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Abstract: Traditional IntrusionDetectionSystems (IDSs) face signiϐicant challenges inkeepingpacewith the rapidly
evolving landscape of cyber threats, primarily due to limitations in continuous learning and the accuracy of data
classiϐication and analysis. This often results in delayed detection and leaves networks susceptible to severe at‑
tacks. This paper introduces an innovative IDS empowered by blockchain technology to mitigate these shortcom‑
ings, leveraging continuous learning and self‑adaptive neural networks. The proposed system adopts a proactive
approach by continuously assimilating intrusion logs, utilizing a Long Short‑Term Memory (LSTM) core to discern
patterns and enhance its real‑time threat detection capabilities, removing a major bottleneck in traditional IDS
models by eliminating the need for manual tagging. To further strengthen the security measures, self‑updating
neural networks are embedded in each block of the blockchain, forming a decentralized “brain” that evolves de‑
fences against even the most sophisticated adversaries. These networks are securely housed in Trusted Execution
Environments (TEEs) to maintain operational integrity, enabling tamper‑proof operation and effective threat de‑
tection. Real‑world evaluations conducted on the Binance Smart Chain and Ethereum Classic datasets demonstrate
the system’s superior performance. With an impressive accuracy rate of 98.50% and a minimal false positive rate
of 1.50%, the model demonstrates a remarkable ability to distinguish legitimate network activity from malicious
intrusions.
Keywords: Neural Network; Intrusion Detection System; Blockchain; Deep Learning

1. Introduction
In the wake of the digital revolution, automation, and interconnected systems have become integral parts of

modern infrastructure, necessitating robust security measures to safeguard against cyber threats. Despite the nu‑
merous beneϐits brought forth by these advancements, cybercriminals are continuously evolving their intrusion
techniques, posing signiϐicant risks to organizations and individuals alike [1]. The prevalence of cybersecurity
threats, ranging from unauthorized access to data breaches and network intrusions, underscores the critical need
for effective IntrusionDetection Systems (IDS) tomaintain security [2]. In response to these challenges, researchers
and practitioners have been exploring innovative approaches to enhance the detection and prevention of intrusions
[3].

Recent studies have proposed novel techniques, such as Min‑Max Game Theory Optimized Artiϐicial Neural
Networks and Distributed Multi‑Agent Intrusion Detection and Prevention Systems, to address the limitations of
traditional IDS [4, 5]. However, one emerging technology that holds immense promise in bolstering cybersecu‑
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rity measures is blockchain. Initially introduced as the underlying technology for cryptocurrencies, blockchain has
evolved to offer much more than just ϐinancial transactions [6]. Its decentralized and immutable nature makes it
well‑suited for securing various domains, including IDS. For instance, recent research has introduced blockchain‑
based IDS systems, such as the African Buffalo system, which utilizes Recurrent Neural Networks (RNNs) trained on
both regular and malicious user data to enhance security [7]. These systems ensure data privacy through identity‑
based encryption and securely store encrypted data on a cloud‑based blockchain. The integration of RNNs enables
the detection of security breacheswithin cloud environments, while optimization techniques continuouslymonitor
for potential intrusions, adding an extra layer of protection.

This study explores the potential of deep learning and ensemble methods to further enhance IDS capabili‑
ties [8]. Although traditional methods struggle with novel attacks, deep learning models, particularly RNNs and
Convolutional Neural Networks (CNNs), excel at analysing raw network trafϐic and identifying complex patterns
indicative of malicious activity. However, challenges such as computational complexity and overϐitting persist. En‑
semble methods offer a solution by combining different algorithms, achieving improved accuracy and robustness,
especially when incorporating CNNs for spatial feature extraction and RNNs for temporal analysis. Nevertheless,
challenges remain in interpreting the decision‑making processes of deep learningmodels and ensuring continuous
adaptation to evolving cyber threats. In this paper, we propose a novel approach that harnesses the power of deep
learning while leveraging the inherent security features of blockchain technology. Our goal is to create a robust IDS
that can detect and mitigate network intrusions in real‑time by integrating these technologies.

1.1. Contributions of the Study
Our study signiϐicantly advances traditional IDS by proposing a novel continuous learning model designed

to enhance the detection of normal, malicious, and suspicious activities. This approach not only facilitates early
intrusion detection but also minimizes the impact of potential threats, overcoming the limitations of static IDS
solutions [9]. The study also ensures robust privacy and security, safeguarding sensitive data against evolving cyber
threats by leveraging TEE.

A key innovation of our model lies in its adaptive nature ‑ it continuously learns from historical intrusion data,
updating theneural networknodes in eachblockchainblock through incremental training. This continuous learning
mechanism enables our system to stay ahead of emerging threats, ensuring its effectiveness over time.

Our model provides several critical advantages:
• Ensures sensitive data remains conϐidential and protected against unauthorized access.
• Strengthens defense mechanisms, offering robust protection against a wide range of cyber threats.
• Boosts data processing capabilities and improves the overall performance of the IDS.
• Designed to seamlessly scale, enabling deployment across large, distributed networks without compromising

performance.
These beneϐits are realized through a combination of LSTM networks (RNN‑CNN hybrid) for efϐicient informa‑

tion retention and a distributed consensus mechanism facilitated by blockchain for scalability. The integration of
these cutting‑edge technologies ensures that the system not only detects intrusions with high accuracy but also
maintains efϐiciency and security in large‑scale environments.

In this paper, we present the methodology, architecture, and implementation of our proposed model, along
with experimental results that validate its effectiveness. We will also discuss potential challenges and limitations
of our approach. Through this work, we aim to make a signiϐicant contribution to the ongoing efforts to reinforce
cybersecurity in the face of rapidly evolving threats by combining the strengths of deep learning and blockchain
technologies in a novel and impactful way.

2. Related Literature
Past researchers in the ϐield have explored various strategies to develop smart IDS. One such strategy that

has been adopted is the application of Machine/Deep learning on Smart Grid systems [10]. In this approach, the
intrusion detection mechanism operates within a software‑deϐined network, which decouples data planes to mon‑
itor and manage the communication network autonomously. However, a signiϐicant drawback of relying solely on
software detection systems is their susceptibility to high variance and bias in detection [11]. Therefore, an ideal
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detection system should exhibit ϐlexibility to accommodate a wide range of anomalies and minimize variance in its
results.

Furthermore, to address cybersecurity concerns, theMulti‑Zone‑Wise Blockchainmodel (MZWB) has emerged
as a viable solution [12]. Thismethod capitalizes onblockchain’s capability to integrate seamlesslywith the Internet
of Things (IoT). The intrusion detection process in MZWB involves two steps: ϐirstly, an analysis of data using a
Deep Convolutional Neural Network to classify information as normal, suspicious, or malicious; secondly, the use
of GenerativeAdversarial Networks to classify data as either normal ormalicious, facilitating the reconstruction and
mitigation of severe attacks. Additionally, the ImprovedMonkeyOptimization technique is employed to recover lost
data.

The exploration of information sharing among various IoT nodes to improve malware detection emerges as
another signiϐicant theme in related research. A study by Putra et al. [13] introduced Collaborative‑IDS (CIDS),
wherein blockchain serves as a decentralized platform enabling CIDS nodes to exchange malware information and
trigger alarms within the system. A critical challenge in such endeavours lies in ensuring the trustworthiness of
shared information, particularly in sensitive sectors like medical smartphones [14]. Leveraging blockchain as a dis‑
tributed ledger technology addresses this challenge by offering unique features such as immutability, ensuring that
once data is added to a blockchain, it cannot be altered or deleted without consensus from the majority of network
participants [15]. This characteristic renders blockchain an ideal platform for storing and sharing tamper‑proof in‑
formation. Additionally, blockchain’s transparency, wherein all transactions are publicly visible, mitigates the risk
of fraud or collusion, fostering trust among CIDS nodes even in the absence of direct familiarity or trust between
them. Furthermore, blockchain’s decentralized nature, not controlled by a single entity, enhances resistance to
attack and manipulation. They also facilitate the implementation of speciϐic mechanisms within CIDS to ensure in‑
formation trustworthiness, including node identity veriϐication, signature veriϐication for intrusion detection alerts,
and maintenance of a reputation system for nodes to identify and avoid those with a history of sharing false infor‑
mation [16]. Consequently, the imperative for new developers lies in guaranteeing the reliability of shared data.

In a separate study [17], researchers proposed anArtiϐicial Intelligence (AI)‑aligned advancedpersistent threat
detection system, yielding a signiϐicant increase in trust. However, concerns regarding the sustainability and cost
of implementing such systems for small enterprises may arise. Similarly, considerable research has been under‑
taken recently on the integration of IDS with neural networks and blockchain technologies [18]. For instance, a
recent study [19] introduced the Blockchain‑based Hybrid IDS (BC‑HyIDS), which employs blockchain technology
for signature exchange among nodes in distributed IDS. Operating in three stages, BC‑HyIDS utilizes both detec‑
tion techniques in the initial phases before incorporating blockchain in the ϐinal stage, thereby enhancing security
through data encryption within blocks using a cryptosystem. Implemented using Hyperledger Fabric v2.0 and Hy‑
perledger Sawtooth, BC‑HyIDS features a prototype blockchain framework built on distributed ledger technology
to facilitate secure signature exchange. Additionally, researchers [20] have proposed an IDS leveraging blockchain
technology, indirect trust, and the Viterbi algorithm to bolster security standards for the Industrial Internet of
Things (IIoT). Integrating blockchain with Viterbi and indirect methods ensures system transparency, enabling
assessment of malicious activity probability throughout IIoT product creation, recording, and delivery. Similarly,
other researchers [21] have introduced a blockchain‑based radial basis function neural network model to enhance
Internet of Drones (IoD) network performance. This approach targets improved data storage and integrity for
informed decision‑making across various IoD contexts. Furthermore, discussions encompass efϐicient implementa‑
tion and sharing of decentralized deep learning techniques, alongwith blockchain’s role in facilitating decentralized
predictive analytics.

A recent study [22] introduces an IDS for IoTurbandata based onblockchain technology, designed to safeguard
devices from Distributed Denial of Service (DDoS) attacks. Utilizing lightweight technology, it secures key pairs of
IoT devices using the Arbiter PUF architecture. Initially, amachine learning‑based ensemble technique is employed
by the collaborative detection system to identify DDoS attacks on IoT devices, boasting a lower false positive rate
and higher detection rate compared to alternative classiϐication techniques. Subsequently, a blockchain system is in‑
tegrated to securely distribute alert notiϐications to each nodewithin the IoT network. Similarly, another study [23]
proposes PRO‑DLBIDCPS, a novel approach for intrusion detection in cyber‑physical system environments, leverag‑
ing blockchain technology and deep learning. PRO‑DLBIDCPS utilizes the Adaptive Harmony Search Algorithm to
select crucial features for intrusion detection and employs an attention‑based bidirectional gated recurrent neural
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network (ABi‑GRNN)model to classify features and detect intrusions. Further enhancing detection performance, a
hyperparameter optimizer based on the Poor and Rich Optimization algorithm is utilized. Blockchain technology is
then leveraged to enhance the security of the cyber‑physical system environment. Additionally, researchers have
proposed a blockchain‑assisted framework to enhance intrusion detection and prevention for IoT smart farms, uti‑
lizing the AWSLambdamechanism and blockchain technology smart contracts to deliver intrusion alerts to farmers
in real‑time [24].

In another recent study [25], a blockchain‑assisted deep learning framework is proposed for privacy‑protected
cooperative intelligent transport systems. This framework incorporates LSTM, Autoencoder, Attention‑based RNN,
and Truncated Backpropagation through Time algorithms to ensure data security. A dedicated blockchain module
is developed to securely transport data across the system, employing an enhanced Proof of Work (PoW) approach
based on smart contracts to verify data integrity and mitigate the risk of data poisoning.

Our study is distinguished from previous research in several key respects. For instance, while previous studies
have examined various strategies for developing IDS, such as applyingmachine/deep learning to smart grid systems
or utilizing multi‑zone‑wise blockchain models, our study introduces an innovative IDS empowered by blockchain
technology to address the limitations of traditional IDSs. In contrast to other approaches, our IDS employs con‑
tinuous learning and self‑adaptive neural networks, enabling real‑time threat detection without the necessity for
manual tagging. Furthermore, our system integrates self‑updating neural networks, securely housed in Trusted
Execution Environments within each block of the blockchain, forming a decentralized “brain” to evolve defences
against sophisticated adversaries while maintaining operational integrity. Table 1 provides a summary of the ϐind‑
ings from related research.

Table 1. Summary of the related work.

Year Author(s) Aim of the Paper/Contribution NN‑Based Classiϐication Ap‑
proach/Algorithm

Blockchain‑
Based Datasets

2023 Abubakar et al.
[9]

A novel blockchain‑based technique
that improves the accuracy of IDS √ Ensemble Learning

Algorithms √ DARPA99 and MIT
Lincoln Lab

2022 Houda et al. [10]
A novel framework that leverages
ensemble learning to efϐiciently detect
and mitigate security threats in
SDN‑based systems.

√ Boosting Feature
Selection, X NSL‑KDD and

UNSW‑NB15

2022 Janani et al. [26] IoT routing attack detection and
classiϐication model √

LSTM, Adaptive
Mayϐly Optimization
Algorithm

X

2023 Kably et al. [12] A Multi‑Zone‑Wise Blockchain model. √ √

2021 Putra et al. [13]
A decentralized CIDS that emphasizes
the importance of building trust
between CIDS nodes.

X Weighted Majority √ Private

2022 Zheng et al. [27]
Blockchain‑based IoT key agreement
and authentication schemes using
multi‑TA network model.

X
Elliptic Curve
Encryption
Algorithm

√ None

2023 Rahman et al.
[17]

An APT detection system based on
blockchain and artiϐicial intelligence. √ DTL‑ResNet √ Private

2022 Khonde et al.
[19]

A novel blockchain framework for
inter‑node signature exchange in
distributed IDS.

X Isolation Random
Forest, XGBoost √ CIC‑IDS 2017

2022 Rathee et al. [20]
An IDS that uses the Viterbi algorithm,
indirect trust, and blockchain
mechanism for Industrial IoT.

X Viterbi √ Private

2023 Heidari et al.
[21]

A blockchain‑based radial basis
function neural network model. √ Radial Basis

Function √
UNSW‑NB15,
NSL‑KDD, CICD‑
DOS2019,CICIDS2017
and AWID

2022 Babu et al. [22]
A permission‑based blockchain
system that uses the arbiter PUF
model to secure the key pairs of IoT
devices using lightweight technology.

X Decision Tree,
Random Forest, SVM √ CICDDoS2019

2022 Kumar et al. [28]
A secure data dissemination system
for IoT‑based e‑health systems using
AI and blockchain.

√ LSTM, Multi‑Layer
Perceptrons √ ToN‑IoT dataset
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Table 1. Cont.

Year Author(s) Aim of the Paper/Contribution NN‑Based Classiϐication Ap‑
proach/Algorithm

Blockchain‑
Based Datasets

2023 Aljabri et al. [29]
A blockchain‑based IDS model based
on CNN that protects network trafϐic
data

√
SHA‑256 hashing
algorithm,
Greedy‑based
genetic algorithm

√ Private

2021 Kumar et al. [30]
A hybrid feature‑reduced intelligent
cyber‑attack detection system for IoT
networks.

X RandomForest, X NSL‑KDD, BoT‑IoT
and DS2OS

2022 Mansour et al.
[23]

A deep learning model for
blockchain‑enabled intrusion
detection in CPS environment.

√
Attention‑based
Bi‑Directional Gated
RNN, Poor and rich
optimization

√ NSL‑KDD 2015
and CICIDS 2017

2023 Aliyu et al. [24] A blockchain‑based smart farm
security framework for IoT. X SVM √ Private

2021 Kumar et al. [25]
A secure framework based on privacy
protection using blockchain‑enabled
deep learning in a cooperative
intelligent transport system.

√ LSTM, Autoencoder,
A‑RNN, BPTT √ ToN‑IoT and

CICIDS‑2017

2022 Kumar et al. [31]
An integrated framework for
decentralized data processing and
learning in IIoT networks, using
blockchain and deep learning.

√

LSTM‑Sparse
AutoEncoder,
Multi‑Head
Self‑Attention‑based
Bidirectional Gated
Recurrent Unit

√ CICIDS‑2017 and
ToN‑IoT

2023 Kumar et al. [32]
A deep learning technique using
blockchain for secure data transfer in
an IoT‑enabled healthcare system.

√ Autoencoder,
Bidirectional LSTM √ CICIDS‑2017 and

ToN‑IoT

2023 Kumar et al. [33]
A new variational autoencoder and
attention‑based gated recurrent
unit‑based IDS for zero‑touch
networks.

√

Variational
Autoencoder,
Attention‑Based
Gated Recurrent
Units

√ ToN‑IoT and
IoJ‑Botnct

2022 Kumar et al. [34]
A secure communication framework
for the network of unmanned aerial
vehicles using blockchain.

X Proof‑of‑Authority,
Round‑based Aura √ None

2023 Our proposal
A blockchain‑based IDS model to
increase the accuracy of malicious
attack detection using deep learning.

√ LSTM, RNN,
Autoencoder, √

Binance Smart
Chain (BSC) and
Ethereum Classic
(ETC)

Prior research in this domain has pursued diverse objectives, all with a shared emphasis on pioneering novel
and innovative IDS solutions. Some studies endeavour to create neural network‑based IDS models capable of dis‑
cerning malicious attacks with heightened accuracy, efϐiciency, security, and reliability compared to conventional
IDS models. Others centre on crafting hybrid IDS models that harness the combined strengths of neural networks
and blockchain technologies. While the majority of cited works concentrate on tailoring IDS models to speciϐic net‑
work types and applications, such as cloud computing networks, smart grid networks, and IIoT networks, none
have delved into the realm of incremental training for blockchain‑based IDSs. Additionally, none of the proposed
solutions undergo evaluation using blockchain‑based datasets such as the BSC and ETC.

3. Proposed Method
To enhance the accuracy of blockchain‑based IDS, the current study proposes combiningmachine learning and

a secure distributed ledger implemented by blockchain to safeguard the communications between nodes. The raw
alert data generated bymonitors is then kept in the blockchain. The data is then replicated among all the connected
nodes of the network displaying the nature of the actual data such as bloom ϐilters or alert hashes. Consecutively,
there is pre‑processing of the logs and classiϐication as either normal or malicious. Moreover, the nodes run a
validity test to ensure that the transactions are credible before addition to the next block. The harvested datasets
are then compared and summarized using a speciϐic criterion to evaluate consistency. The information is then
memorized by the machine to aid in future detection systems. Notably, the collection and processing of data is
decentralized to achieve better scalability. Here ismore detail on themethodology and architecture of our approach:
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Data Collection: The ϐirst step in building the IDS is to collect and pre‑process network data. This data can
include network trafϐic logs, packet captures, and other relevant information. The dataset should include both
normal and malicious network behaviour to effectively train the neural network.

Train the neural network: A neural network is trained using the collected dataset to learn patterns and charac‑
teristics of normal network behaviour. Various deep learning architectures, such as CNNs or RNNs, can be used to
analyse the network data and extract meaningful features.

Anomaly detection: Once the neural network is trained, it can be used to detect anomalies in network trafϐic.
During the inference phase, the network analyses incoming data and identiϐies deviations from normal behaviour.
Anomalies can indicate potential network intrusions or security breaches.

Intrusion reporting: Detected anomalies are reported to the blockchain network. Each reported intrusion is
recorded as a transaction on the blockchain, providing an immutable and transparent history of detected security
incidents. The transaction can include relevant information such as the type of intrusion, timestamp, and any addi‑
tional metadata.

Consensus and validation: The blockchain network’s consensus mechanism, such as Proof of Work (PoW) or
Proof of Stake (PoS), ensures agreement among network participants on the validity of reported intrusions. Con‑
sensus algorithms prevent malicious actors from tampering with the blockchain and provide a trust mechanism
for the recorded data. In this experiment, we used a hybrid of Delegated PoS (DPoS) and PoS consensus mecha‑
nisms to achieve improved decentralization while reducing the risk of collusion by allowing users to delegate their
participation to multiple delegates.

Distributed storage and auditing: The blockchain network stores intrusion data in a decentralized manner
across multiple nodes. This distributed storage provides redundancy and eliminates a single point of failure. Secu‑
rity analysts and auditors can access the blockchain to review and analyse recorded intrusions, aiding in forensic
investigations and attribution. Figure 1 illustrates the techniques employed in the proposed model’s activity ϐlow,
while Figure 2 presents the architecture, which primarily comprises blockchain‑based system components.

Figure 1. Our blockchain‑based model.
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Figure 2. The blockchain‑based system architecture.

Data Collection Module
This is responsible for collecting network data from various network sensors and saving it in the blockchain.

The collected data is then pre‑processed and prepared for input to the neural network. Some of the common pre‑
processing techniques used in this module include data ϐiltering or data cleaning, feature extraction which is done
using machine learning algorithms, and normalization as seen in Figure 1.
Neural Network Module

This contains the trained neural network responsible for analysing the network data and detecting anomalies.
It extracts relevant features, applies machine learning algorithms, and classiϐies network behaviour as normal or
malicious. The neural network is trained on a dataset of labelled network trafϐic data containing both normal and
malicious trafϐic. The neural network learns to identify the patterns in the data that are associated with malicious
trafϐic. Once trained, it can be used to analyse new network trafϐic data and detect anomalies. The neural network
also outputs a probability score for each network packet, indicating the probability that the packet is malicious.
Intrusion reporting module

When an anomaly is detected, this module reports the intrusion to the blockchain network. It creates a trans‑
action with relevant intrusion details and sends it to the blockchain network for validation and recording. The
intrusion report includes the following information:

• Time and date of the intrusion
• Source and destination IP addresses
• Port numbers
• Type of attack
• Severity of the attack
• Blockchain Network

The blockchain network consists of multiple nodes that maintain a distributed ledger of intrusion records,
using DPoS‑PoS to validate and reconcile reported intrusions. The blockchain network ensures immutability, trans‑
parency, and tamper‑proof storage of intrusion data. When an intrusion report is submitted to the blockchain
network, each node validates the report. If the report is valid, it is added to the blockchain ledger. Once an intru‑
sion report is added to the blockchain ledger, it cannot bemodiϐied or deleted. This ensures the immutability of the
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data.
Audit and Analysis Module

The Audit and Analysis Module allows authorized users, such as security analysts or auditors, to access the
blockchain network and review recorded intrusion data through an API. It provides tools for pattern analysis, inci‑
dent investigation, and forensic analysis. Security analysts can use the audit and analysis module to identify trends
in intrusion datawhich can be used to improve the organization’s security posture. In addition, auditors can use this
module to ensure that the organization is compliant with security regulations while forensic analysts can use it to
investigate security incidents, identify the root cause of the incident, and recommend remediation. These elements
work together to create an architecture that combines the security and transparency of blockchain technologywith
neural network‑based anomaly detection. The blockchain serves as a secure and immutable record‑keepingmecha‑
nism for identiϐied intrusions, with the neural network serving as the primary detection engine as shown in Figure
2.

The competence evaluation of an IDS is complexly tied to the challenge of sourcing relevant data for analysis.
Despite the fact that network monitoring provides indispensable insights, obtaining suitable datasets for experi‑
mentation presents a formidable obstacle due to the prohibitive costs associated with data collection [35], forcing
developers to observe their network systems often resort to utilizing available datasets to expedite model develop‑
ment. One common approach involves monitoring network trafϐic on a production network using tools like packet
sniffers and network ϐlow analysers. This gathered data forms the basis for constructing a proϐile of normal net‑
work behaviour, which is then utilized to train the IDS model to detect anomalous activity. Alternatively, synthetic
network trafϐic datasets offer another avenue for experimentation. In our case, we employed such datasets in our
experiment, training our proposed model on typical network trafϐic patterns extracted from the BSC and ETC net‑
works. ETC, being a distributed computing platform built on a free blockchain, provides valuable insights into net‑
work system assaults, making it an ideal candidate for our study [36]. On the other hand, the BSC dataset offers a
comprehensive and rapidly growing record of transactions on the Binance platform, making it suitable for training
an IDS capable of detecting a wide range of attacks in real time.

The integrationof the LSTMmodelswithin the IDS architecture is pivotal for capturing long‑termdependencies
in sequential data. The LSTM layer, serving as the core component of the model, employs specialized gates (input,
output, forget) to regulate information ϐlowandmemory retention [37]. Activation functions, such as thehyperbolic
tangent (tanh), introduce non‑linearity and control information ϐlow within each LSTM unit. The formula for the
hyperbolic tangent function is:

tanh (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (1)

Where:

• e is the base of the natural logarithm, approximately equal to 2.71828.
• x is the input value to the tanh function.

This equation represents the ratio of the difference of two exponential values to their sum. When x is positive,
𝑒𝑥 dominates the expression, leading to a value close to 1. When x is negative, 𝑒−𝑥 dominates, resulting in a value
close to –1. Therefore, the tanh function outputs values between –1 and 1, mapping any real‑valued input to the
range (–1, 1). The output layer, receiving processed features from the LSTM layer, generates ϐinal classiϐications or
predictions using techniques like softmax or sigmoid activation functions. To update the cell state in the LSTM cell,
we use:

𝑠𝑡 = 𝑓𝑡⊙𝑠𝑡–1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡–1 + 𝑏𝑖) (2)
Where:

𝑠𝑡 is the cell state at time step t.
𝑓𝑡 is the forget gate output at time step t.
𝑖𝑡 is the input gate output at time step t.
𝑥𝑡 is the input at time step t
ℎ𝑡−1 is the hidden state of the previous time step.
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𝑊𝑥𝑖 and𝑊ℎ𝑖 are weight matrices for the input and hidden state, respectively.
𝑏𝑖 is the bias vector.
The calculation of the output gate activation in an LSTM cell at time step t is:

𝑜𝑡 = tanh (𝑠𝑡) (3)

Where 𝑜𝑡 is the output gate activation at time step t and tanh is the hyperbolic tangent function, which squashes
the input values between –1 and 1. Figure 3 shows the neural network attack structure [38].

Figure 3. Neural networks attack structure.

Blockchain technology plays a crucial role in facilitating decentralized storage, tamper‑proof audit trails, and
validation mechanisms for intrusion reports within the IDS architecture. Blockchain nodes store and validate in‑
trusion reports submitted by the IDS system, ensuring transparent and immutable records of security incidents.
However, integration introduces latency due to consensus processes, impacting real‑time intrusion detection and
response. Optimization techniques, including efϐicient block validation algorithms and distributed storage mecha‑
nisms such as Distributed Hash Tables (DHT), can mitigate latency issues [39].

Despite the effectiveness of LSTMmodels, challenges such as vanishing gradients and computational expense
persist [40]. To address these challenges, simpler Autoencoder architectures have been developed, offering faster
training and recalling long sequence connections with minimal memory overhead. This underscores the impor‑
tance of considering computational costs, data pre‑processing, and hyper‑parameter tuning in designing effective
IDS architectures.

3.1. Preliminary Processing
The preliminary processing phase encompasses planning, training, and expert testing to effectively reduce the

volumeof datawithout compromising critical information. This step is essential for optimizing subsequent analysis.
The objectives of this pre‑processing phase include:

1. Providing more accurate and reliable computing data for the IDS.
2. Minimizing the occurrence of error messages and false alarms while enhancing the system’s detection capa‑

bilities.
3. Identifying patterns of attack and offering administrators relevant data types to facilitate informed decision‑

making.

During the initial stages of pre‑processing, several key features are often generated, including average block
size, average gas consumption, number of block transactions, average transaction characteristics, total gas expen‑
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diture, and transaction value. These features contribute signiϐicantly to the effectiveness of intrusion detection
processes. For instance, they enable the IDS to discern abnormal patterns in network activity and identify potential
security threats promptly. Additionally, Tables 2 and 3 provide a detailed breakdown of the information contained
within each intrusion transaction recorded on the blockchain, including associated metadata. This information
is instrumental in understanding the nature and context of security incidents, further enhancing the IDS’s ability
to detect and respond to threats effectively. Overall, this pre‑processing methodology aims to optimize the IDS’s
performance by streamlining data processing and extracting meaningful insights from the available information.

Table 2. Processes of some intrusion detection features.

Feature Normal Potential Attack Description

Block size Normal size DoS attack (large data or
complex transactions)

A sudden increase in block size could indicate a DoS
attack designed to overwhelm the network with large
amounts of data or hide malicious activity within
complex transactions. Attackers can also spam the
network with small transactions to inϐlate the block size
and slow down processing.

Gas supply
Increased network
activity (normal or
attack)

DoS attack (high gas prices)

A high gas supply can indicate increased network
activity, which may be normal or a sign of an attack.
Hackers can manipulate the gas supply to drive up
prices and make it expensive for legitimate users to
conduct transactions.

Block complexity Normal Overload attack (complex
smart contracts or mining)

Sudden increases in block complexity could indicate an
attack designed to overload the network with complex
smart contracts or resource‑intensive mining.

Average transactions
per block Normal Network partitioning

(isolated nodes)

A signiϐicant drop in this value could indicate network
partitioning, where parts of the network are no longer
communicating with each other. This can allow
attackers to exploit isolated groups of nodes.

Gas consumption
and transaction
volume

Normal Money laundering or other
ϐinancial crimes

High gas usage and large transaction amounts can be
indicators of money laundering or other ϐinancial
crimes.

Table 3. Intrusion transaction and associated metadata.

Metadata Field Description

Transaction Hash Unique identiϐier for transaction
Timestamp Transaction time
Source Address Originating account address
Destination Address Targeted account address
Transaction Amount Amount of cryptocurrency involved
Attack Type Intrusion type (DoS, account compromise, etc.)
Attack Vector Intrusion execution method
Attacker Signature Attacker’s unique pattern
Attack Payload Data or code used to carry out intrusion
Forensic Evidence Logs and traces generated during intrusion

In neural modelling, a series of standardized procedures is implemented to ensure data stability and reduce
variability. These steps are essential for eliminating the inϐluence of seasonal, periodic, and statistical trends, which
can distort the analysis. Data standardization plays a pivotal role in preparing datasets for neural networks, as these
models are highly sensitive to the scale of input data. Failure to standardize input data can lead to issues such as
overϐitting or the learning of irrelevant features by the neural network. Z‑score normalization is a commonly em‑
ployed technique for standardization, as it centres the data by subtracting the mean and scales it by dividing it by
the standard deviation. Within the context of neural modelling, a division motion ratio is utilized during data nor‑
malization. This ratio quantiϐies the difference between the current data point and the mean of the dataset, which
is then divided by the standard deviation. These standardized approaches ensure that input data is appropriately
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scaled and centred, facilitating effective neural network training and analysis. The Z‑score is given:

𝑍 = (𝑋 − 𝜇)
𝜎 (4)

Where:
Z is the normalized data point.
X is the current data point.
μ is the mean of the data.
σ is the standard deviation of the data.

4. Test and Results Analysis
The model systematically categorized incoming system logs as malicious, suspicious, or normal, ensuring con‑

tinuous classiϐication to maintain a comprehensive memory of various system attacks. Leveraging advanced IDS
capabilities as noted in Maseno, Wang and Xing’s study [41], the model’s effectiveness is inherently tied to the vol‑
ume and accuracy of data collected and classiϐied. Utilizing the immutable BSC and ETC datasets processed with
PyTorch, 80% of the data was dedicated to training the model, with the remaining 20% allocated for testing to as‑
sess its generalization capacity beyond the training data. Using pre‑processed data, the IDS effectively discerned
unusual blockchain network activity, distinguishing between benign and malicious data. Experimental ϐindings on
historical logs demonstrated themodel’s efϐicacy in identifying a spectrumof intrusions, encompassingDoS attacks,
account compromises, and smart contract exploits [42].

The initial stages of data pre‑processing generated a subset of key daily characteristics, such as average block
size, gas supply, block complexity, transactions per block, total gas consumption, and transaction amount, crucial for
gauging network activity. Notably, anomalies in these metrics, like sudden ϐluctuations, signalled potential threats,
enabling the model to ϐlag instances of suspicious behaviour. Access to blockchain data through APIs facilitated
forensic analysis, empowering security analysts to trace attack origins, assess impacts, and recover assets. Utiliz‑
ing Rectiϐied Linear Unit (ReLU) optimization for prediction time, the model harnessed computational efϐiciency,
characterized by a single comparison operation, thus accelerating computations compared to traditional activation
functions like sigmoid or tanh [43]. This computational efϐiciency is paramount for real‑time prediction, especially
within the demanding context of a blockchain‑based neural network‑integrated IDS. Additionally, ReLU’s introduc‑
tion of sparsity and non‑negative outputs enhances its suitability for tasks like anomaly detection and intrusion
scoring in neural network‑integrated IDS environments [44]. It can be calculated:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (5)

Where:
x is the input of the activation function.
f(x) is the output of the activation function.

Themodel’s ability to learn from historical logs signiϐies a signiϐicant advantage, eliminating the need for man‑
ual labelling of vast datasets ‑ a common challenge in traditional machine learning‑based IDS. Consequently, the
presented results underscore the potential of the proposed blockchain‑based intrusion detection model as a valu‑
able asset for safeguarding blockchain networks against diverse attacks. Upon examining Figures 4–9, it becomes
evident that the 51 percent attack led to numerous ETC‑related companies suspending their operations [45]. Our
analysis suggests that the current block size and associated characteristics may not be adequate for detecting cer‑
tain types of blockchain attacks promptly. However, we posit that integrating data from additional sources, such
as the server operating system and application, could enhance the efϐicacy of our detection method. Consequently,
the blockchain experienced a decrease in recorded transactions during the attack.

145



Digital Technologies Research and Applications | Volume 04 | Issue 01

Figure 4. Block average size.

Figure 5. Supplied gas average.
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Figure 6. Average block difϐiculty.

Figure 7. Number of transactions.
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Figure 8. Average transactions per block.

Figure 9. The sum of gas consumed.

Moreover, the reduction in prediction time correlates with the increasing accuracy levels, attributed to the
LSTM’s information storage design. As previously elucidated, the model’s algorithm continuously updates neural
network nodes with each block, facilitating timely intrusion detection to mitigate potential damage. Consequently,
the system exhibits heightened accuracy and expansive memory, enabling efϐicient classiϐication and resolution of
similar threats. Accuracy, a pivotal metric in evaluating model efϐicacy [46], is quantiϐied using the accuracy for‑
mula, whichmeasures themodel’s ability to detect anomalies within a given dataset and predict whether each data
point constitutes an anomaly. Precision, recall, F1 score, Area Under the Curve (AUC), and false positive rates (FPR)
in Table 4 are additional metrics employed to gauge model performance. These metrics, encompassing various
aspects of classiϐication accuracy and error rates, offer a comprehensive evaluation of the model’s effectiveness.
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Precision delineates the proportion of true positives among all predicted positives, while recall denotes the frac‑
tion of true positives among all actual positives. The false positive rate quantiϐies the ratio of false positives to the
sum of false positives and true negatives, providing insights into the model’s propensity for misclassiϐication. The
F1 score, a harmonic mean of precision and recall, offers a balanced assessment of the model’s performance. Addi‑
tionally, the AUC metric, computed as the integral of True Positive Rate (TPR) against FPR, provides a consolidated
measure of the model’s ability to discriminate between positive and negative instances. Figures 10–12 display the
performance metrics. Collectively, these metrics furnish a robust framework for evaluating the model’s accuracy
and effectiveness in intrusion detection.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6)

Where
TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (7)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (8)

F1 Score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (9)

For the true positive value and calculating the AUC, we say
Given:

𝑇𝑃 = 1 − 𝐹𝑁 = 1 − 0.015 = 0.985
Now, we can compute the AUC using the ROC curve formula:

𝐴𝑈𝐶 = 1
2 × TPR1 × FPR2 + FPR3 +… (10)

Assuming the False Positive Rate (FPR) varies from 0 to 1:

FPR1 = 0, FPR2 = 0.009, FPR3 = 1

And the True Positive Rate (TPR) varies from 0 to 1:

TPR1 = 0, TPR2 = 0.985, TPR3 = 1
AUC = 1

2 × (0 × 0.009 + 0.985 × 0.009 + 1 × 1)

AUC = 1
2 × (0 + 0.008865 + 1) = 1

2 ×1.008865 = 0.5044325

Table 4. Evaluation results.

Metric BSC Dataset ETC Dataset

Accuracy 98.5% 97.2%
Recall 99.2% 98.1%
Precision 98.7% 97.6%
F1 score 98.9% 97.8%
FPR 1.5% 2.8%
AUC 0.993 0.989
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Figure 10. Performance metrics.

Figure 11. Performance metrics display.

For the ROC curve plot:
BSC Dataset:

• TPR = 0.992
• FPR = 0.015
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ETC Dataset:

• TPR = 0.981
• FPR = 0.028

Figure 12. ROC curve.

5. Discussion
The Receiver Operating Characteristic (ROC) curve plays a crucial role in setting thresholds, offering a graph‑

ical depiction of a model’s sensitivity and speciϐicity across various thresholds [47]. A higher ROC curve signiϐies
superior performance in distinguishing between normal and malicious trafϐic. Leveraging a decentralized data
structure ensures the resilience of storing information across numerous nodes, mitigating risks of tampering or
deletion. Data distribution enables access to intrusion data by any node in the network by employing DHT, bol‑
stering defence against potential attacks. To address data loss risks, replication across multiple nodes using DHT
ensures redundancy and fault tolerance. Additionally, Principal Component Analysis application is to reduce data
dimensionality and streamline processing and also model training. Through transfer learning, pre‑trained models
are adapted to detect anomalies in blockchain data, optimizing labelling processes. Despite potential vulnerabili‑
ties associated with hardware and software frommajor vendors like Intel and AMD, TEE safeguards sensitive data
within a protected enclave, ensuring conϐidential handling and examination of private information, such as transac‑
tion ϐiles and private keys, while effectively detecting anomalous behaviour in blockchain data.

The intrusion detection results underscore a promising future for cybersecurity, showcasing exceptional ac‑
curacy (97.2%–98.5%), precision in identifying true threats (97.6%–98.7%), and the ability to recall true attacks
(98.1%–99.2%) across two independent datasets (BSC and ETC). Additionally, high F1 scores (97.8%–98.9%), mini‑
mal false positive rates (1.5%–2.8%), and strong AUC values (0.989–0.993) demonstrateminimalmisidentiϐication
of normal activity, maximizing effectiveness in real‑world applications. It is of paramount importance for an IDS to
achieve a balance between high accuracy and low false alarm rates. The proposed methodology has been demon‑
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strated to greatly reduce false‑positive rates while enhancing accuracy, outperforming benchmark models such
as those of Abubakar, Liu and Gilliard [9] and Abbas et al. [48], as well as achieving the same result as those of
Khonde and Ulagamuthalvi [49]. However, Khonde and Ulagamuthalvi [19] employ the CICIDS17 dataset, which is
a synthetic dataset that simulates network trafϐic data. Real‑time classiϐication of incoming protocols, continuous
monitoring and learning, improved accuracy, fewer false positives, scalability, adaptability, and enhanced forensic
capabilities are among the key ϐindings of this study. However, challenges such as data volume and complexity, data
labelling, and privacy considerations associated with using BSC and ETC datasets remain, underscoring the need
for ongoing research and development in IDS based on neural networks.

Furthermore, updating the model in a decentralized framework involves several complex processes that are
essential to maintaining the integrity and efϐiciency of the system. First and foremost, any updates to the model
must go through a consensus mechanism agreed upon by the network participants to ensure that all nodes agree
on the validity of the changes. This often involves a consensus algorithm such as PoS and D‑PoS, where nodes
compete or stake resources to validate transactions and changes. Once consensus is reached, the updated model
must be propagated through the network to ensure that all nodes have access to the latest version. This propagation
process can vary depending on the blockchain protocol used and may involve broadcasting the update to all nodes
or following a peer‑to‑peer distribution mechanism. In addition, adding new nodes to the blockchain network
requires a similar consensus process to validate the authenticity and trustworthiness of the newparticipants. These
new nodes may need to undergo veriϐication steps and provide proof of their computational power or stake before
they are allowed to join the network. Once admitted, they must synchronize with the existing blockchain ledger to
ensure they have an up‑to‑date copy of the entire transaction history. These processes are critical to maintaining
the decentralized nature of the network while ensuring the security and efϐiciency of model updates and node
additions.

5.1. Scalability Analysis and Optimization Strategies
A comprehensive scalability analysis is conducted to evaluate the potential impact of blockchain technology

on the real‑time detection capabilities of the proposed IDS. The analysis begins with an examination of key factors,
including transaction throughput, latency, and potential bottlenecks that may arise due to scalability limitations.
Transaction throughput is a critical aspect of blockchain scalability, referring to the number of transactions pro‑
cessed per unit of time. High transaction throughput is essential for ensuring timely intrusion detection, as delays
in transaction processing can hinder the system’s ability to respond to security threats promptly [50]. Therefore,
we analyse the transaction throughput of the underlying blockchain platform to assess its suitability for supporting
real‑time IDS operations.

Latency, another crucial consideration, refers to the time taken for a transaction to be conϐirmed and added
to the blockchain [51]. Excessive latency can lead to delays in detecting and responding to security incidents, com‑
promising the effectiveness of the IDS. Thus, we evaluate the latency characteristics of the blockchain network and
explore potential strategies for reducing latency to meet real‑time requirements. Furthermore, we investigate po‑
tential bottlenecks that may arise in the blockchain network, such as network congestion, block size limitations,
and consensus algorithm inefϐiciencies. Identifying these bottlenecks is essential for devising effective scalability
solutions and ensuring uninterrupted operation of the IDS.

To mitigate scalability issues and ensure timely intrusion detection, we explore various optimization strate‑
gies for enhancing blockchain performance. These strategies may include sharding, a technique that partitions
the blockchain into smaller shards to parallelize transaction processing and improve throughput. Additionally, off‑
chain processing mechanisms allow certain transactions to be executed off the main blockchain, reducing conges‑
tion and latency. Layer 2 solutions, such as state channels and sidechains, offer further scalability enhancements
by enabling off‑chain computation and settlement while retaining the security guarantees of the main blockchain
[52]. Furthermore, the proposed system could be deployed in different contexts including:

• Enterprise Network Security: In a large corporate network with multiple branches and thousands of devices,
the proposed system could be deployed to enhance intrusion detection and prevention. The system could
analyse network trafϐic and detect anomalies or malicious activity in real‑time, leveraging the scalability of
blockchain technology and the efϐiciency of deep learning models. Case studies could focus on industries such
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as banking, healthcare, or manufacturing, where network security is critical due to regulatory requirements
and sensitive data handling.

• Smart City Infrastructure: In the context of a smart city, where various IoT devices are interconnected to man‑
age utilities, transportation, and public services, the proposed system could play a vital role in securing the
infrastructure against cyber threats. Studies could explore scenarios such as trafϐic management systems, en‑
ergy grids, or public safety networks, highlighting how the systemdetects andmitigates attackswhile ensuring
the reliability and efϐiciency of essential services.

• Cloud Computing Environments: With the increasing adoption of cloud computing services, there is a growing
need for robust security measures to protect cloud‑based applications and data. The proposed system could
be deployed in cloud environments to monitor network trafϐic, detect unauthorized access attempts, and safe‑
guard sensitive information. Research could focus on cloud service providers or enterprises migrating their
infrastructure to the cloud, illustrating how the system enhances security while minimizing disruptions to
business operations.

• Small andMedium‑sizedEnterprises (SMEs): Despite resource constraints, SMEsalso face cybersecurity threats
and require effective intrusion detection solutions. The proposed system could be tailored to meet the needs
of SMEs by offering cost‑effective and scalable security measures. Studies could showcase how SMEs in vari‑
ous industries, such as e‑commerce, software development, or hospitality, deploy the system to protect their
networks and customer data from cyber‑attacks.

• Remote and Rural Areas: In regions with limited internet connectivity or infrastructure, the proposed system
could be adapted to operate in ofϐline or low‑bandwidth environments. Case studies could explore how the sys‑
tem functions in remote communities, agricultural settings, or developing countries, demonstrating its ability
to provide reliable intrusion detection capabilities even under challenging conditions.

5.2. Ethical Implications of Blockchain Use and Data Protection Compliance
When deploying blockchain‑based IDS systems, we need to consider various ethical implications, particularly

concerning privacy, transparency, and compliance with regulations such as the General Data Protection Regulation.
The immutability of blockchain data raises concerns about the permanent storage of sensitive information, poten‑
tially violating individuals’ privacy rights if personally identiϐiable information remains accessible indeϐinitely. In
addition, the decentralized nature of blockchain networks poses challenges in ensuring data sovereignty and con‑
trol, as IDS data can be replicated across multiple nodes, increasing the risk of unauthorized access and disclosure
of sensitive information.

To address these ethical implications and protect sensitive information, we should implement several mea‑
sures. First, data anonymisation techniques canminimize the exposure of PII on the blockchain, preserving individ‑
uals’ privacy while beneϐiting from the blockchain’s security features. We also advocate for robust access controls,
encryption, and cryptographic keymanagement to regulate data access and prevent unauthorizedmanipulation or
disclosure. In addition, privacy impact assessments could be conducted to identify and mitigate privacy risks and
ensure compliance with regulations and ethical standards. Transparent governance frameworks, including clear
policies and procedures for data management and incident response, should be established to ensure accountabil‑
ity and oversight throughout the system lifecycle. Collectively, these measures promote trust, accountability, and
compliance with ethical standards and regulations in the deployment of blockchain‑based IDS systems.

6. Conclusions
As the digital revolution leads to automation and internet connectivity, cybercriminals are constantly improv‑

ing their intrusion techniques, requiring systems to leverage advances in intrusion detection to maintain security.
This study introduces a pioneering IDSmodel, leveraging neural networks, to enhance intrusion detection accuracy
by efϐiciently categorizing system logs as either malicious or normal, facilitated by blockchain technology. Utilizing
the immutable datasets of BSC and ETC, the model proactively identiϐies anomalies and fortiϐies defences against
potential attacks. Employing an 80/20 data split for training and testing ensures rigorous evaluation, while pre‑
processed blockchain data enables the detection of unusual activity within the network. Additionally, the model’s
integration with a dedicated blockchain API facilitates data retrieval, transaction submission, and smart contract
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interaction, bolstering its versatility and applicability. Furthermore, the utilization of the ReLU activation func‑
tion optimizes prediction time, enabling efϐicient learning of complex data patterns. The model’s scalability and
adaptability render it suitable for deployment in large and intricate networks, capable of processing substantial
data volumes and adapting to dynamic network conditions. The incorporation of TEEs ensures secure storage and
analysis of network logs, providing invaluable forensic insights for incident analysis and attack attribution.

In summary, the proposed blockchain‑based IDS continuously learns from intrusion logs, storing informa‑
tion in LSTM units, and autonomously updating neural network nodes within each block, all safeguarded by TEEs.
Demonstrating remarkable accuracy (97.2%–98.5%), precision in identifying true threats (97.6%–98.7%), and
the ability to recall true attacks (98.1%–99.2%) across two independent datasets (BSC and ETC), the model sur‑
passes existing systems, promising enhanced reliability, efϐiciency, and scalability in intrusion detection. Despite
its strengths, the model faces challenges such as data dependency and computational complexity, which are mit‑
igated through strategic data analysis and the adoption of a pre‑trained model approach. Moreover, innovative
measures such as a Dpos/PoS hybrid consensusmechanism and GPU utilization overcome inherent blockchain lim‑
itations, ensuring optimal performance in demanding environments. This research lays the foundation for future
investigations into novel neural network architectures, diversiϐied data sources, federated learning approaches, and
infrastructure optimization techniques, heralding a new era of robust and adaptive network security solutions.

To provide a more comprehensive analysis of the proposed system, further exploration into the overhead in‑
troduced by the blockchain and the computational cost of running deep learningmodels is warranted. Quantitative
data on these aspects would enhance the completeness of our study and provide valuable insights into the prac‑
tical feasibility of implementing the system in real‑world scenarios. Moreover, future research endeavours could
include conducting experiments to measure the computational resources required for training and inference tasks,
as well as evaluating the performance impact of blockchain transactions on system overhead. Furthermore, future
researchers could:

1. Develop standardized APIs and middleware for integrating DL models, blockchain layers, and TEEs.
2. Use data anonymization and tokenization to protect PII while maintaining data traceability.
3. Encourage modular system design to allow independent scaling and updating of IDS components.
4. Promote auditable consensus protocols and rigorous TEE attestation mechanisms.

Policy Implications

1. Regulatory bodies should update cybersecurity standards to account for distributed AI‑based IDS systems.
2. Organizations adopting blockchain‑based IDS should conduct regular compliance assessments, especially con‑

cerning immutable logs and personal data.
3. Governments and institutions should fund research into lightweight cryptographic and AImodels suitable for

edge deployment in TEE environments.
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