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Abstract: Coupled oscillations of ring lattices with different types of dielectric resonators are considered. New
analytical equations for complex frequencies and amplitudes of resonators, without restrictions on their number,
are obtained. General analytical solutions for the frequencies and amplitudes of coupled oscillations for different
ring lattices built on different resonators are found. It is noted that the obtained equations are also suitable for de‑
scribing coupled oscillations of a ring lattices with degenerate oscillations of resonators, as well as with structures
that contain ring lattices with different number elements. In general, the solutions for eigen waves propagating in
periodic ring structures of DR are found. The solutions for several ring lattices consisting of two, three and four
resonators of different types are compared with the numerical values found from the eigenvalues of the general
coupling matrix. Good agreement between the analytical and the numerical results of calculating of the coupling
matrix eigenvalues is demonstrated. The developed theory is the basis for the design and optimization of param‑
eters of different devices of the microwave, theraherz and optical wavelength ranges, that built on a large number
of dielectric resonators of various types. New equations obtained for calculating coupled oscillations of dielectric
resonators also allow buildmore efϐicient models of scattering for optimization of various dielectric metamaterials.
Keywords: Dielectric Resonator; Coupled Oscillations; Ring Lattice; Circulant Matrix

1. Introduction
Today lattices of dielectric resonators (DR) ϐind application in many different devices of the microwave, ther‑

aherce, infrared and optical wavelength ranges [1–4]. It’s may be used in antennas [5–7]; ϐilters [8–10]; sensors
[11,12]; multiplexers [13]; modulators [14] and ather [15–21]. At the same time, many metamaterials differ from
each other both in the shape and types of resonator oscillations, and in macroscopic characteristics–the structure
and macroform of the lattices. Among them, ring lattices, characterized by the highest quality factor of coupled
oscillations, are of considerable interest. Such lattices, as a rule, contain a very large number of elements, which
signiϐicantly complicates optimization of their parameters.

The calculation of devices built on lattices of dielectric resonators more often based on the use of numerical
methods. Numerical methods have great ϐlexibility, but at the same time, they provide very little information about
oscillatory processes and, in addition, require the use of signiϐicant computing resources. Therefore, the analysis
of complex systems based on the use of Maxwell’s equations and physical modeling continues to play an important
role in understanding the behavior of electromagnetic ϐields in various structures.

In [22] analytical theory of scattering of electromagnetic waves on systems of dielectric resonators, based on
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the use of perturbation theory, is developed. The presented theory is based on the decomposition of electromag‑
netic scattering ϐields into coupled oscillations of complex systems of resonators. In this case, the central role is
played by knowledge of the basis functions that display all possible lattice oscillations near a ϐixed frequency mode
of an isolated partial resonator.

Obtaining the basis functions of coupled oscillations is a rather complex task, especially in cases when the
number of resonators is very large. The lattices of dilectric resonators typically contain hundreds of elements, so
constructing basis functions of their natural oscillations is a complex task, the solution ofwhich presents signiϐicant
difϐiculties. However, in some cases, the basis functions ofmany elemental structures can be calculated in analytical
form.

The aimof this study is to obtaining analytical solutions of basis functions of coupled oscillation for ring lattices
of different dielectric resonatjrs with big number elements.

Section 2 of this work provides the basic deϐinitions and also presents the initial equations obtained earlier for
describing the coupled oscillations of dielectric resonators.

Section 3 examines the coupled oscillations of a system of identical DRs placed in a simple ring lattice.
In Section 4, a general system of equations is derived for the amplitudes of coupled oscillations of resonators of

a ϐinite number of axially symmetric ring lattices that contain the same number of elements. The general properties
of the obtained equations are investigated. An approximate solution to the system of equations is found, taking into
account the coupling between adjacent ring sublattices. The solution of the equation system for an inϐinite periodic
structure of identical ring lattices DR is given. Dispersion equations that determine the dependence of the complex
amplitudes of the resonators on frequency are obtained.

In Section 5, using the equations found in Section 4, the conditions describing the natural oscillations of ring
lattices with degenerate oscillations of resonators are discussed.

Section 6 discusses various types of symmetry in coupled ring sublattices that simplify the calculation of cou‑
pled DR.

Section 7 discusses the possibility of generalizing the results of the theory to describe the natural oscillations
of ring lattices with different (multiple) numbers of resonators.

Section 8 provides examples of calculating the frequencies of various ring lattices, found by solving the system
of equations derived in Section 4. The obtained results are compared with the data found from the calculation of
the eigenvalues of the general coupling matrix.

The Conclusion notes a signiϐicant gain in the volume and speed of calculations of the frequencies and basis
functions of complex ring structures of the DR, obtained by using the system of equations proposed in the work.

2. Coupled Oscillations of Dielctric Resonators
In the Trubin (2024) [22] it’s looked for a solution to the common problem of coupled oscillations of a system

consisting of 𝑁 DRs. It was assumed that all isolated resonators have the same natural frequency 𝜔0, but they can
have different sizes or be made of different dielectrics. A solution for the electromagnetic ϐield ቀሬ⃗𝑒, ሬሬ⃗ℎቁ of 𝑁 DR
coupled oscillation was obtained in the form of an expansion on the ϐields of isolated resonators ቀሬ⃗𝑒𝑠 , ሬሬ⃗ℎ𝑠ቁ (es, hs):

ቆሬ⃗eሬሬ⃗hቇ =෍
𝑁

𝑠=1
𝑏𝑠 ቆ

ሬ⃗𝑒𝑠
ሬሬ⃗ℎs
ቇ (1)

In general, using perturbation theory, was obtained linear homogeneous equation system for unknown ampli‑
tudes ‖𝑏𝑠‖ (1):

෍
𝑁

𝑠=1
𝜅𝑠𝑡𝑏𝑠 − 𝜆𝑏𝑡 = 0; (𝑠, 𝑡 = 1, 2, … , 𝑁) (2)

where
𝜆 = 2 (𝜔̃ − 𝜔0)

𝜔0
= 2ቆδ𝜔𝜔0

+ 𝑖𝜔"
𝜔0

ቇ (3)

𝜔̃ ‑ complex frequency of coupled oscillations of the DR system;𝜔0‑ real part of the frequency of isolated DR; δ𝜔 =
𝑅𝑒(𝜔̃ − 𝜔0); 𝜔" = 𝐼𝑚(𝜔̃).
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The distribution of the amplitudes of coupled oscillations of resonators ⟦𝑏𝑠 ⟧was formulated as an eigenvalue
problem for a ϐinite‑dimensional coupling operator K= ‖𝜅𝑠𝑡‖:

𝐾 =
⎛
⎜⎜

⎝

𝑖𝑘̃1 𝜅21 𝜅31 … 𝜅𝑁,1
𝜅12 𝑖𝑘̃2 𝜅32 … 𝜅𝑁,2
⋮

𝜅1,𝑁−1
𝜅1,𝑁

⋮
𝜅2,𝑁−1
𝜅2,𝑁

⋮
𝜅3,𝑁−1
𝜅3,𝑁

⋮
…
…

⋮
𝜅𝑁,𝑁−1
𝑖𝑘̃𝑁

⎞
⎟⎟

⎠

(4)

where 𝜅𝑠𝑡 ≠ 𝜅𝑡𝑠 ‑ are mutual coupling coefϐicients of a 𝑠–th and 𝑡–th different DR deϐined as Trubin (2024) [22]:

𝜅𝑠𝑡 =
𝑖

2𝜔0𝑤𝑡(1 + δ𝑠𝑡)
ර ቄቂሬ⃗𝑒𝑠 , ሬሬ⃗ℎ∗𝑡ቃ + ቂሬ⃗𝑒∗𝑡 , ሬሬ⃗ℎ𝑠ቃቅ ሬሬ⃗𝑛𝑑𝑠,

where; ሬሬ⃗𝑛 ‑ normal to surface 𝑠𝑡 of the 𝑡‑ th DR, and 𝑤𝑡 ‑ energy stored in a dielectric of the 𝑡‑ th resonator; δ𝑠𝑡‑
Kronecker symbol, 𝑖 = √−1; ∗ ‑ complex conjugate symbol.It has been shown by Trubin (2024) [22], that diag‑
onal elements of the matrix 𝐾 is determined only by the magnitude of the radiation of 𝑠 ‑ th partial resonators,
represented by coupling coefϐicients ̃𝑘𝑠 with external structure (𝑠 = 1, 2, … ,𝑁):

𝑘̃𝑠 = 1/𝑄Σ
𝑠 ,

𝑄Σ
𝑠 ‑ the radiation quality factor of the 𝑠‑th resonator into the external structure.

Equating to zero, the determinant of the system (2), was obtained the characteristic equation, the solution of
which determines the complex frequency splitting that arises due to the electromagnetic inϐluence of the resonators.
In a case of non‑degenerate oscillations, to each value of the frequency ̃𝜔𝑠 = 𝜔𝑠+𝑖𝜔𝑠″ ( 𝑠 = 1, 2, … ,𝑁 ) corresponds
its own column vector:

⟦𝑏𝑠𝑡 ⟧ =
⎛
⎜

⎝

𝑏𝑠1
𝑏𝑠2
⋮
𝑏𝑠𝑁

⎞
⎟

⎠

(𝑠, 𝑡 = 1, 2, … , 𝑁) (5)

of the couplingoperator𝐾 (4), determining thedistributionof amplitudesof partial resonators. Thus, in the absence
of degeneracy, a system consisting of𝑁 resonators is characterized by a𝑁 × 𝑁matrix of amplitudes:

𝐵 = ⎛
⎜

⎝

𝑏11 𝑏21 … 𝑏𝑁1
𝑏12 𝑏22 … 𝑏𝑁2
⋮
𝑏1𝑁

⋮
𝑏2𝑁

⋮
…

⋮
𝑏𝑁𝑁

⎞
⎟

⎠

(6)

In the general cases, the solution of the system (2) is carried out numerically, but, in some cases can be found
in analytical form, which signiϐicantly simpliϐied and increases the speed of calculations, especially for large DR
systems (𝑁 ≫ 1).

In this study we will ϐind solutions to the system of Equation (2) in analytical form for different ring lattices,
containing DR of different types.

3. Coupled Oscillations of One Ring Lattice of Identical Dielctric Resonators
At beginning we have considered particular solutions of (2) for a simple ring lattice of identical DRs. In this

case we assumed that all coupling coefϐicients of the resonators with the external structure are equal to each other.
𝑘̃𝑠 = 𝑘̃0 (𝑠 = 1, 2, … , 𝑁). We assumed that each resonator, (indicated by a circle in Figure 1a), is located at the
vertex of a regular polygon.

It’s also assumed that the coupling coefϐicients of the identical resonators satisfy conditions to the symmetry:
𝜅𝑠𝑡 = 𝜅𝑡𝑠 and translation: 𝜅𝑠𝑡 = 𝜅|𝑠−𝑡| (𝑠, 𝑡 = 1, 2, … , 𝑁 − 1 ).
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The last condition can also be rewritten in the form: 𝜅𝑠𝑡 = 𝜅𝑣 = 𝜅−𝑣 , where 𝑣 = |𝑠 − 𝑡|. In this case, matrix (4)
becomes a circulant matrix [23,24]; the elements of each row are obtained by cyclically permuting the elements of
the previous one.

Figure 1. Ring lattices of 𝑁 identical DRs (a). All dielectric resonators are indicated by circles; the coefϐicients of
mutual coupling between them are indicated by straight lines connecting the resonators. Distribution of complex
eigenvalues of the coupling matrix (4). (b) for lattice with 𝑁 = 11 DR; the coupling coefϐicients of the resonators
with external structure: 𝑘̃0 = 0, 5; mutual coupling coefϐicients: 𝜅1 = 0, 3+0, 3𝑖; 𝜅2 = 0, 25+0, 1𝑖; 𝜅3 = 0, 2−0, 1𝑖;
𝜅4 = 0, 15 − 0, 2𝑖; 𝜅5 = 0, 1 + 0, 1𝑖. (Here and below, the numerical values of the coupling coefϐicients was taken
arbitrarily). The results of comparison of the eigenvalues of 11 DR ring structure, found numerically (points) and
calculated using formula (7) (crosses).

The eigenvalues of such a circulant matrix are well known [23,24]. For the deϐined above coupling operator
(4):

𝜆𝑗 = 𝑖𝑘̃0 +෍
𝑁−1

𝑣=1
𝜅𝑣(η𝑗)𝑣 (7)

where
η𝑗 = exp(2𝜋𝑖𝑁 𝑗); (𝑗 = 0, 1, … , 𝑁 − 1)

is the 𝑗‑th complex 𝑁‑th root of unity.
The matrix of normalized eigenvectors of a circulant matrix has the form [24]:

ሬ⃗𝑏𝑗𝑜 =
1
√𝑁

⎛
⎜

⎝

1
η1𝑗
⋮

η𝑁−1𝑗

⎞
⎟

⎠

(1)

or from (6):

𝐵 = 1
√𝑁

⎛
⎜⎜

⎝

1 1 ⋯ 1
1 η1 ⋯ η𝑁−1
1
⋮
1

η21
⋮

η𝑁−11

⋯
⋮
⋯

η2𝑁−1
⋮

η𝑁−1𝑁−1

⎞
⎟⎟

⎠

(2)

As follows from (7), (3), the frequencies of natural oscillations of regular ring lattices of identical DRs are linear
functions of the coupling coefϐicients, and the eigenvectors (8, 9) do not depend on the coupling coefϐicients at all,
but are determined only by the number of resonators in the structure.

Figure 1b shows the result of comparison of the eigenvalues of the ring structure of 11 DR, found numerically
(points) and calculated using formula (7) (crosses).
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4. Coupling Oscillations of Several Ring Lattices of Different Dielctric Resonators
Axially symmetric ring latticeswith the same number of elements, each ofwhich contains DR of different types,

allows an analytical description of coupled oscillations in a general form.
In the ϐigures below we designated M ring lattices of different DR. The ϐirst lattice were designated by the

number 1 ; the second lattice by the number 2 and the Mth lattice by the numberM. In all the ϐigures, resonators of
different types were indicated by circles of different sizes. To improve perception, all resonators of one sublattice
were connected by lines.

The equations describing the coupled oscillations of ring lattices of resonators of different types are also de‑
scribed by the same system of Equation (2), but we need taking into account the asymmetry of the coupling coefϐi‑
cients between resonators of different types: 𝜅𝑢𝑤𝑠𝑡 ≠ 𝜅𝑢𝑤𝑡𝑠 if 𝑢 ≠ 𝑤. We used indices in the upper part of the coupling
coefϐicients to denote the numbers of the ring lattices, and indices in the lower part of the coupling coefϐicients to
denote the numbers of the resonators in the structure. In this case, 𝑠 ∈ 𝑢 th lattice and 𝑡 ∈ 𝑤 th lattice.

We also proposed that each ring lattice contains the same number of resonators denoted N. All sublattices are
located axially symmetrically relative to the allocated common axis. Moreover, they may not be located in the same
spatial plane.

As follows from (8), all eigenvectors of isolated ring lattices are the same, however, for ease of perception, we
have designated each of the vectors of the𝑤‑th lattice by:

ሬ⃗𝑏𝑗𝑜 = ሬ⃗𝑏𝑤𝑗𝑜 = ⎛
⎜

⎝

𝑏𝑤𝑗1
𝑏𝑤𝑗2
⋮

𝑏𝑤𝑗𝑁

⎞
⎟

⎠

(10)

(𝑤 = 1, 2, … ,𝑀; 𝑗 = 0, 1, … , 𝑁 − 1)
The 𝑗‑th eigenvector (7) of the coupling operator of the𝑤‑th isolated ring lattice obeys the equation:

ቀ𝑖𝑘̃𝑤 − 𝜆𝑤𝑗𝑜 ቁ 𝑏𝑡𝑗𝑜 +෍
𝑁−1

𝑛=1,𝑛≠𝑡
𝜅𝑤𝑛𝑡𝑏𝑛𝑗𝑜 = 0 (11)

(𝑤 = 1, 2, … ,𝑀)
An axially symmetric arrangement of sublattices with the same number of resonators allows reducing the

total number of mutual coupling coefϐicients. We redeϐined the “vector” of mutual coupling between the 𝑠‑th and
𝑤‑th ring sublattices, taking into account the rotational symmetry of the structure, as well as the condition using:
𝜅𝑠𝑤𝑡𝑢 = 𝜅𝑠𝑤𝑡−𝑢:

ሬሬ⃗𝐾𝑢𝑤 = ⎛
⎜

⎝

𝜅𝑢𝑤0
𝜅𝑢𝑤1
⋮

𝜅𝑢𝑤𝑁−1

⎞
⎟

⎠

(12)

and also redetermined the mutual coupling vector of the resonators of the𝑤‑th sublattice:

ሬሬ⃗𝐾𝑤 = ⎛
⎜

⎝

𝜅𝑤1
𝜅𝑤2
⋮

𝜅𝑤𝑁−1

⎞
⎟

⎠

(13)

We isolated and regrouped the terms in Equation (2), describing to the oscillations of the𝑁×𝑀 resonators, in
the form of partial sums, each of which relates to the oscillations of the selected w‑th and other sublattices:

෍
𝑁×𝑀

𝑠=1
𝜅𝑠𝑡𝑏𝑠−𝜆𝑏𝑡 = ൫𝑖𝑘̃𝑤 − 𝜆൯ 𝑏𝑡 +෍

𝑁−1

𝑛=1,𝑛≠𝑡
𝜅𝑤𝑛𝑡𝑏𝑛 +෍

𝑀

𝑢≠𝑤=1
෍

𝑁−1

𝑣=0
𝜅𝑢𝑤𝑣𝑡 𝑏𝑣 = 0 (14)

where, 𝑡 = 1, 2, … ,𝑁 ×𝑀;𝑤 = 1, 2, … ,𝑀.
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The solution of system (14) for the 𝑗‑th type of coupled oscillations of the resonators of the𝑤‑th sublattice was
sought in the form:

ሬ⃗𝑏(𝑗) = 𝑎𝑤 ሬ⃗𝑏𝑗𝑜 (15)
Thus, in fact we assumed that the amplitude distribution in a complex coupled structure of resonators pre‑

serves the amplitude distribution characteristic of the natural oscillations of isolated ring sublattices (9). The pres‑
ence of resonators of other sublattices, in the accepted conditions of symmetry, changes only the amplitudes 𝑎𝑤 of
the coupled oscillations.

Substituting (15) into (14), and then multiplied (11) by 𝑎𝑤 and subtracted it from (14) we obtained:

ቀ𝜆𝑤𝑗𝑜 − 𝜆ቁ𝑎𝑤𝑏𝑡𝑗𝑜 +෍
𝑀

𝑢≠𝑤=1
ቈ෍

𝑁−1

𝑣=0
𝜅𝑢𝑤𝑣𝑡 𝑏(𝑣)𝑜 ቉ 𝑎𝑢 = 0 (16)

Since the summation ∑𝑁−1
𝑣=0 𝜅𝑢𝑤𝑣𝑡 𝑏

(𝑣)𝑗
𝑜 was carried out over all resonators of the 𝑢‑th sublattice, it does not de‑

pend on the initial values of the indexes:

෍
𝑁−1

𝑣=0
𝜅𝑢𝑤𝑣𝑡 𝑏(𝑣)𝑗𝑜 =෍

𝑁−1

𝑣=0
𝜅𝑢𝑤(𝑡+𝑣)𝑡𝑏

(𝑡+𝑣)𝑗
𝑜 ,

The replacement of variables under the summation sign corresponds to a simple rearrangement of the terms,
so system (16) can be represented as:

ቀ𝜆𝑤𝑗𝑜 − 𝜆ቁ𝑎𝑤𝑏𝑡𝑗𝑜 +෍
𝑀

𝑢≠𝑤=1
ቈ෍

𝑁−1

𝑣=0
𝜅𝑢𝑤(𝑡+𝑣)𝑡𝑏

(𝑡+𝑣)𝑡
𝑜 ቉ 𝑎𝑢 = 0 (17)

Dividing (17) by 𝑏𝑡𝑗𝑜 and took into account (8):

𝑏(𝑡+𝑣)𝑗𝑜

𝑏𝑡𝑗𝑜
= √𝑁𝑏(𝑣)𝑗𝑜

As a result, we obtained a system of equations that does not explicitly depend on the resonators,

ቀ𝜆𝑤𝑗𝑜 − 𝜆ቁ𝑎𝑤 + √𝑁෍
𝑀

𝑢≠𝑤=1
ቈ෍

𝑁−1

𝑣=0
𝜅𝑢𝑤𝑣 𝑏(𝑣)𝑗𝑜 ቉ 𝑎𝑢 = 0 (18)

(𝑤 = 1, 2, … ,𝑀)
connecting only the amplitudes of the sublattices. Here we have again used the condition: 𝜅𝑢𝑤𝑞𝑣 = 𝜅𝑢𝑤𝑞−𝑣 .

The system of Equation (18) can be rewritten in a more compact form, taking into account the representation
(12):

ቀ𝜆𝑤𝑗𝑜 − 𝜆ቁ𝑎𝑤 + √𝑁෍
𝑀

𝑢≠𝑤=1
ቀሬሬ⃗𝐾𝑢𝑤 , ሬ⃗𝑏𝑗𝑜ቁ 𝑎𝑢 = 0 (19)

(𝑤 = 1, 2, … ,𝑀)
Taking into account the deϐinitions (3), we also obtained, 𝜆𝑤𝑗𝑜 − 𝜆 = 2(𝜔𝑤𝑗

𝑜 − 𝜔)/𝜔0. Where 𝜔𝑤𝑗
𝑜 – frequency

of the 𝑗‑th natural oscillation of the 𝑤‑th ring sublattice. From which it follows that the system of Equation (19)
determines the frequency detuning of the sublattices when they interact with each other.

In total, the obtained systems of 𝑀 Equation (18), or (19), in general form determines the frequencies and
amplitudes of coupled oscillations of𝑀 axially symmetric ring sublattices with the same number of resonators.

It is interesting that the coupling vectors of the resonators “inside” the ring sublattices (13) are not included
in the system (18) in an explicit form. They determine the frequencies of natural oscillations of the sublattices 𝜆𝑤𝑗𝑜 .

By analogy with the oscillations of individual isolated resonators (4), we can introduce into consideration the
coupling matrices of the ring sublattices for each 𝑗‑th oscillation:

𝐾(𝑗) =
⎛
⎜
⎜

⎝

𝜆1𝑗𝑜 √𝑁 ቀሬሬ⃗𝐾21, ሬ⃗𝑏𝑗𝑜ቁ ⋯ √𝑁 ൬ሬሬ⃗𝐾𝑀1ሬሬሬ⃗, 𝑏
𝑗
𝑜൰

√𝑁 ቀሬሬ⃗𝐾12, ሬ⃗𝑏𝑗𝑜ቁ 𝜆2𝑗𝑜 ⋯ √𝑁 ൬ሬሬ⃗𝐾𝑀2ሬሬሬ⃗, 𝑏
𝑗
𝑜൰

⋯
√𝑁 ቀሬሬ⃗𝐾1𝑀 , ሬ⃗𝑏𝑗𝑜ቁ

⋯
√𝑁 ቀሬሬ⃗𝐾2𝑀 , ሬ⃗𝑏𝑗𝑜ቁ

⋯
⋯

⋯
𝜆𝑀𝑗
𝑜

⎞
⎟
⎟

⎠

(20)
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the eigenvalues and eigenvectors of which, together with (7), (8), (15), determine the frequencies and amplitudes
of the structure.

In contrast to the natural oscillations of individual resonators (2), the diagonal elements of the couplingmatrix
(20) 𝜆𝑤𝑗𝑜 take on complex values due to the accumulated energy in each sublattice.

The physical meaning of the dependence of matrix elements 𝐾(𝑗) on the type of oscillations 𝑗 is explained by
the different distribution of sublattice ϐields, which determines their interaction with each other.

The “interaction” of the 𝑢‑th and 𝑤 ‑th sublattices is expressed by a “potential function” √𝑁∑𝑀
𝑢≠𝑣=1 ቀሬሬ⃗𝐾𝑢𝑤 , ሬ⃗𝑏

𝑗
𝑜ቁ,

determinable by the set of all coupling coefϐicients and shapes of ring structures.
If the interaction between sublattices ሬሬ⃗𝐾𝑢𝑤 = 0, the eigenvalues of the 𝐾(𝑗) matrix are determined only by the

set of eigenvalues of the isolated ring sublattices 𝜆𝑤𝑗𝑜 (7).
In the case of identical resonators in all sublattices 𝜆𝑢𝑗𝑜 = 𝜆𝑗𝑜 , the eigenvalues of matrix (20) are determined by

the expressions:
𝜆𝑗 = 𝜆𝑗𝑜 + 𝜆

𝑗
(21)

where 𝜆
𝑗
‑ eigenvalues of a matrix:

𝐾
(𝑗)

=
⎛
⎜⎜

⎝

0 √𝑁 ቀሬሬ⃗𝐾21, ሬ⃗𝑏𝑗𝑜ቁ ⋯ √𝑁 ቀሬሬ⃗𝐾𝑀1, ሬ⃗𝑏𝑗𝑜ቁ
√𝑁 ቀሬሬ⃗𝐾12, ሬ⃗𝑏𝑗𝑜ቁ 0 ⋯ √𝑁 ቀሬሬ⃗𝐾𝑀2, ሬ⃗𝑏𝑗𝑜ቁ

⋯
√𝑁 ቀሬሬ⃗𝐾1𝑀 , ሬ⃗𝑏𝑗𝑜ቁ

⋯
√𝑁 ቀሬሬ⃗𝐾2𝑀 , ሬ⃗𝑏𝑗𝑜ቁ

⋯
⋯

⋯
0

⎞
⎟⎟

⎠

(22)

It follows that the appearance of other sublattices perturbs the eigenvalues λ𝑗𝑜 of the coupling matrix. The magni‑
tudes of this perturbations are determined by the eigenvalues of the matrix 𝐾

(𝑗)
.

An approximate solution to the system of Equation (19) can be found in analytical form, for example, for the
case of𝑀 identical ring sublattices located equidistantly on the 𝑧 axis of a cylindrical coordinate system (Figure 2).
If we take into account the interaction of resonators of only neighboring sublattices, matrix (22) becomes tridiago‑
nal. In this case, for identical resonators: ሬሬ⃗𝐾21 = ሬሬ⃗𝐾12.

Figure 2. M identical ring sublattices.

For a ϐinite number of sublattices, we will seek the solution of system (19) in the form:

𝑎𝑤 = 𝑎0 ቆ
𝑠𝑖𝑛
𝑐𝑜𝑠 (𝛾𝑤)ቇ (23)

where 𝑎0 and 𝛾 are constant do not depend on the sublattice numbers.
Substituting (23) into (19), after simple transformations and reduction of amplitudes 𝑎0, we ϐind:

𝜆𝑗 = 𝜆𝑗𝑜 + 2𝑐𝑜𝑠(𝛾)√𝑁 ቀሬሬ⃗𝐾12, ሬ⃗𝑏𝑗𝑜ቁ (24)

Supplementing obtained expressions with conditions of symmetry of the sublattice amplitudes distribution:
|𝑎𝑠| = ห𝑎𝑀−𝑠+1ห, from (23) obtaine:

ቤ𝑠𝑖𝑛𝑐𝑜𝑠 (𝛾𝑠)ቤ = ቤ𝑠𝑖𝑛𝑐𝑜𝑠 [𝛾(𝑀 − 𝑠 + 1)]ቤ
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The solutions to these equations are:
𝛾 = 𝛾𝑠 = 𝑠π

(𝑀 + 1) (25)

where 𝑠 = 1, 2, … ,𝑀.
Conditions (25) together with (24), (7) determine the𝑁×𝑀 frequencies of coupled oscillations of resonators

in the taking into account approximations.
When describing a ring structure consisting of an inϐinite number of sublattices, the solution to the system of

Equation (19) in the same approximation is represented in the form:

𝑎𝑤 = 𝑎0𝑒±𝑖𝛾𝑤 (26)

Here the dimensionless parameter 𝛾 = ΓΔ𝑧 has the meaning of the product of the wave number of the line Γ
and the distance between adjacent sublattices Δ𝑧. We also note that the longitudinal distance between the centers
of the lattice resonators is implicitly included in the coupling vectors ሬሬ⃗𝐾12.

Substituting (26) into (19), taking into account the approximations made above, we obtained the same disper‑
sion Equation (24), in which now 𝛾 takes on continuous complex values depending on the detuning (3) relative to
the frequencies of the natural oscillations of the sublattices and resonators. After simple transformations, taking
into account deϐinitions (3), we ϐind:

ω(γ)
ω0

= ω𝑗
0

ω0
+ √𝑁 ቀሬሬ⃗𝐾12, ሬ⃗𝑏𝑗𝑜ቁ 𝑐𝑜𝑠(γ) (27)

where𝜔𝑗
0 ‑ frequencies of coupled oscillations of sublattices;𝜔0 ‑ natural frequency of isolated resonators;𝜔 ‑ real

frequency.
Taking into account the accepted dependence on time, proportional to 𝑒𝑖𝜔𝑡 , Equation (27) must be supple‑

mented with the condition: 𝐼𝑚(𝛾) ≤ 0, corresponding to the requirement of decreasing resonator amplitudes due
to radiation energy losses.

If the coupling coefϐicients between sublattices are ሬሬ⃗𝐾12 → 0, then ω(γ) → ω𝑗
0; effective traveling waves of this

type with low attenuation can exist only in the region of sublattices resonances. In general, in such structures, the
dependence γ(ω) is characterized by strong dispersion, arising in systems of this class due to the existence of a
large number of resonances in relatively narrow frequency bands.

5. Coupled Oscillations of Ring Lattice with Degenerate Oscillations of Resonators
The developed theory is also suitable for describing coupled oscillations of ring lattices containing resonators

with degenerate types of natural oscillations.
Let us we have one ring lattice consisting of 𝑁 identical resonators, in each of which 𝑀 degenerate natural

oscillations in frequency may be excited. In this case, ሬሬ⃗𝐾𝑤 (12) can be interpreted as a vector of mutual coupling co‑
efϐicients of a ring lattice, corresponding to the selected𝑤 th type of degenerate oscillations, at that the vectors 𝑏𝑤𝑗𝑜
havemeaning of amplitude distributions of the resonators, also excited only by the𝑤th type of the selected natural
oscillations; ሬሬ⃗𝐾𝑢𝑤 (13) can be interpreted as a vector of mutual coupling between the resonators when degenerate
natural oscillations of different types are excited in them.

As follows from (12), if the degenerate oscillations are orthogonal, then 𝜅𝑢𝑤0 = 0 for all , 𝑢, 𝑤, but 𝜅𝑢𝑤𝑠 ≠ 0, if
𝑠 > 0 and 𝑢 ≠ 𝑤.

It is obvious that a similar approach also can be used to solve problems of natural oscillations of more com‑
plex ring structures, consisting of several ring lattices of different types of DR, each of which is characterized by
degenerate types of oscillations.

6. Coupling Oscillations of Symmetrical Ring Lattices of Different Dielctric Resonators
When calculating the coupled oscillations of DR lattices, having the shape of a regular polygons, additional

planes of symmetry may appear. In this case, it becomes possible to reduce the size of the Equation (19), by pre‑
senting them in a more convenient form.
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Figure 3 shows two variants of the possible emergence of planes of symmetry with the axial placement of
various ring lattices of the DR in the form of regular polygons.

Figure 3. Possible planes of symmetry arising in a different ring sublattices of regular shape, located symmetrically
with respect to a given angle of rotation of the structure in a cylindrical coordinate system. Resonators of different
ring sublattices are arranged in pairs at equal angles (a). The resonators of one of the sublattice are located in the
middle plane between the resonators of the other sublattice (b).

In the ϐirst case (Figure 3a) the angular coordinates of the corresponding 𝑡 th resonators of the lattices are
coincide.

In the second case, the angular coordinates of the resonators of one lattice lie exactly in the middle of the
angular coordinates of the resonators of other lattice.

At that, in general, cases of simultaneous placement of lattices with two types of the indicated symmetries
are also possible. For all the listed cases, it is possible to derive a system of equations suitable for calculating the
frequencies of coupled oscillations.

To derive such a system, let us return to Equation (16).
In the case of the arrangement of the lattices shown in Figure 3, a, in the system of Equation (16) we have

identiϐied the terms related to the resonators, located symmetrically with respect to the plane passing through the
center of the 𝑡 th DR:

෍
𝑁−1

𝑣=0
𝜅𝑢𝑤𝑣 𝑏(𝑣)𝑜 =෍

𝑣∈Ξ′
(𝜅𝑢𝑤𝑡+𝑣𝑏(𝑡+𝑣)𝑜 + 𝜅𝑢𝑤𝑡−𝑣𝑏(𝑡−𝑣)𝑜 ) =෍

𝑣∈Ξ′
𝜅𝑢𝑤𝑡+𝑣(𝑏(𝑡+𝑣)𝑜 + 𝑏(𝑡−𝑣)𝑜 ) (28)

where Ξ′ = 0, 1, 2, … , (𝑁 − 1)/2 for odd𝑁 number; Ξ′ = 0, 1, 2, … , ቀ𝑁2 ቁ for an even𝑁 number of resonators.
Next we again used equality (8), from which we obtained:

𝑏(𝑡+𝑣)𝑗𝑜 + 𝑏(𝑡−𝑣)𝑗𝑜 = 2𝑐𝑜𝑠(2𝑣π𝑗𝑁 )𝑏𝑡𝑗𝑜 (29)

Substituting (29) into (28) and then into (16), after canceling out by 𝑏𝑡𝑗𝑜 , we again obtain a system of equations
containing only the amplitudes of the sublattices:

ቀ𝜆𝑤𝑗𝑜 − 𝜆ቁ𝑎𝑤 + 2 ቈ෍
𝑀

𝑢≠𝑤=1
෍

𝑣∈Ξ′
Δ𝑣𝜅𝑢𝑤𝑣 𝑐𝑜𝑠(2𝑣π𝑗/𝑁)቉ 𝑎𝑢 = 0 (30)

here𝑤 = 1, 2, … ,𝑀; Δ𝑣 = 1/(1 + δ𝑣,0 + δ𝑣,𝑁/2); δ𝑛,𝑚 ‑ Kronecker symbol.
The resulting system (30) is equivalent to the system of Equation (19) found above. This can be easily veriϐied

by performing inverse transformations of the sum in (30), replacing 𝑐𝑜𝑠(𝑧) = 1/2 [exp(𝑧) + exp(−𝑧)] and taking
into account the possible number of resonators in the sublattices.
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The advantage of Equation (30) is the smaller number of operations required to achieve a given accuracy, which
sometimes becomes critical when optimizing complex structures with a large number of sublattices.

7. Coupling Oscillations of Ring Lattices with Different Number of Dielectric Resonators
It is not difϐicult to see, that the theory of coupled oscillations of axially symmetric ring lattices with the same

numberof resonators, developedabove, canbe easily generalized to structures containing axially symmetric lattices
with different numbers of DRs. The above condition is satisϐied by ring structures, each of which contains a number
of resonators that is a multiple of the minimum of one of the components of the ring lattices.

Figure 4 shows several simple examples of constructing such lattices, each of which built from ring sublattices
with different numbers of DR. In the ϐirst case (Figure 4a) the second ring sublattice consists of 2 two‑element
sublattices. The coupled oscillations of such a system can be described by Equation (19) with𝑁 = 2 and𝑀 = 3.

In the second example (Figure 4b) the second ring sublattice consists of 3 three‑element sublattices. The
coupled oscillations of this structure are also described by Equation (19) with𝑁 = 3 and𝑀 = 3.

Figure 4. Examples of complex structurs build on different ring lattices with a not equal number of DR. Ring lattice
consisting of 6 elements, composed of 3 sublattices: 2, 2 and 2 DR (a). Ring lattice consisting of 9 elements, com‑
posed of 3 sublattices 3, 3 and 3 DR (b).

In general, the description of ring lattices with an arbitrary unequal number of resonators using the system of
Equation (19) is not correct, since in this case the structure does not have any rotational symmetry.

8. Examples
We have given several simple examples of calculating the parameters of coupled oscillations of ring lattices

with different DR, using obtained above Equation (19). In all the examples given, the coupling coefϐicients of the
resonators were chosen arbitrarily, in the form of sets of random complex numbers. In reality, for resonators of
speciϐic shapes and types of natural oscillations, they are calculated through the resonator ϐields, taking into account
the speciϐic values of their coordinates in the lattices and other parameters [22].

Figure 5b show the results of comparison of the eigenvalues of the coupling matrices calculated numerically
(dots) from (4) with the values obtained from matrices (19), or (20) (crosses) for three different sublattices con‑
sisting of three different types of resonators.
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Figure 5. 𝑀 = 3 Ring lattices of𝑁 = 3 different DR (a). The resonators of different types are indicated by different
size circles. Distribution of complex eigenvalues of the coupling matrics (b): for the coupling coefϐicients of the
DR of ϐirst sublattice 𝑘̃1 = 0, 55:; of the DR of the second sublattice 𝑘̃2 = 0, 25:; of the DR of the third sublattice
𝑘̃3 = 0, 75; mutual coupling coefϐicients of the DR of the ϐirst sublattice 𝜅11 = 𝜅12 = −0, 5 − 0, 3𝑖:; of the DR
of the second sublattice 𝜅21 = 𝜅22 = 0, 25 + 0, 2𝑖; of the DR of the third sublattice 𝜅31 = 𝜅32 = −0, 75 + 0, 6𝑖;

vector of mutual coupling coefϐicients between resonators ϐirst and the second sublattice: ሬሬ⃗𝐾12 = ቌ
−0, 35 + 0, 2𝑖
−0, 25 + 0, 3𝑖
−0, 2 + 0, 15𝑖

ቍ;

between the resonators of the ϐirst and third sublattices ሬሬ⃗𝐾13 = ቌ
0, 6 + 0, 5𝑖
0, 55 + 0, 3𝑖
0, 4 + 0, 2𝑖

ቍ; between the resonators of the

second and third sublattices ሬሬ⃗𝐾23 = ቌ
−0, 4 + 0, 2𝑖
−0, 15 + 0, 15𝑖
−0, 3 − 0, 1𝑖

ቍ; vector of mutual coupling coefϐicients between resonators

second and the ϐirst sublattice: ሬሬ⃗𝐾21 = ቌ
−0, 25 + 0, 3𝑖
−0, 15 + 0, 1𝑖
−0, 1 + 0, 15𝑖

ቍ; between resonators third and the ϐirst sublattice: ሬሬ⃗𝐾31 =

ቌ
0, 4 + 0, 3𝑖
0, 35 + 0, 1𝑖
0, 25 + 0, 1𝑖

ቍ; between resonators third and the second sublattice: ሬሬ⃗𝐾32 = ቌ
−0, 2 + 0, 4𝑖
−0, 1 + 0, 3𝑖
−0, 15 + 0, 15𝑖

ቍ. The results of the

numerical calculation of eigenvalues of the matrix (4) are dots; the analytical, obtained from (19), (9), are crosses
(b).

The arbitrariness of the rotation angles of each of the 3 sublattices relative to the common centerwas speciϐied
by randomness of choice of numerical values of themutual coupling coefϐicients of vectors (12), (13) and alsowhen
calculating the eigenvalues of the matrix of coupling coefϐicients (4).

Figure6c,d show the results of comparison of analytical andnumerical calculations of couplingmatrices eigen‑
values for 3 ring lattices, consisting of 4 different resonators, also obtained from (4) as well as (19), (20), or (30).
In this case, it was assumed that each of the sublattices is located symmetrically in rotation angles relative to the
neighboring ones.
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Figure 6. The ring structures of 𝑀 × 𝑁 of three different DR (a,b). Number of the DR in the one isolated sub‑
lattice: 𝑁 = 4; the number of sublattices 𝑀 = 3; the coupling coefϐicients of the resonators with external
structure of the ϐirst ring sublattice: 𝑘̃1 = 0, 5; of the second sublattice: 𝑘̃2 = 0, 25; of the third sublattice:

𝑘̃3 = 0, 75; the mutual coupling coefϐicients vector of the ϐirst sublattice: ሬሬ⃗𝐾1 = ቌ
0, 5 + 0, 25𝑖
0, 15 + 0, 1𝑖
0, 5 + 0, 25𝑖

ቍ; of the second

sublattice: ሬሬ⃗𝐾2 = ቌ
0, 15 − 0, 2𝑖
0, 1 + 0, 1𝑖
0, 15 − 0, 2𝑖

ቍ; of the third sublattice: ሬሬ⃗𝐾3 = ቌ
0, 65 + 0, 3𝑖
0, 35 − 0, 2𝑖
0, 65 + 0, 3𝑖

ቍ; vector of mutual coupling coefϐi‑

cients between resonators of the ϐirst and the second sublattice: ሬሬ⃗𝐾12 = ൮
−0, 3 + 0, 3𝑖
−0, 2 + 0, 2𝑖
−0, 1 − 0, 1𝑖
−0, 2 + 0, 2𝑖

൲; between resonators of

the ϐirst and third sublattice: ሬሬ⃗𝐾13 = ൮
−0, 4 + 0, 3𝑖
−0, 2 + 0, 1𝑖
−0, 1 + 0, 15𝑖
−0, 2 + 0, 1𝑖

൲; between resonators of the second and third sublattice:

ሬሬ⃗𝐾23 = ൮
−0, 6 + 0, 5𝑖
−0, 4 + 0, 3𝑖
−0, 15 + 0, 1𝑖
−0, 4 + 0, 3𝑖

൲; between resonators of the second and the ϐirst sublattice: ሬሬ⃗𝐾21 = ൮
−0, 4 + 0, 35𝑖
−0, 25 + 0, 2𝑖
0, 1 + 0, 1𝑖

−0, 25 + 0, 2𝑖
൲;

between resonators of third and the ϐirst sublattice: ሬሬ⃗𝐾31 = ൮
−0, 3 + 0, 2𝑖
−0, 25 + 0, 1𝑖
0, 1 − 0, 1𝑖

−0, 25 + 0, 15𝑖
൲; between resonators of third and

the second sublattice: ሬሬ⃗𝐾32 = ൮
−0, 25 + 0, 15𝑖
−0, 2 + 0, 1𝑖
−0, 05 − 0, 1𝑖
−0, 2 + 0, 1𝑖

൲. The results of the numerical calculation of the eigenvalues of the

matrix (4) are dots; the results of the analytical calculations obtaind from (19) are crosses (c,d).

Figure7b shows the results of calculations of the frequencies of coupled oscillations of 4 lattices, each ofwhich
consists of 2 resonators of different types. In this case itwas assumed that the latticeswere rotatedat unequal angles
relative to a common center.
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Figure 7. Ring lattice of 𝑀 × 𝑁 (a) different DR. (b): the number of resonators in the sublattice: 𝑁 = 2; the
number of the sublattices: 𝑀 = 4; the coupling coefϐicients of the resonators with external structure of the
ϐirst sublattice 𝑘̃1 = 0, 5: ; the coupling coefϐicients of the resonators with external structure of the second sub‑
lattice: 𝑘̃2 = 0, 75; the coupling coefϐicients of the resonators with external structure of the third sublattice:
𝑘̃3 = 0, 75; the coupling coefϐicients of the resonators with external structure of the fourth sublattice: 𝑘̃4 = 0, 6;
mutual couling coefϐicient of the resonators of the ϐirst sublattice: 𝜅11 = 0, 35 − 0, 2𝑖; mutual couling coefϐi‑
cient of the resonators of the second sublattice: 𝜅21 = 0, 7 + 0, 3𝑖; mutual couling coefϐicient of the resonators
of the third sublattice: 𝜅31 = 0, 1 − 0, 2𝑖; mutual couling coefϐicient of the resonators of the fourth sublattice:
𝜅41 = 0, 4 + 0, 2𝑖; vector of mutual coupling coefϐicients between resonators of the ϐirst and the second sublattice:
ሬሬ⃗𝐾12 = ቆ−0, 6 + 0, 5𝑖

−0, 4 + 0, 3𝑖ቇ; vector of mutual coupling coefϐicients between resonators of the ϐirst and the third sublat‑

tice: ሬሬ⃗𝐾13 = ቆ 0, 2 + 0, 15𝑖
−0, 15 + 0, 1𝑖ቇ; vector of mutual coupling coefϐicients between resonators of the ϐirst and the fourth

sublattice: ሬሬ⃗𝐾14 = ቆ 0, 3 + 0, 2𝑖
−0, 1 + 0, 1𝑖ቇ; vector of mutual coupling coefϐicients between resonators of the second and the

third sublattice: ሬሬ⃗𝐾23 = ቆ 0, 15 + 0, 2𝑖
−0, 1 + 0, 15𝑖ቇ; vector of mutual coupling coefϐicients between resonators of the second

and the fourth sublattice: ሬሬ⃗𝐾24 = ቆ 0, 85 + 0, 3𝑖
−0, 15 + 0, 15𝑖ቇ; vector ofmutual coupling coefϐicients between resonators of the

third and the fourth sublattice: ሬሬ⃗𝐾34 = ቆ 0, 25 + 0, 1𝑖
−0, 2 + 0, 15𝑖ቇ; vector of mutual coupling coefϐicients between resonators

of the second and the ϐirst sublattice: ሬሬ⃗𝐾21 = ቆ−0, 3 − 0, 1𝑖
−0, 2 + 0, 1𝑖ቇ; vector of mutual coupling coefϐicients between res‑

onators of the third and the ϐirst sublattice: ሬሬ⃗𝐾31 = ቆ 0, 3 − 0, 1𝑖
−0, 2 + 0, 1𝑖ቇ; vector of mutual coupling coefϐicients between

resonators of the fourth and the ϐirst sublattice: ሬሬ⃗𝐾41 = ቆ 0, 4 − 0, 25𝑖
−0, 15 + 0, 15𝑖ቇ; vector of mutual coupling coefϐicients

between resonators of the third and the second sublattice: ሬሬ⃗𝐾32 = ቆ−0, 5 − 0, 1𝑖
−0, 3 + 0, 1𝑖ቇ; vector of mutual coupling co‑

efϐicients between resonators of the fourth and the second sublattice: ሬሬ⃗𝐾42 = ቆ0, 65 − 0, 35𝑖
−0, 2 + 0, 2𝑖 ቇ; vector of mutual

coupling coefϐicients between resonators of the fourth and the third sublattice: ሬሬ⃗𝐾43 = ቆ0, 1 − 0, 15𝑖
−0, 1 + 0, 1𝑖ቇ. The results

of the numerical calculation of eigenvalues of the matrix (4) are dots; the analytical results obtained by using equa‑
tion system (19) are crosses (b).

Figure 8 shows the results of calculating the natural frequencies of a simple ring lattice consisting of 3 res‑
onators, each ofwhich is characterized by 3 degenerate oscillations. Itwas assumed that the degenerate oscillations
in each resonator are orthogonal to each other. The coupling coefϐicients of the resonators were also set arbitrarily,
taking into account the symmetry of the structure, inequalities of the coefϐicients ofmutual coupling for oscillations
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of different types, as well as the comments made in paragraph V.

Figure 8. Ring lattice of 𝑁 = 3 (a) identical DR with𝑀 = 3 degenerate oscillations. (b): the coupling coefϐicients
of the resonators with external structure for the ϐirst degenerate oscillations: 𝑘̃1 = 0, 55; the coupling coefϐicients
of the resonators with external structure for the second degenerate oscillations: 𝑘̃2 = 0, 25; the coupling coefϐi‑
cients of the resonators with external structure for the third degenerate oscillations: 𝑘̃3 = 0, 75; mutual coupling
coefϐicients of the resonators with only the ϐirst degenerate oscillations: 𝜅11 = 𝜅12 = −0, 5 − 0, 3𝑖; mutual coupling
coefϐicients of the resonators only with the second type of degenerate oscillations: 𝜅21 = 𝜅22 = 0, 25 + 0, 2𝑖; mutual
coupling coefϐicients of the resonators only with the third type of degenerate oscillations: 𝜅31 = 𝜅32 = −0, 75+0, 6𝑖;
vector of mutual coupling coefϐicients between the ϐirst and the second degenerate oscillations of the resonators:

ሬሬ⃗𝐾12 = ቌ
0

−0, 25 + 0, 3𝑖
−0, 25 + 0, 3𝑖

ቍ; vector of mutual coupling coefϐicients between the ϐirst and the third type degenerate

oscillations of the resonators: ሬሬ⃗𝐾13 = ቌ
0

0, 55 + 0, 3𝑖
0, 55 + 0, 3𝑖

ቍ; vector of mutual coupling coefϐicients between the second

and third type of degenerate oscillations of the resonators: ሬሬ⃗𝐾23 = ቌ
0

−0, 15 + 0, 15𝑖
−0, 15 + 0, 15𝑖

ቍ; vector of mutual coupling

coefϐicients between the second and ϐirst degenerate oscillations of the resonators: ሬሬ⃗𝐾21 = ቌ
0

−0, 15 + 0, 1𝑖
−0, 15 + 0, 1𝑖

ቍ; vec‑

tor of mutual coupling coefϐicients between third and the ϐirst degenerate oscillations of the resonators: ሬሬ⃗𝐾31 =

ቌ
0

0, 35 + 0, 1𝑖
0, 35 + 0, 1𝑖

ቍ; vector of mutual coupling coefϐicients between third and second degenerate oscillations of the res‑

onators: ሬሬ⃗𝐾32 = ቌ
0

−0, 1 + 0, 3𝑖
−0, 1 + 0, 3𝑖

ቍ. The results of the numerical calculation of the eigenvalues of the matrix (4) are

dots; the analytical calculation results, obtained frommatrix (19), are crosses (b).

9. Conclusions
The calculation of the distribution of amplitudes and frequencies of coupled oscillations of𝑀 ring lattices, each

of which consists of𝑁 resonators, is reduced to the calculation of eigenvectors and eigenvalues of the coupling ma‑
trix (4), containing (𝑁 × 𝑀)2 elements. The use of analytical expressions for calculating the eigenvectors (8) and
eigenvalues of circulant matrices (7) in this case, as well as the systems of Equation (19) obtained in this article,
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allows us to reduce the size of matrices for calculating the parameters of ring structures to the size of the𝑀2 ele‑
ments.

For example, when calculating the parameters of natural oscillations of a lattice consisting of three ring sublat‑
tices with ten resonators, it is necessary to calculate the eigenvectors and eigenvalues of a matrix (4), consisting of
900 elements. Using the obtained system of Equation (19) allows us to reduce the size of the coupling matrix to 9
elements.

In the case of calculating the parameters of ring lattices constructed on the basis of using spherical resonators
with whispering gallery modes [22], for example, with magnetic oscillations: 𝐻𝑛𝑚𝑙 , typical values of the meridian
indexes are𝑛 = 30 andmore. In this case, the number of degeneratemodes of one resonator is equal to2𝑛+1 = 61,
and the number of possible oscillations in one ring lattice containing only 10 re sonators is 𝑁 = 610. To calculate
the parameters of a relatively simple structure containing only two ring lattices, it is necessary to calculate the
eigenvalues and eigenvectors of the couplingmatrix, containing the 1, 488×106 elements. Reducing this number of
elements even by four times, makes it possible to calculate the parameters of such gigantic matrix and signiϐicantly
reduces computation time.

Thus, the analytical solutions found signiϐicantly simplify the calculation of the parameters of coupled oscilla‑
tions of complex lattices of different DR and are the basis for constructing a more effective scattering theory con‑
structed on decomposition of the solutions into eigenoscillations of the structure.

The developed theory of coupled oscillations of different types dielectric resonators demonstrates to us a new
interesting pattern of interaction of ring lattices in complex ring structures. Placed relative to a selected spatial axis,
such ring lattices can interact with each other without changing the distribution of the amplitudes of their coupled
oscillations within each other.

A general system of equations that describes the coupled oscillations of ring sublattices with the same num‑
ber of resonators can be also used to calculate the parameters of much complex systems of coupled ring lattices
containing a multiple number of resonators.

It is shown that the found systemof equations also allowsus todescribe in general form the coupledoscillations
of ring, as well as many ring lattices with degenerate DR modes.

Good agreement between the results of analytical and the numerical results of calculating the eigenvalues of
the different coupling matrix is demonstrated.

Developed theory can be used as the basis for the design and optimization of scattering parameters of many
different devices of the microwave, theraherz and optical wavelength ranges, that build on ring lattices of different
types of dilectric resonators.
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