Thematic Evolution of Artificial Intelligence Research in Chinese-Speaking Academia (2021–2025): A Bibliometric and Text-Mining Analysis Using VOSviewer and KH Coder

Digital Technologies Research and Applications

Article

Thematic Evolution of Artificial Intelligence Research in Chinese-Speaking Academia (2021–2025): A Bibliometric and Text-Mining Analysis Using VOSviewer and KH Coder

Sheng-Ming Wang, & Chuding Chen. (2026). Thematic Evolution of Artificial Intelligence Research in Chinese-Speaking Academia (2021–2025): A Bibliometric and Text-Mining Analysis Using VOSviewer and KH Coder. Digital Technologies Research and Applications, 5(1), 1–20. https://doi.org/10.54963/dtra.v5i1.1960

Authors

  • Sheng-Ming Wang

    Department of Design, National Taipei University of Technology, Taipei 106, Taiwan
  • Chuding Chen

    Department of Design, National Taipei University of Technology, Taipei 106, Taiwan

Received: 29 November 2025; Revised: 29 December 2025; Accepted: 7 January 2026; Published: 20 January 2026

This study examines the visible thematic patterns of artificial intelligence (AI)–related research in Mainland China, Taiwan, Hong Kong, and Macao from 2021 to 2025. The analysis is based on Scopus-indexed journal articles and uses keyword frequency counts, VOSviewer density visualizations, and KH Coder co-occurrence networks. These methods are applied to describe how AI-related keywords appear across the four regions and how their distributions change during the five-year period. Across all datasets, terms such as machine learning, deep learning, and neural network appear frequently and occupy central positions in the visual outputs. The VOSviewer heatmaps show that regions with larger publication volumes display wider areas of keyword density, while regions with smaller datasets present more compact clusters. Beginning in 2024 and 2025, generative AI–related terms, including large language model and ChatGPT, become visible across all regions. The KH Coder networks illustrate that the four regions contain multiple clusters of co-occurring keywords, with differences in cluster size and distribution reflecting the underlying dataset scale and the topics present in each regional corpus. Overall, the results offer a descriptive account of how AI-related terms appear in the collected datasets and how their visible distributions vary among the four regions during the study period. The findings are intended to summarize observable patterns without inferring causal explanations or evaluating the significance of regional differences.

Keywords:

Artificial Intelligence Bibliometric Analysis VOSviewer KH Coder

References

  1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. DOI: https://doi.org/10.1038/nature14539
  2. Xie, W.; Hu, A.; Xie, Q.; et al. Bibliometric analysis and review of AI-based video generation: research dynamics and application trends (2020–2025). Inf. Retr. J. 2025, 28, 130. DOI: https://doi.org/10.1007/s10791-025-09628-9
  3. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. DOI: https://doi.org/10.1007/s11192-009-0146-3
  4. Donthu, N.; Kumar, S.; Mukherjee, D.; et al. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
  5. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Hoboken, NJ, USA, 2021; pp. 1–30.
  6. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. DOI: https://doi.org/10.1126/science.aaa8415
  7. Bommasani, R.; Hudson, D.A.; Adeli, E.; et al. On the opportunities and risks of foundation models. arXiv preprint 2021, arXiv:2108.07258. DOI: https://doi.org/10.48550/arXiv.2108.07258
  8. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; et al. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. arXiv preprint 2023, arXiv:2303.12712. DOI: https://doi.org/10.48550/arXiv.2303.12712
  9. Price, D.J.D. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963; pp. 1–119.
  10. Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. DOI: https://doi.org/10.1002/asi.4630240406
  11. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. DOI: https://doi.org/10.1016/j.joi.2017.08.007
  12. Callon, M.; Courtial, J.-P.; Turner, W.A.; et al. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. DOI: https://doi.org/10.1177/053901883022002003
  13. Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. DOI: https://doi.org/10.1177/1094428114562629
  14. Agbo, F.J.; Oyelere, S.S.; Suhonen, J.; et al. Scientific production and thematic breakthroughs in smart learning environments: A bibliometric analysis. Smart Learn. Environ. 2021, 8, 1. DOI: https://doi.org/10.1186/s40561-020-00145-4
  15. De la Vega Hernández, I.M.; Serrano Urdaneta, A.; Carayannis, E. Global bibliometric mapping of the frontier of knowledge in the field of artificial intelligence for the period 1990–2019. Artif. Intell. Rev. 2023, 56, 1699–1729. DOI: https://doi.org/10.1007/s10462-022-10206-4
  16. KH Coder. Available online: https://khcoder.net/en/ (accessed on 26 November 2025).
  17. Kakouris, A.; Georgiadis, P. Analysing entrepreneurship education: A bibliometric survey pattern. J. Glob. Entrep. Res. 2016, 6, 6.
  18. Oe, H.; Weeks, M. Kawaii culture in Japan: A bibliometric analysis and text mining approach based on pop-cultural diplomacy and transmission into global values. BIRCI J. Humanit. 2020, 3, 3990–4004. DOI: https://doi.org/10.33258/birci.v3i4.1495
  19. Sakai, K.; Nagata, T.; Mori, T.; et al. Research topics in occupational medicine, 1990–2022: A text-mining-applied bibliometric study. Scand. J. Work Environ. Health 2024, 50, 1–12. DOI: https://doi.org/10.5271/sjweh.4177
  20. Nagasue, M.; Kitagawa, H.; Asawa, T.; et al. A systematic review of passive cooling methods in hot and humid climates using a text mining-based bibliometric approach. Sustainability 2024, 16, 1420. DOI: https://doi.org/10.3390/su16041420
  21. Deleca, C.; Nica, J.; Ionescu, S.; et al. Mapping the frontier: A bibliometric analysis of artificial intelligence applications in local and regional studies. Algorithms 2024, 17, 418. DOI: https://doi.org/10.3390/a17090418
  22. Ekundayo, T.; Chaudhry, S.A. Mapping the future: A bibliometric analysis of engagement trends in artificial intelligence within higher education. Digit. Technol. Res. Appl. 2025, 4, 1285. DOI: https://doi.org/10.54963/dtra.v4i3.1285
  23. Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. DOI: https://doi.org/10.1162/qss_a_00112
  24. Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; et al. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. DOI: https://doi.org/10.1016/j.joi.2018.09.002
  25. VOSviewer. VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 9 November 2025).