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ABSTRACT
This work presents an AI system powered by artificial intelligence and based on deep learning for diagnosing

and detecting plant diseases. Using a CNN that has been trained and optimized on the Plant Village dataset, major
crops such as tomatoes, potatoes, andbell peppers canhave their illnesses properly classified. Themethodprovides
comprehensive diagnostic data, including taxonomy, organisms responsible for the disease, nutritional deficit mim‑
ics, and external symptoms, in addition to illness class predictions. Innovatively, the system incorporates the Rich
Python library, which enables a graphical, colour‑coded command‑line interface. Because of this, users can receive
detailed, interactive feedback within the terminal itself. The programme was designed with easy use in mind and
is intended for use by researchers, educators, and farmers in real‑world agricultural settings. Facilitating the detec‑
tion and understanding of plant health issues in real time aids in learning and practical decision‑making. This study
demonstrates how integrating AI with agricultural diagnostics can enhance interpretability, usefulness, and overall
impact. Finally, it stresses how technology based on deep learning could revolutionize crop health monitoring and
agricultural education.
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1. Introduction

Agriculture sustains billions worldwide and un‑
derpins national food security in many developing na‑
tions. Rising populations have amplified the demand for
higher yields, healthier produce, and sustainable prac‑
tices. However, plant diseases remain a persistent chal‑
lenge to productivity [1]. Modern deep learning models,
particularly optimized convolutional neural networks
(CNNs), have revolutionized diagnosis through accurate
early recognition. Architectural innovations, such as
squeeze‑and‑excitation (SE) blocks and depth‑wise sep‑
arable convolutions, enhance CNNs by reducing param‑
eters for mobile deployment and focusing on critical
disease features [2]. These improvements enable effi‑
cient, lightweight models suited for real‑time detection
in resource‑constrained agricultural settings [3]. The
emergence of Artificial Intelligence (AI) has further ad‑
vanced plant disease detection with scalable and pre‑
cise solutions. CNNs and transformer‑based architec‑
tures now achieve over 95% accuracy across various
crop diseases. Lightweight models such as MobileNet
and Mobile Plant ViT support smartphone or edge de‑
ployment, while explainable AI (e.g., Grad‑CAM) builds
farmer trust by visually clarifying predictions. Plat‑
forms like YOLOv8 and DS_Fusion Net already support
early‑stage, field‑level monitoring . In India, NITI Aayog
and India AI initiatives, alongside new Centers of Ex‑
cellence, emphasize AI in agriculture. Programs such
as Kissan AI and Dhenu provide real‑time, multilingual
guidance, while pilot projects in Madhya Pradesh and
Punjab demonstrate field deployment [4]. These develop‑
ments alignwith the goal of democratized precision agri‑
culture. AI delivers critical advantages to farmers and
society. By providing rapid, cost‑effective, and highly
accurate diagnostics, especially in rural areas, AI re‑
duces dependence on extension services or experts [5].
Timely detection mitigates yield losses, improves qual‑
ity, and stabilizes income. Because many systems oper‑
ate on smartphones or low‑power devices, they are ac‑
cessible and scalable, extending benefits to underserved
communities. Widespread adoption promotes sustain‑
able farming, food security, and reduced environmen‑
tal impacts by optimizing the use of pesticides and fer‑

tilizers [6]. Moreover, AI strengthens agricultural edu‑
cation, digital infrastructure, and rural empowerment,
while multilingual interfaces integrated with national e‑
agriculture platforms help bridge the digital divide. Tra‑
ditionally, disease detection depended on manual in‑
spections by farmers or officials [7]. While experience‑
based, this method is subjective, time‑consuming, labor‑
intensive, and reliant on expert availability. Delayed di‑
agnosis often accelerates disease spread, causing signifi‑
cant economic losses [8]. The integration of AI with high‑
resolution imaging anddeep learningprovides real‑time,
scalable, and reliable alternatives. Farmers can identify
crop diseases with a smartphone camera, while these
systems adapt through feedback and updated datasets,
ensuring long‑term relevance [9]. This project, there‑
fore, proposes an AI‑driven tool that is lightweight, ac‑
curate, and user‑friendly, specifically designed for mo‑
bile and edge deployment. It supports farmers, agricul‑
tural workers, and researchers in real‑time field‑based
disease surveillance, enhancing crop health, sustainable
practices, and food security. Globally, deep learning and
transformer‑based architectures [10] continue achieving
> 95% accuracy, while explainable AI enhances inter‑
pretability. Lightweight designs like MobileNet and Mo‑
bile Plant ViT extend reach to handheld devices, and
field platforms such as YOLOv8 and DS_Fusion Net en‑
able large‑scale monitoring [11]. In India, government
programs under NITI Aayog and India AI, alongside pi‑
lot projects, reinforce AI‑driven infrastructure, while
initiatives like Kissan AI and Dhenu provide multilin‑
gual advisory systems. These developments signify cru‑
cial progress toward accessible, democratized diagnos‑
tics [12]. The societal benefits of AI in plant pathol‑
ogy are profound. Farmers gain autonomy and effi‑
ciency, reducing reliance on traditional extension sys‑
tems. Early intervention decreases losses, improves
yield quality, and ensures income stability [13]. At scale,
these tools enhance sustainability, food security, and
environmental protection. Beyond farming, they con‑
tribute to education, digital empowerment, and infras‑
tructure development. Multilingual interfaces and inte‑
gration with national e‑agriculture frameworks ensure
inclusivity. Plant diseases, often manifesting as leaf dis‑
coloration, stains, or fungal growth, pose major threats
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to crop output. Manual inspection, though common, is
limited and inconsistent [14]. AI‑powered solutions of‑
fer transformative alternatives by combining scalability,
precision, and adaptability. By supporting early diagno‑

sis, continuous improvement, and real‑time deployment,
these systems represent a paradigm shift for agriculture.
Ultimately, they empower farmers, improve sustainabil‑
ity, and safeguard global food security (Figure 1).

Figure 1. Model training of the plant village dataset.

Delays in diagnosing plant diseases allow rapid
spread, leading to significant crop and financial losses [15].
Recent advances in AI and computer vision have trans‑
formed plant disease detection, enabling farmers to iden‑
tify illnesses using only a smartphone camera, combined
with deep learning and high‑resolution images [16]. These
AI‑driven tools provide fast, scalable, and reliable diag‑
noses and can be deployed on mobile platforms linked
with regional databases and advisory systems to moni‑
tor outbreaks. Continuous updates and user feedback fur‑
ther improve their accuracy and adaptability across vari‑
ous locations and seasons. This study focuses on devel‑
oping a portable, precise, and user‑friendly AI‑based tool
for real‑time field diagnosis, supporting sustainable agri‑
culture and food security.

2. Materials and Methods

2.1. Dataset

The dataset utilised in this study is sourced from
the publicly available Plant Village. The dataset, a pro‑
minent and widely utilised benchmark repository in
plant pathology and artificial intelligence, established
and subsequently hosted on platforms like Kaggle,
contains over 50,000 high‑resolution images of plant
leaves, annotated with labels indicating both healthy
states and various disease categories. The photos con‑
tain 14 distinct crop species, including tomato, potato,

corn, grape, and bell pepper, and cover over 38 varieties
of plant illnesses induced by pathogens such as fun‑
gus, bacteria, and viruses. This study specifically con‑
centrated on three commercially significant and widely
farmed crops: tomato (Solanum lycopersicum), potato
(Solanum tuberosum), and bell pepper (Capsicum an‑
nuum). Fifteen unique classes were curated from the
dataset, encompassing both healthy and diseased leaf
photos for these crops. Every image underwent pre‑
processing and resizing to ensure uniformity through‑
out the dataset, hence optimising performance during
model training and evaluation. The diversity, richness,
and quality of the Plant Village dataset render it an op‑
timal basis for training deep learning models to accu‑
rately identify and categorise plant diseases in a robust
and scalable manner.

2.2. Preprocessing

To ensure optimal performance of the convolu‑
tional neural network model for plant disease diagno‑
sis, a comprehensive preprocessing pipeline was imple‑
mented to prepare the Plant Village dataset images for
training and inference. Preprocessing is a critical step in
deep learning workflows, as it standardises input data,
reduces computational overhead, and enhances model
robustness against real‑world variability. The prepro‑
cessing steps included image resizing, pixel value nor‑
malisation, data augmentation, conversion to NumPy ar‑
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rays, and batching. Each step was carefully designed to
maintain the integrity of visual features essential for ac‑
curate disease classification while ensuring compatibil‑
itywith the deep learning framework andminimising er‑
rors during training and inference [17].
2.2.1. Image Resizing

All images in the dataset were resized to a uni‑
form resolution of 126 × 126 pixels. This resolution
was chosen as a balance between preserving essential vi‑
sual features, such as leaf textures and disease‑specific
patterns (e.g., spots, discolouration, or wilting), and re‑
ducing computational complexity. High‑resolution im‑
ages, while rich in detail, significantly increase the mem‑
ory and processing requirements of convolutional neu‑
ral networks, which can be prohibitive for deployment
on resource‑constrained devices, such as smartphones
or edge hardware used by farmers in rural settings [11].
The 126 × 126 resolution ensures that critical diagnos‑
tic features, such as lesion shape and distribution, re‑
main discernible while enabling efficient computation.
Resizing was performed using bilinear interpolation, a
method that smooths pixel transitions to prevent the
loss of subtle disease indicators, ensuring that the re‑
sized images retain sufficient detail for accurate classi‑
fication.
2.2.2. Pixel Value Normalisation

To enhance training efficiency and model conver‑
gence, pixel values of all images were normalised to a
range of 0–1. Raw image pixel values typically range
from 0 to 255 in RGB format, which can lead to numeri‑
cal instability during gradient‑based optimisation due to
large value ranges. Normalisationwas achieved by divid‑
ing each pixel value by 255, transforming the data into a
standardised scale. This process stabilises the training
process by ensuring that the gradients computed during
backpropagation are within a manageable range, facili‑
tating faster convergence and reducing the risk of vanish‑
ing or exploding gradients [16]. Additionally, normalisa‑
tion aligns the input data distribution with the expecta‑
tions of the pre‑trainedMobileNet model, which was ini‑
tialised with ImageNet weights, thereby improving the
effectiveness of transfer learning for plant disease classi‑
fication.

2.2.3. Data Augmentation
To increase the diversity of the training dataset and

improve the model’s robustness against real‑world vari‑
ations, a suite of data augmentation techniques was ap‑
plied. These techniques simulate natural variations in
field conditions [18], such as differences in lighting, orien‑
tation, and perspective, which are common when farm‑
ers capture images using smartphones. The augmenta‑
tion methods included:

• Random Rotations: Images were rotated by ran‑
dom angles between −30 and 30 degrees to account
for variations in how leaves arephotographed in the
field. This helps themodel generalise to images cap‑
tured from different angles, such as tilted or upside‑
down orientations.

• Horizontal and Vertical Flips: Random flipping of
images along the horizontal and vertical axes was
applied to mimic natural variations in leaf position‑
ing. This ensures that themodel learns to recognise
disease patterns regardless of the leaf’s orientation.

• Brightness Adjustments: Randombrightness shif‑
ts within a range of ± 20% were applied to simu‑
late variations in lighting conditions, such as images
taken under sunlight, shade, or artificial light [8].
This enhances the model’s ability to handle diverse
environmental conditions.

• ZoomandCropping: Randomzooming (up to 10%)
and cropping were used to simulate partial leaf visi‑
bility or varying distances between the camera and
the leaf, ensuring robustness to incomplete or close‑
up images.

• Shear Transformations: Slight shear transforma‑
tions (up to 15 degrees) [13] were applied to mimic
distortions caused by camera angles, further en‑
hancing model generalisation.

Data augmentation effectively increases the effective
size of the dataset without requiring additional data col‑
lection, mitigating overfitting and improving the model’s
ability to generalise to unseen images. This is particu‑
larly important for the Plant Village dataset, which, despite
its richness (over 50,000 images), may not fully capture
the variability encountered in real‑world agricultural set‑
tings [19]. By applying these augmentations, the model be‑
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comes more resilient to challenges such as inconsistent
lighting, varying image quality, and diverse leaf orienta‑
tions, which are critical for practical deployment in field‑
based diagnostics.
2.2.4. Conversion to NumPy Arrays

Images were converted into NumPy arrays to fa‑
cilitate efficient processing within the TensorFlow and
Keras frameworks. NumPy arrays provide a compact
and computationally efficient format for representing
multidimensional imagedata, enabling seamless integra‑
tion with the convolutional neural network model. Each
image, originally in a standard image format (e.g., JPEG),
was transformed into a three‑dimensional arrayof shape
(126, 126, 3), corresponding to the height, width, and
RGB colour channels. This conversion ensures compati‑
bility with the model’s input layer and enables rapid ma‑
trix operations during training and inference [20]. The
use of NumPy arrays also simplifies data manipulation,
such as batching and shuffling, which are essential for
efficient model training.
2.2.5. Batching andData PipelineOptimisa‑

tion
To streamlinemodel training and inference, images

were organised into batches of 32 samples. Batching
reduces memory usage by processing data in smaller
chunks, allowing the model to handle large datasets like
Plant Village without overwhelming system resources.
The dataset was split into training (70%), validation
(20%), and testing (10%) sets to support model devel‑
opment and evaluation. A data pipeline was established
using TensorFlow’s tf.data API to automate the loading,
preprocessing, and batching of images. This pipeline in‑
cluded shuffling to ensure the randomisation of train‑
ing samples, prefetching to reduce I/O bottlenecks, and
caching to minimise redundant preprocessing, thereby
improving training efficiency [21]. These optimisations
ensured that themodel could process the dataset quickly
and consistently, reducing training time and enhancing
scalability for real‑time applications.
2.2.6. Rationale and Impact

The preprocessing pipeline was designed to ad‑
dress the unique challenges of plant disease diagnosis
in real‑world agricultural settings. By resizing images,

the system achieves computational efficiency, making
it feasible for deployment on low‑power devices com‑
monly used by farmers. Normalisation ensures numer‑
ical stability, enabling the model to leverage pre‑trained
weights effectively. Data augmentation enhances robust‑
ness, allowing the model to handle diverse field condi‑
tions, such as varying lighting or camera angles, which
are common in images captured by non‑expert users.
Conversion to NumPy arrays and batching optimise the
data pipeline, ensuring compatibility with deep learn‑
ing frameworks and enabling efficient training on large
datasets [19].

These steps collectively minimise errors during
training and inference by ensuring data consistency and
reducing the risk of overfitting. For example, augmen‑
tation mitigates the risk of the model memorising spe‑
cific image patterns, while normalisation and batching
improve convergence and computational efficiency. The
preprocessing pipeline is particularly critical for the sys‑
tem’s target audience—farmers, researchers, and educa‑
tors in resource‑constrained environments—where ro‑
bust and efficient performance is essential for practical
adoption. By addressing these technical requirements,
the preprocessing steps lay a strong foundation for the
CNN model to achieve high accuracy (~95%) in classify‑
ing plant diseases, as demonstrated in the results.

2.2.7. Considerations for Real‑World Appli‑
cability

In designing the preprocessing pipeline, special at‑
tention was given to its applicability in real‑world agri‑
cultural contexts. The choice of a 126  × 126 resolu‑
tion ensures compatibility with low‑resolution cameras
found in budget smartphones, which are widely used
in rural areas. Data augmentation techniques were se‑
lected to reflect common challenges in field photogra‑
phy, such as variable lighting and partial leaf visibil‑
ity, ensuring that the model performs reliably under di‑
verse conditions. Furthermore, the pipeline’s modular
design allows for easy adaptation to other datasets or
crops, supporting future expansions of the system. For
instance, additional augmentation techniques, such as
colour jittering or noise injection, could be incorporated
to handle specific environmental challenges, such as im‑
ages taken in foggy or dusty conditions [12].
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The preprocessing steps also consider the con‑
straints of edge devices, where computational resources
are limited. By optimising image size and processing effi‑
ciency, the pipeline ensures that the system can operate
on devices with minimal hardware specifications, such
as low‑end smartphones or embedded systems. This
aligns with the project’s goal of democratising precision
agriculture,making advanceddiagnostic tools accessible
to farmers in under‑resourced regions. Future improve‑
ments to the pipeline could include adaptive preprocess‑
ing techniques that adjust based on input image quality
or device capabilities, further enhancing usability and
performance.

2.3. Model Architecture

The core of the system is a pre‑trained convolutional
neural network based on theMobileNet architecture, fine‑
tuned for the specific task of plant disease classification.

Mobile Net’s lightweight design, utilising depth‑wise sep‑
arable convolutions, makes it ideal for deployment on
resource‑constrained devices like smartphones and edge
hardware [21]. The model was initialised with weights
pre‑trained on the ImageNet dataset, leveraging transfer
learning to reduce training time and computational re‑
sources while achieving high accuracy.

The architecture was customised by adding dense
layers tailored to the 15‑class classification task. Squeeze‑
and‑excitation (SE) blocks were incorporated to enhance
feature recalibration, allowing the model to focus on
disease‑specific patterns in leaf images [22]. The model
outputs a probability distribution across the 15 classes,
with the highest probability class selected as the pre‑
dicted disease or healthy state. The Adam optimiser
was used with a learning rate of 0.001, and categorical
cross‑entropy was employed as the loss function to han‑
dle multi‑class classification (Figure 2).

Figure 2. Model accuracy of the plant village dataset.
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2.4. Metadata Mapping and Enrichment

Each class label is linked to a structured dictionary
containing detailed metadata, which includes:

• Plant type (e.g., Tomato, Potato, Bell Pepper)
• Taxonomical name (e.g., Solanum lycopersicum)
• Disease name and condition (e.g., Early Blight,

Healthy)
• Cause or pathogen (e.g., Alternaria solani, Xan‑

thomonas spp.)
• Nutrient deficiency symptoms that may mimic the

disease
• Diagnostic features (e.g., leaf spots, mold appear‑

ance, leaf curling)

2.5. System Implementation

The system was developed using Python version
3.10withTensorFlowandKeras formodel trainingand in‑
ference. The Rich Python library was integrated to create
a visually appealing, color‑coded command‑line interface.
Upon receiving an input image, the system processes it
through the Convolutional Neural Network model, gener‑
ates a prediction, and displays the results in a structured
panel. The panel includes the predicted disease, confi‑
dence score, and detailed metadata, formatted for clarity
and accessibility. Matplotlib was used to display the in‑
put image alongside diagnostic outputs, enhancing user
understanding. The application was designed for deploy‑
ment on web and mobile platforms, with a focus on low
computational requirements. This ensures compatibility
with low‑power devices commonly used by farmers in ru‑
ral settings. The system’s modular design allows for easy
updates, such as adding new crop species or diseases, en‑
suring long‑term relevance [23].

3. Results and Discussion
The developed system accurately classifies plant dis‑

eases and generates informative diagnostic reports be‑
yond a simple healthy/diseased outcome. Each prediction
begins with the plant’s scientific and common names, en‑
suring clarity for both farmers and researchers [24]. The
system then identifies the disease and its causal agent,
while describing characteristic symptoms such as leaf

spots, wilting, chlorosis, or necrosis. This structured out‑
put supports field‑based diagnosis, providing users with
deeper insights into the problem. A notable strength of
the system is its ability to reduce diagnostic confusion
by addressing nutrient deficiency conditions that mimic
diseases [25]. For instance, nitrogen, potassium, or mag‑
nesium deficiencies may cause leaf yellowing or spotting,
which resembles fungal or bacterial infections. By high‑
lighting these overlaps and offering guidance on distin‑
guishing nutrient stress from true disease, the tool helps
minimize misdiagnosis. Another distinctive feature is the
inclusion of a confidence score that quantifies the relia‑
bility of predictions [26]. Expressed as a percentage, the
score is categorized as high (> 85%), moderate (70–85%),
or low (< 70%). For example, when analyzing a tomato
leaf, the system might report: “Tomato (Solanum lycoper‑
sicum) – Diseased – Septoria Leaf Spot,” with details on
typical symptoms, such as brown spots with grey centers
and yellow halos, and a confidence level of 92% (high).
If confidence is below 70%, the system advises expert
consultation, preventing reliance on uncertain results [27].
By combining scientific naming, causal agent identifica‑
tion, detailed symptom descriptions, differential diagno‑
sis with nutrient deficiencies, and measurable confidence
levels, the system delivers a holistic diagnostic frame‑
work [28]. This approach not only improves diagnostic ac‑
curacy but also builds user trust, empowering farmers and
researchers with actionable insights for sustainable crop
management.

3.1. Visualization and User Interaction
The Rich Python package is utilised to develop an

interesting and interactive command‑line user experi‑
ence (Figure 3). Upon prediction, the system presents
the input image, succeeded by a structured panel that in‑
cludes comprehensive diagnostic information. This im‑
proves the interpretability of the AI system, enabling
users without a technical background to get benefits
from the results.

For example, when an image of a tomato leaf with
Septoria Leaf Spot is analyzed (Figure 4), themodel accu‑
rately detects the condition, displays “Tomato (Solanum
lycopersicum) – Diseased – Septoria Leaf Spot,” and in‑
cludes the specific symptoms and causes associated with
this disease.
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Figure 3. Home page of the web application.
Source: https://plant‑disease‑diagnosis‑5rbyj9jzfa4cbf2q2pn5j2.streamlit.app/

Figure 4. Result of uploaded image.

3.2. Visual Feedback

• Display of the original input image usingMatplotlib.
• Styled console panel with diagnosis details.
• Highlighted confidence score with advisory if confi‑

dence is low.

3.3. Sample Input Images

• Tomato leaf.

• Alternia leaf (Figure 5)

3.4. Model Summary

• Pre‑trained Convolutional Neural Network model
with custom final layers (Figure 6).

• Accuracy: ~95% on test set.
• Optimizer: Adam.
• Loss Function: Categorical Cross‑entropy.
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Figure 5. Uploaded image.

Figure 6. Model summary.

3.5. Confidence Thresholds

• High confidence: > 85%.
• Moderate confidence: 70–85%.
• Lowconfidence: < 70%(prompt user to seek expert

validation).

The application of artificial intelligence (AI) in
plant disease detection offers revolutionary benefits for
contemporary agriculture. AI dramatically decreases
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the time and labour historically necessary to diagnose
crop illnesses throughautomation. Tasks that previously
required hours or days of visual analysis by skilled plant
pathologists can now be accomplished in seconds us‑
ing a smartphone and a trained model [29]. In agricul‑
ture, where prompt action can determine the preserva‑
tion or total loss of a harvest, the swift response time
is particularly advantageous. A notable advantage of
these systems is their appropriateness for field deploy‑
ment. In contrast to traditional laboratory diagnoses or
expert consultations, AI‑driven solutions can function
on low‑power mobile devices with minimal hardware
specifications. This makes them particularly advanta‑
geous in remote and rural regions where access to agri‑
cultural extension agencies, laboratories, or skilled pro‑
fessionals is either limited or non‑existent. In these sit‑
uations, farmers can obtain immediate feedback by pho‑
tographing a diseased leaf, which provides both disease
categorisation and suggested interventions. The func‑
tionality of these systems is augmented by the integra‑
tion of user interface libraries, such as Rich, which facil‑
itate lively, organised, and interactive command‑line or
terminal outputs. Such functionality enhances user en‑
gagement and accessibility for persons with little tech‑
nical proficiency—an essential consideration when de‑
veloping applications intended for broad use by farmers,
students, or educators. Enhancing the system’s visual
intuitiveness is essential for broad acceptance, particu‑
larly in multilingual, multi‑literate agricultural commu‑
nities [30]. Nonetheless, despite the considerable advan‑
tages, existing solutions encounter specific restrictions.
The AI model is trained on a predetermined dataset, sig‑
nifying its capacity to identify a limited array of plant
illnesses for designated crops. Should a novel illness
arise or if the user provides an image of a plant ab‑
sent from the training data, the system may yield er‑
roneous results or be unable to generate a prediction.
The model’s accuracy is significantly contingent upon
image quality. Blurry, inadequately illuminated, or par‑
tially concealed leavesmay impede the classificationpro‑
cess [16]. Complicated real‑world situations, including
concurrent infections, pest infestations, or environmen‑
tal stressors (e.g., nutrient deficiencies or climatic im‑
pacts), can undermine the system’s reliability, as these

conditionsmay be inadequately represented in the train‑
ing dataset. Notwithstanding these constraints, the ex‑
isting system provides a solid basis for forthcoming ad‑
vancements. Numerous improvements can be antici‑
pated to broaden its reach and efficacy.

4. Practical Implications

The system’s ability to deliver rapid and accurate di‑
agnoses has significant implications for agriculture. Au‑
tomating disease detection reduces the time and labour
required compared to traditional methods, which can
take hours or days. This is particularly critical in time‑
sensitive agricultural contexts, where early intervention
can prevent widespread crop losses [31]. The system’s
compatibility with mobile devices makes it accessible to
farmers in remote areas, where access to extension ser‑
vices is limited. For example, a farmer in rural India can
photograph a diseased leaf using a smartphone, receive
an immediate diagnosis, and access recommendations
for treatment, all without leaving the field. The integra‑
tion of the Rich Python library enhances usability by pre‑
senting complex diagnostic information in an intuitive
format. This is especially valuable in multilingual and
multi‑literate communities, where clear communication
is essential for adoption [32]. The system’s educational
value is further amplified by its detailedmetadata, which
can be used in agricultural training programmes to teach
students and farmers about plant pathology and disease
management.

5. Limitations and Challenges

Despite its strengths, the systemhas limitations that
require careful consideration. The scope of the Plant Vil‑
lage dataset, which includes a finite set of crops and dis‑
eases, constrains the model’s performance. Novel dis‑
eases or crops not represented in the dataset may lead to
inaccurate predictions. Additionally, image quality is cru‑
cial; blurry, poorly lit, or partially obscured images can
decrease the accuracy of classification [33]. Additionally,
real‑world complexities, such as co‑occurring diseases,
pest damage, or environmental stressors,maynot be fully
captured in the training data, which can potentially affect
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reliability. The system’s reliance on a command‑line in‑
terface, while innovative, may pose challenges for users
unfamiliar with terminal‑based applications. Future iter‑
ations aim to address those issues by developing a graphi‑
cal user interface (GUI) forweb andmobile platforms, fur‑
ther enhancing accessibility. Finally, the model’s compu‑
tational requirements, while optimised, may still be chal‑
lenging for older or low‑spec devices, necessitating fur‑
ther light‑weighting efforts [34].

6. Conclusions
This initiative demonstrates howAI anddeep learn‑

ing can significantly improve plant health management
by providing fast, accurate, and reliable disease diag‑
nosis. Using a CNN model combined with an intuitive
console interface, the system empowers farmers, re‑
searchers, and agricultural consultants to quickly iden‑
tify plant illnesses and take corrective action. By in‑
tegrating biological taxonomy with diagnostic details,
the tool not only supports decision‑making but also en‑
hances learning and awareness. Looking ahead, future
developments include deploying the model as a mo‑
bile application, expanding the dataset to cover more
crops and conditions, and adding multilingual support
to make the technology accessible to diverse user com‑
munities, thereby advancing plant health improvements
on a broader scale.

Future improvements will focus on expanding the
dataset to includemore crop species and diseases, adding
multilingual support to reach diverse user groups, and de‑
veloping a mobile app with an intuitive interface for eas‑
ier use. The system will also integrate with IoT devices
for real‑time field monitoring and adopt explainable AI
methods like Grad‑CAM to offer graphic representations
of predictions. Together, these enhancements will make
the tool more scalable, accessible, and reliable across var‑
ied agricultural contexts.
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