Using icons and animations instead of complex graphs—London’s “Science 
Icons” AI app (2024) represents scientific concepts (e.g., gravity) with simple illustrations, leading to a 47% 
increase in knowledge retention among low-literacy adults.

Guided Hands-On Interaction: Combining AI with physical materials—e.g., Delhi’s 2025 “AI Science 
Kits” include low-cost tools (magnifying glasses, seed packets) paired with a voice chatbot that guides 
users through experiments. Among low-income families, 68% reported their children “asked more science 
questions at home” after using the kit.

4.3 Trust in AI-Generated Science Content: Perceptions and Mitigation

4.3.1 Trust Levels Across Demographics
Survey data revealed significant variation in trust in AI science content:
Global Trust Mean: 3.2/5, with high-income city residents (mean=3.8/5) trusting AI more than low-

income residents (mean=2.5/5).
Key Concerns: 58% of LMIC users cited “fear of misinformation” as a barrier, while 43% of high-

income users worried about “AI bias in content” (e.g., underrepresenting certain scientific perspectives).
Age Gap: Younger users (18–35, mean=3.6/5) trusted AI more than older adults (55+, mean=2.1/5), 

with 61% of seniors reporting “I prefer learning from human teachers” (Phase 3 interviews).

4.3.2 Effective Trust-Building Strategies
Tools that implemented trust-building measures saw a 34% increase in user engagement. Key 

strategies included:
Expert Endorsements: Displaying credentials of scientists who reviewed the AI content—e.g., Tokyo’s 

2024 AI climate tool features profiles of University of Tokyo climate researchers, increasing trust by 47% 
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among elderly users.
Transparency in AI Decision-Making: Explaining how the AI generates content—e.g., London’s 

“Science Bot” chatbot includes a “How This Answer Was Made” button that outlines data sources (e.g., peer-
reviewed journals), leading to a 39% increase in trust among low-literacy users.

Human-in-the-Loop Support: Offering access to human educators for follow-up questions—e.g., 
Cape Town’s 2025 AI math-science tool connects users to local teachers via WhatsApp, with 62% of users 
reporting the human support “made me more confident in the AI’s answers.”

5. Discussion

5.1 Key Findings on AI’s Role in Enhancing Scientific Literacy
The results confirm AI’s transformative potential for public science education, with three standout 

insights:
First, AI reduces urban scientific literacy disparities: While high-income cities have higher baseline 

literacy, AI tools drive greater relative gains in low-income cities (47% vs. 32%). This aligns with Diop et 
al.’s (2025) findings that AI’s ability to adapt to low-resource contexts (e.g., low-bandwidth, local languages) 
makes it uniquely suited to address LMIC gaps. For example, Lagos’ audio-first health tool reached 
marginalized groups excluded from traditional education, demonstrating AI’s role as an equity lever.

Second, cultural relevance and personalization are non-negotiable design features: Regression 
analysis (Table 2) shows these factors explain 70% of engagement variation. Delhi’s chatbot revision—from 
oak trees to banyan trees—highlights how small cultural adjustments can drastically improve relevance. 
This supports UNESCO’s (2024) “local-first” AI literacy framework, which argues that global technologies 
must be grounded in local contexts to avoid “digital colonialism.”

Third, trust is a prerequisite for adoption: Low trust in LMICs (mean=2.5/5) threatens to undermine 
AI’s impact. Strategies like expert endorsements and human-in-the-loop support address this by combining 
AI efficiency with human accountability. Tokyo’s elderly-focused podcast, which paired AI with cultural 
references and human educators, shows how trust can be built even among skeptical groups.

5.2 Addressing Limitations of Current AI Science Tools
The study identifies three critical limitations that require attention:
Digital Divide Persists: 59% of LMIC urban residents lack access to smartphones/Internet (World 

Bank, 2024), limiting tool reach. Solutions include low-tech adaptations—e.g., Delhi’s AI science kits, which 
combine physical materials with basic mobile tech (feature phones for audio). Future tools must prioritize 
“offline-first” design to reach marginalized groups.

Critical Thinking Skills Need Safeguarding: 43% of educators reported reduced critical thinking 
among AI users (Science Education International, 2025). To mitigate this, tools should integrate “skeptical 
learning” features—e.g., London’s “Science Quest” game now includes a “Challenge the AI” module that asks 
users to verify AI answers with real-world observations. This balances AI efficiency with the development 
of scientific inquiry skills.

Gender Gaps Remain: Women show 19% lower engagement with AI science tools than men (UNESCO, 
2024), due in part to content that underrepresents women in science (e.g., male-only scientist profiles). 
Cape Town’s 2025 “Women in Science” AI tool—featuring local female researchers and gender-specific 
examples (e.g., maternal health science)—reduced this gap by 28%, demonstrating the power of inclusive 
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representation.

5.3 The AI Science Literacy Design Framework (ASL-DF)
Based on findings, we propose the AI Science Literacy Design Framework (ASL-DF)—a 4-stage 

model for developing equitable, effective tools:

5.3.1 Stage 1: Contextual Assessment
Map local needs (e.g., Delhi’s air pollution concerns, Cape Town’s water scarcity).
Identify access barriers (e.g., low literacy, no Internet) and demographic gaps (e.g., elderly, women).
Engage local stakeholders (educators, community leaders) in defining goals.

5.3.2 Stage 2: Inclusive Design
Prioritize cultural relevance (local examples, languages, values).
Personalize content (adaptive learning paths for age, literacy, interests).
Integrate multimodality (audio, visuals, hands-on elements) for diverse learning styles.

5.3.3 Stage 3: Trust-Building Implementation
Include expert endorsements and transparent data sources.
Offer human-in-the-loop support (educators, community mentors).
Conduct pre-launch trust testing with marginalized groups.

5.3.4 Stage 4: Iterative Evaluation
Measure both outcomes (literacy gains) and equity (reach among marginalized groups).
Gather user feedback to refine design (e.g., Delhi’s chatbot revision).
Assess long-term impacts (e.g., critical thinking, career interest in science).

5.4 Implications for Policymakers and Developers

5.4.1 For Policymakers
Mandate equity in AI science initiatives: Require tools to include offline/low-tech options and reach 

marginalized groups (e.g., India’s National Education Policy 2025 now includes this requirement).
Fund cross-sector collaboration: Support partnerships between tech firms, local educators, and 

community organizations—e.g., UN-Habitat’s 2025 “AI for Urban Literacy” grant program, which funds tools 
like Cape Town’s VR water lab.

Develop trust guidelines: Create standards for transparency and expert oversight (e.g., London’s 2025 
“AI Science Content Certification” scheme).

5.4.2 For Developers
Adopt the ASL-DF: Use the framework to ground tools in local contexts and prioritize equity.
Invest in user research: Avoid assumptions about user needs—e.g., Tokyo’s elderly podcast required 6 

months of user testing to refine cultural references.
Balance innovation with accessibility: Ensure advanced features (VR, adaptive learning) have low-tech 

alternatives for low-resource contexts.

6. Conclusion
This research demonstrates that AI has the potential to revolutionize public scientific literacy—reducing 

urban disparities, increasing engagement, and making science accessible to marginalized groups. However, 
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this potential can only be realized if tools are designed with cultural relevance, personalization, and trust at 
their core. The AI Science Literacy Design Framework (ASL-DF) provides a roadmap for this, emphasizing 
context, inclusion, and accountability.

As AI technology evolves—with generative AI and multimodal tools becoming more advanced—the 
need for equitable design will only grow. Future research should focus on long-term impacts (e.g., whether 
AI-driven literacy gains translate to career interest in science) and scaling low-tech adaptations for LMICs. 
By centering equity and user needs, AI can become a powerful tool for democratizing scientific knowledge 
and building more informed, resilient urban societies.

The global scientific literacy deficit is not inevitable. With evidence-based design, cross-sector 
collaboration, and a commitment to equity, AI can help bridge this gap—ensuring that science is no longer a 
privilege of the few, but a resource for all.
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Appendix A: Scientific Literacy Survey Instrument (Excerpt)

Section 1: Demographic Information
City of residence: ______
Age group: 18–24 / 25–34 / 35–44 / 45–54 / 55–64 / 65+
Highest level of education: Primary school or less / Secondary school / College / University or higher
Household income (local currency): ______
Frequency of using AI tools for learning: Never / Rarely (1–3 times/year) / Occasionally (1–3 times/

month) / Frequently (1–3 times/week) / Daily

Section 2: Scientific Knowledge Assessment (Sample Items)
For each question, select the correct answer:
What causes the Earth’s seasons?a) The Earth’s distance from the Sunb) The Earth’s tilt on its axisc) 
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The Moon’s gravitational pulld) I don’t know
Which of the following best explains why vaccines work?a) They kill viruses directlyb) They help the 

body’s immune system recognize and fight virusesc) They prevent viruses from entering the bodyd) I don’t 
know

What is the main gas responsible for climate change?a) Oxygenb) Carbon dioxidec) Nitrogend) I don’t 
know

Section 3: AI Tool Engagement and Perception
How easy is it to use the AI science tool you most frequently access?
1 (Extremely difficult) to 5 (Extremely easy)
To what extent has the AI tool helped you understand scientific concepts better?
1 (Not at all) to 5 (To a very great extent)
Do you trust the scientific information provided by AI tools?
1 (Not at all trustworthy) to 5 (Extremely trustworthy)
What features of the AI tool do you find most helpful? (Open response)
(Full survey instrument available upon request from the corresponding author)

Ap p e n d i x  B :  A I  S c i e n ce  L i te ra c y  D e s i g n  Fra m ewo rk  ( AS L - D F ) 
Implementation Checklist

Stage Key Actions Completion 
Status Notes

1. Contextual Assess-
ment

- Conduct local needs survey- 
Map access barriers (literacy, 
tech)- Host stakeholder work-
shops

□ Yes □ Par-
tial □ No

Example: Delhi’s air 
pollution needs 
survey (2024)

2. Inclusive Design

- Integrate local languages/exam-
ples- Develop personalized 
learning paths- Add multimod-
al content (audio/visual)

□ Yes □ Par-
tial □ No

Example: Cape 
Town’s Xhosa/
Zulu VR lab 
(2024)

3. Trust-Building Im-
plementation

- Secure expert endorsements- 
Add transparency features 
(data sources)- Set up human 
support channels

□ Yes □ Par-
tial □ No

Example: London’s 
“How This An-
swer Was Made” 
button (2025)

4. Iterative Evaluation

- Measure literacy gains (pre/
post)- Assess reach among 
marginalized groups- Gather 
user feedback for revisions

□ Yes □ Par-
tial □ No

Example: Tokyo’s 
podcast engage-
ment survey 
(2025)


