Click, Store, Emit: The Environmental Cost of Digital Infrastructure-Scilight

Digital Technologies Research and Applications

Review

Click, Store, Emit: The Environmental Cost of Digital Infrastructure

Downloads

Al‑Sowaidi, A., & Isaifan, R. J. (2025). Click, Store, Emit: The Environmental Cost of Digital Infrastructure. Digital Technologies Research and Applications, 4(2), 194–211. https://doi.org/10.54963/dtra.v4i2.1385

Authors

  • Albandari Al‑Sowaidi

    Georgetown University, Doha, P.O. Box 23689, Qatar
  • Rima J. Isaifan

    Georgetown University, Doha, P.O. Box 23689, Qatar
    Department of Environmental Sciences, Cambridge Corporate University, Lucerne 6006, Switzerland

Received: 7 July 2025; Revised: 20 July 2025; Accepted: 29 July 2025; Published: 20 August 2025

The accelerating expansion of digital infrastructure, including data centers, communication networks, and Artificial Intelligence (AI) systems, is transforming economies and societies worldwide. However, this digital transformation carries a growing environmental cost, particularly in terms of carbon emissions, resource consumption, and lifecycle waste. This literature review critically explores the environmental footprint of digital infrastructure, with a primary focus on carbon emissions across the stages of manufacturing, operation, and disposal. While studies from China dominate the empirical base due to its rapid digitalization, the review incorporates comparative evidence from Europe and North America to strengthen its global applicability. Key sources of emissions are identified in energy‑intensive operations such as data center cooling and AI model training. To mitigate these impacts, this study examines integrated strategies including renewable energy deployment, nanotechnology‑based cooling innovations, Environmental, Social, and Governance‑driven policy frameworks, and circular economy applications. A revised research framework is proposed to guide future investigation into sustainable digitalization. Moreover, this review emphasizes the importance of public participation in smart city governance, advocating for co‑created urban solutions, open data platforms, and inclusive digital planning. By embedding solution pathways throughout the discussion, the paper presents a cohesive analysis that bridges technological innovation with climate and environmental priorities. Ultimately, this concludes with recommendations for cross‑sectoral collaboration among governments, industries, and communities to ensure that digital progress aligns with long‑term sustainability goals.

Keywords:

Digital Infrastructure Carbon Emissions Smart Cities Environmental Governance Renewable Energy Public Engagement

References

  1. Sui, D.Z.; Rejeski, D.W. Environmental impacts of the emerging digital economy: The E-for-environment E-commerce? Environ. Manage. 2002, 29, 155–163.
  2. Peng, H.R.; Ling, K.; Zhang, Y.J. The carbon emission reduction effect of digital infrastructure development: Evidence from the broadband China policy. J. Clean. Prod. 2024, 434, 140060. DOI: https://doi.org/10.1016/j.jclepro.2023.140060
  3. Buyya, R.; Ilager, S.; Arroba, P. Energy-efficiency and sustainability in new generation cloud computing: A vision and directions for integrated management of data centre resources and workloads. arXiv preprint arXiv:2303.10572, 2023. DOI: https://doi.org/10.48550/arXiv.2303.10572
  4. Liu, Z.; Deng, Z.; Davis, S.; et al. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 2023, 4, 205–206.
  5. Freitag, C.; Berners-Lee, M.; Widdicks, K.; et al. The climate impact of ICT: A review of estimates, trends and regulations. arXiv preprint arXiv:2102.02622, 2021. DOI: https://doi.org/10.48550/arXiv.2102.02622
  6. Labzovskii, L.D.; Mak, H.W.L.; Takele Kenea, S.; et al. What can we learn about effectiveness of carbon reduction policies from interannual variability of fossil fuel CO₂ emissions in East Asia? Environ. Sci. Policy 2019, 96, 132–140.
  7. Dou, X.; Deng, Z.; Sun, T.; et al. Global and local carbon footprints of city of Hong Kong and Macao from 2000 to 2015. Resour. Conserv. Recycl. 2021, 164, 105167.
  8. Xia, L.; Liu, R.; Fan, W.; et al. Emerging carbon dioxide hotspots in East Asia identified by a top-down inventory. Commun. Earth Environ. 2025, 6, 10.
  9. Yang, Z.; Huang, S.; Ma, J.; et al. The impact of digital infrastructure on urban total factor carbon emission performance: evidence from enterprise production and household consumption in China. Front. Environ. Sci. 2025, 13, 1506012.
  10. Ren, H.; Zhou, J.; Yu, Y.; et al. Carbon emission reduction effects of digital infrastructure construction development: the broadband China strategy as a quasi-natural experiment. Front. Environ. Sci. 2025, 13, 1510118.
  11. Song, J.; Gao, Q.; Hu, X.; et al. The impact of digital transformation of infrastructure on carbon emissions: Based on a “local-neighborhood” perspective. PLOS ONE 2024, 19, e0307399.
  12. Mao, F.; Wei, Y.; Wang, Y. Impact of computing infrastructure on carbon emissions in China. Sci. Rep. 2024, 14, 29814.
  13. Li, S.; Tang, Y. The impact of the digital economy on carbon emission levels and its coupling relationships: Empirical evidence from China. Sustainability 2024, 16, 5612.
  14. Deng, L.; Zhong, Z. The impact of digital infrastructure on carbon emissions: evidence from 284 cities in China. Econ. Change Restruct. 2024, 57, 159.
  15. Korolev, V.; Mitrofanov, A. Carbon footprint of artificial intelligence in materials science: Should we be concerned? ChemRxiv, 2023. DOI: https://doi.org/10.26434/chemrxiv-2023-zctn1
  16. Cao, X.; Wu, Q. The impact of digital infrastructure on carbon productivity analysis based on provincial panel data. Front. Humanit. Soc. Sci. 2025, 5, 1–11. DOI: https://doi.org/10.54691/ed7d4843
  17. Citesh, V. Carbon Footprint of digital infrastructure data centers, cloud computing, and the path to net zero. Int. J. Innov. Res. Sci. Eng. Technol. 2025, 14(4), 5401–5413. DOI: https://doi.org/10.21275/SR250216113720
  18. Nie, J.; Shen, J.; Ren, X. Digital infrastructure, new digital infrastructure, and urban carbon emissions: Evidence from China. Atmosphere 2025, 16, 199.
  19. Li, F.; Diao, Z. The impact of digital infrastructure on the synergistic effects of urban pollution and carbon reduction: empirical evidence from China. Front. Environ. Sci. 2025, 13, 1453151
  20. Wohlschlager, D.; Neitz-Regett, A.; Lanzinger, B. Environmental assessment of digital infrastructure in decentralized smart grids. In Proceedings of the 2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 11–13 August 2021; pp. 13–18.
  21. Guidi, G.; Dominici, F.; Gilmour, J.; et al. Environmental burden of United States data centers in the artificial intelligence era. arXiv preprint arXiv:2411.09786, 2024. DOI: https://doi.org/10.48550/arXiv.2411.09786
  22. Shaker, R. From policy to platforms: Analysing public engagement with Singapore’s smart nation initiative through social media discourse. Urban Gov. 2025, 5, 142–154.
  23. Kummitha, R.K.R. Smart city governance: assessing modes of active citizen engagement. Reg. Stud. 2025, 59, 2399262.
  24. Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868.
  25. Mutambik, I.; Almuqrin, A.; Alharbi, F.; et al. How to encourage public engagement in smart city development—Learning from Saudi Arabia. Land 2023, 12, 1851.
  26. Tang, K.; Yang, G. Does digital infrastructure cut carbon emissions in Chinese cities? Sustain. Prod. Consum. 2023, 35, 431–443.
  27. Guo, L.; Chen, L.; Yang, Z. The urban carbon unlocking effect of digital infrastructure construction: A spatial difference-in-difference analysis from “Broadband China” pilot policy. PLOS ONE 2025, 20, e0316202.
  28. Radovanovic, A.;Koningstein, R.; Schneider, I. et al. Carbon-aware computing for datacenters. arXiv preprint arXiv: arXiv:2106.11750, 2021. DOI: 10.48550/arXiv.2106.11750.
  29. Isaifan, R.; Dole, H.; Obeid, E.; et al. Catalytic CO oxidation over Pt nanoparticles prepared from the polyol reduction method supported on Yttria-Stabilized Zirconia. ECS Trans. 2011, 35, 43.
  30. Isaifan, R.J.; Couillard, M.; Baranova, E.A. Low temperature-high selectivity carbon monoxide methanation over yttria-stabilized zirconia-supported Pt nanoparticles. Int. J. Hydrog. Energy 2017, 42, 13754–13762
  31. Lortie, M.; Isaifan, R.; Liu, Y.; et al. Synthesis of CuNi/C and CuNi/γ-Al₂O₃ catalysts for the reverse water gas shift reaction. Int. J. Chem. Eng. 2015, 2015(1), 750689. DOI: https://doi.org/10.1155/2015/750689
  32. Hassabou, A.; Isaifan, R.J. Simulation of phase change material absorbers for passive cooling of solar systems. Energies 2022, 15(24), 9288. DOI: https://doi.org/10.3390/en15249288
  33. Al-Qahtani, S.; Koç, M.; Isaifan, R.J. Mycelium-based thermal insulation for domestic cooling footprint reduction: a review. Sustainability 2023, 15(17), 13217. DOI: https://doi.org/10.3390/su151713217
  34. Al-Mohannadi, M.; Awwaad, R.; Furlan, R.; et al. Sustainable status assessment of the transit-oriented development in Doha's education city. Sustainability 2023, 15, 1913.
  35. Li, T.; Yu, L.; Ma, Y.; et al. Carbon emissions and sustainability of launching 5G mobile networks in China. arXiv preprint arXiv:2306.08337, 2023. DOI: https://doi.org/10.48550/arXiv.2306.08337
  36. Alsalama, T.; Koç, M.; Isaifan, R.J. Mitigation of urban air pollution with green vegetation for sustainable cities: a review. Int. J. Glob. Warm. 2021, 25, 498–515.
  37. Li, Y. AI-enhanced digital twins for energy efficiency and carbon footprint reduction in smart city infrastructure. Appl. Comput. Eng. 2025, 118, 42–47. DOI: https://doi.org/10.54254/2755-2721/2025.20569
  38. Wang, Q.; Li, Y.; Li, R. Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI). Humanit. Soc. Sci. Commun. 2024, 11, 1043.
  39. Luccioni, A.S.; Luccioni, S.; Co, H.; et al. Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model. J. Mach. Learn. Res. 2023, 24(253), 1–15.
  40. Lannelongue, L.; Grealey, J.; Inouye, M. Green algorithms: Quantifying the carbon footprint of computation. Adv. Sci. 2021, 8, 2100707.
  41. Zhaohao, D.; Jianxiao, W.; Yiyang, S.; et al. Tracking the carbon footprint of global generative artificial intelligence: Supplementary information. ResearchGate. DOI: https://doi.org/10.13140/RG.2.2.24123.12326
  42. Kusundal, T.; Avhad, C.; Avhad, A. Study of digital carbon footprint created by e-mmails among college students. Int. J. Creat. Res. Thoughts 2023, 11, 135–140.
  43. Bocchiaro Iii, J. Sustainable ICT: Mitigating the carbon footprint of the digital economy through standards. Stand. J. Res. Innov. 2022, 1(2), 8–18.
  44. Naeem, R.; Bajwa, A.; Sattar, H.; et al. Social media platforms and their digital carbon footprints: Analyzing awareness level of social media users of Punjab, Pakistan. Preprint, 2023. DOI: https://doi.org/10.21203/rs.3.rs-3299158/v1
  45. Li, A.; Wang, Z.; Sun, X.; et al. Accounting factors and spatio-temporal differences of the carbon footprint factor in China’s power system. Energies 2025, 18, 2663.
  46. Mageswari, S.D.U.; Suganthi, P.; Meena, M. Carbon footprint of information and communication technologies. In Proceedings of the 2022 International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India, 13–15 October 2022; pp. 338–342.
  47. Baliga, J.; Hinton, K.; Ayre, R.; et al. Carbon footprint of the Internet. Telecommun. J. Aust. 2009, 59, 5.1–5.14. DOI: https://doi.org/10.2104/tja09005
  48. Arun, A.; Kabita, A.; Gourav, M. Is Internet becoming a major contributor for global warming – The online carbon footprint. J. Inf. Technol. Digit. World 2020, 2, 217–220.
  49. Tong, L.; Wang, C.; Qi, Q.; et al. Study on the impact of China’s digital economy on agricultural carbon emissions. Glob. NEST J. 2024, 26(6), 06183.
  50. Istrate, R.; Tulus, V.; Grass, R.N.; et al. The environmental sustainability of digital content consumption. Nat. Commun. 2024, 15(1), 3724. DOI: https://doi.org/10.1038/s41467-024-47621-w
  51. Batmunkh, A. Carbon footprint of the most popular social media platforms. Sustainability 2022, 14, 2195.
  52. Liu, B.; Wang, F. The impact of the global digital economy on carbon emissions: a review. Sustainability, 2025, 17(11), 5044, DOI: https://doi.org/10.3390/su17115044