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Abstract: During long-term operation in high-temperature and high-pressure environments, the pressure
pipelines of boiler heating systems are prone to damage, which directly affects the safe and stable operation of
pressure pipelines and boiler heating systems. Generally, the acoustic sensor is employed to detect the abnormal
sound of pressure pipelines for condition monitoring. However, the signals obtained from the acoustic sensor are
easily drowned out in background noise generated by fans and exhaust equipment, resulting in unsatisfactory
performance for condition monitoring. Therefore, the intelligent acoustic sensor framework is proposed to
establish a physics-informed digital twin for pressure pipelines, integrating condition monitoring as a core
function. By implementing the digital twin, real-time synchronization between physical and virtual systems
enables predictive maintenance, early fault diagnosis, and optimized operational strategies, thereby reducing
unplanned downtime and enhancing industrial safety. Specifically, the traditional acoustic sensor system is
improved based on the noise reduction model, which can obtain the de-noised acoustic signals for all conditions.
Furthermore, the real-time decision-making model for abnormal sound detection is embedded in the proposed
intelligent acoustic sensor framework based on the long short-term memory network, and the result is employed
as the digital twin for pressures pipeline by monitoring their condition. In addition, the experimental platform is
built to test the effectiveness and reliability of the proposed intelligent acoustic sensor framework. The results
indicate that the quality of acoustic signals is improved by over 3 dB, and the accuracy of condition monitoring can
reach 91.67% for different conditions. By comparing and analyzing with other methods, the superiority and
effectiveness of the proposed intelligent acoustic sensor framework are further verified. This approach not only
improves monitoring precision but also offers broader social benefits, including reduced energy waste in heating
systems and minimized risks of industrial accidents.

Keywords: Intelligent Acoustic Sensor; Condition Monitoring; Pressure Pipelines; Acoustic Signal; Abnormal
Sound Detection; Digital Twins

1. Introduction
Pressure pipelines are widely used in industrial water and gas supply fields under harsh environments,

such as high temperature, high pressure, and strong impact [1]. It easily leads to fatigue and damage of pressure
pipeline and its fixing devices, resulting in abnormal vibration and sound without timely condition monitoring.
Due to the complex working environment and background noise emitted by different devices such as fan, cooling
tower, valve and so on, the abnormal sound is difficult to detect and the accuracy of condition monitoring is
unsatisfactory based on traditional acoustic sensor [2]. For the digital twin system, it includes physical
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experiments and coding. As the core assumption of this research, the construction of digital twin system
fundamentally relies on the physical experimental environment, which are employed to establish the mapping
relationship between acoustic characteristics and pipeline conditions. Therefore, it is urgent to effectively
monitor the operating condition and realize physics-informed digital twin for pressure pipelines through
abnormal sound detection, which is crucial for safe and stable operation of pressure pipeline and transmission
system based on the condition monitoring results. This technology integration demonstrates its generic
necessity not only in pipeline monitoring scenarios, but also shows potential applicability for other industrial
equipment requiring physical-digital interaction.

Currently, pipeline condition monitoring method mainly focuses on faults such as blockage and leakage, and
it lacks research on abnormal detection for vibrations and sounds [3]. Generally, the pressure pipelines of boiler
systems operate in high-temperature environments, and it is wrapped with thick protective materials on the
surface [4]. It limits the direct application of contact monitoring sensor, such as strain gauge and vibration
sensor [5]. Conversely, the acoustic sensor, as non-contact and non-destructive testing, is widely employed to
monitor the pressure pipelines based on high-quality acoustic signals. However, the monitoring signals obtained
from acoustic sensor are contaminated by background noise, which leads to the unsatisfactory application for
acoustic sensor-based condition monitoring method [6]. On the other hand, the occurrence of abnormal sound in
pressure pipelines has strong randomness and suddenness with short duration, resulting in insufficient
abnormal sound data for pressure pipelines. It further limits the application of condition monitoring and
abnormal sound detection of pressure pipeline [7]. Therefore, it is necessary to study intelligent acoustic sensor
framework for effective noise reduction and abnormal sound detection methods based on the noisy and limit
acoustic signals, which is significant for pressure pipeline condition monitoring.

At present, noise reduction methods are applied through two aspects, including signal processing, and
different denoising models [8]. For the signal processing denoising method, it includes several signal
decomposition and reconstruction algorithm and its improvement methods, such as empirical mode
decomposition (EMD) [9], variational mode decomposition (VMD) [10], wavelet packet decomposition (WPD)
[11], etc. It decomposes the noisy signal by manually selecting the parameter and reconstruction way based on
expert experience, resulting in insufficient stability and generalization of the noise reduction. On the other hand,
with the development of artificial intelligence and deep learning model, Europe [12], the United States [13],
Russia [14], and other countries [15] are actively researching the application of AI. Specially, several denoising
models have emerged by establishing different deep learning network, including autoencoders (DAEs) [16],
generative adversarial networks (GANs) [17], transfer learning (TL) [18] and so on. Those methods can achieve
satisfactory denoising performance through training and testing with a large amount of data. However, this type
method requires a large amount of data to improve its denoising effectiveness, which has a long training period,
insufficient stability, and poor adaptability [19]. In addition, low-quality signals and insufficient samples limit the
application and performance of abnormal sound detection for pressure pipelines.

To address the above issues and overcome its shortcoming, the intelligent acoustic sensor framework is
proposed for physics-informed digital twin for pressure pipelines based on improved noise reduction model and
real-time decision-making model. It can reveal the working condition of the pressure pipeline through digital
twins with the core function of condition monitoring. The generative adversarial network (GAN) and denoising
autoencoder (DAE) is used to consist the improved noise reduction model, and the GAN is embedded in the DAE
model to improve the performance of noise reduction. It is trained to obtain high-quality acoustic signals. In
addition, the long short-term memory (LSTM) network is employed to build the real-time decision-making
model for abnormal sound detection for pressure pipelines. The performance of noise reduction and accuracy of
condition monitoring is evaluated through the pressure pipeline experimental platform. Besides, the superiority
of the proposed method is test by comparing with the existing methods on noise reduction and condition
monitoring for pressure pipelines. The main contributions of the research lie in introducing an intelligent
acoustic sensor framework for pressure pipelines and a real-time decision-making model, including:

1. The intelligent acoustic sensor framework is proposed to monitor the condition, which is employed to
establish physics-informed digital twin for pressure pipeline based on improved noise reduction model
and real-time decision-making model;

2. The improved noise reduction model is constructed by means of noise reduction autoencoders and
generative adversarial networks, which can generate high-quality acoustic signals for different conditions;
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3. The pressure pipeline experimental platform is established to evaluate the performance of the proposed
framework. The experimental data further verified the superiority of the proposed framework.

The remainder of this research is organized as follows. Section 2 introduces theoretical background. The
proposed intelligent acoustic sensor framework is detailed in Section 3. Section 4 displays the pressure pipeline
experimental platform and performance of the proposed intelligent acoustic sensor framework. Finally, Section 5
concludes this research.

2. Theoretical Background

2.1. Denoising Autoencoder

As an unsupervised learning model, auto-encoder directly encodes and decodes signals through encoder
and decoder. The encoder maps the original signal X to the hidden layer for the mapped data Y, which is decoded
to obtain reconstructed signal GY based on the decoder. By comparing the original signal X and the reconstructed
signal GY, the error is calculated and the model is modified [20]. The loss function calculation during the process
of encoding and decoding is expressed as

where the ω1 and b1 are the weight coefficients and biases of the encoder, the ω2 and b2 are the weight
coefficients and biases of the decoder, X, Y and GY are the original signal, mapped data, and reconstructed signal,
respectively.

where LH is the loss function, n is the signal length. DAE is an improved version of the auto-encoder, which
constructs the new input signal X' by randomly destroying the original signal X. It also employs the encoder and
decoder for mapping and decoding to obtain the reconstructed signal GY. Besides, the model is modified based
on the difference between input and output signal [21]. By utilizing the randomness of noise and the stability of
real data, the robustness of DAE is improved through multiple random destruction and iterations, which is
suitable for noise reduction. The structure and process of DAE is shown in Figure 1.

Figure 1. The structure and process of DAE.

2.2. Generative Adversarial Network

GAN is an adversarial neural network model proposed by the Goodfellow in 2014, including two networks:
Generator and Discriminator [22]. The generator can generate deceptive fake data by inputting noise, while the
discriminator is used to determine the difference between real and fake data to determine authenticity. Through
continuous adversarial iterative training of the generator and discriminator, the performance of the generator
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continues to improve, and the quality of the fake data increases subsequently [23]. However, the discriminative
performance of the discriminator gradually weakens until it is unable to distinguish between real and fake data.
At this point, adversarial iterative training ends [24]. Finally, the trained generator is employed to generate high-
quality fake data. The structure of GAN is shown in Figure 2.

Figure 2. The structure of the GAN.

For the GAN, the adversarial process and loss function of Generator and Discriminator can be expressed as

where x and G(z) are the real and fake data, Ex~Px and Ez~Pz are the expectation of x and G(z), x~Px and z~Pz are
the generate distribution of x and G(z), G and D are the Generator and Discriminator, respectively.

where LG and LD are loss function for the Generator and Discriminator.

3. Intelligent Acoustic Sensor Framework for Pressure Pipeline

3.1. Noise Reduction Model

With the disadvantages of poor stability and insufficient adaptability, the DAE model is modified through
the GAN, which constitutes the proposed noise reduction model, as shown in the Figure 3.

Figure 3. The structure of the proposed noise reduction model.
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For this model, the generator of GAN is employed as the encoder of the DAE to generate encode signal, and
the denoising signals is obtained from the decoder. To supervise the denoising process of DAE, the discriminator
of the GAN is employed by distinguishing the encode and denoising signals. Through continuous adversarial
training, the noise reduction model is trained and modified, which is implemented to generate denoising signal
through the trained decoder.

The denoising process of the proposed noise reduction model include three parts: encode-decode-
discriminator processing, training and feedback, and noise reduction.

1. Encode-decode-discriminator processing: According to characteristic of DAE, the input signal is random
destroyed, and it is normalized for the same amplitude range of [0,1]. Besides, the normalized signals are
inputted into the Encoder to generate encode signals, which are decoded by the Decoder to obtain the
denoising signals. To evaluate the performance of noise reduction, the denoising signals are encoded by
the Encoder, different types of encode signals are analyzed by the Discriminator, and it is employed to
determine whether it is real or fake data;

2. Training and feedback: To evaluate the authenticity of the encode signal and improve the quality of noise
reduction, the loss function is calculated based on the judgment result of the Discriminator. It conforms to
the loss function of the GAN and Generator, which is expressed as

where LX' is the loss function for the input signal X'. For the proposed noise reduction model, the loss function of
Discriminator is the result of signal judgment, and it is expressed as

where LD is the loss function for the Discriminator, XR is the real data (noiseless signal), Xi' is the i-th input signal,
M is the number of input data types (including noisy and denoising signals). In addition, the root mean square
error (RMSE) is employed to evaluate the effectiveness of proposed noise reduction model. The result is used as
the loss function for Decoder, and it is expressed as

where LDE is the loss function for the Decoder, XRi and XDi are the i-th value of real data (noiseless signal) and
denoising signal, n is the signal length. Due to the Generator is embed in the DAE, the loss function of Encoder
includes two aspects: DAE and GAN. It is calculated as

where LEN is the loss function for the Encoder. After calculating different loss functions, the results are fed back
to the Encoder, Decoder, and Discriminator, respectively. According to the process of adversarial training, the
loss function of the proposed noise reduction model is calculated and fed back during continuous iterations.
Finally, adversarial training is completed when the Encoder and Discriminator reach Nash equilibrium, where
the trained noise reduction model is obtained. The process of the adversarial training is expressed as

3. Noise reduction: Based on the trained noise reduction model, the noisy acoustic signals are inputted into
the trained Encoder, and the denoising signals are obtained from the trained Decoder, which are the
output of the proposed model.

3.2. Real-time Decision-making Model
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Based on the noise reduction model, the high-quality acoustic signals are obtained as denoising monitoring
signals. To realize condition monitoring for pressure pipelines, the real-time decision-making model is proposed
based the LSTM. By inputting the denoising monitoring signals, the LSTM is trained for forget gate and the input
gate (memory gate). Finally, the trained LSTM is employed to obtain real-time decision for condition monitoring
of for pressure pipeline, as shown in Figure 4.

Figure 4. The structure of the real-time decision-making model.

The denoising monitoring signals generated from the trained noise reduction model are inputted into the
forget gate with different labels, and it determine which information to discard based on state information ht-1 at
time t-1 and the current input denoising acoustic signals xt at time t. It is expressed as

where Wf and bf are the weight and bias of forget gate, σ is the Sigmoid function, ft is the output at time t for the
forget gate. In addition, the input gate is used to process current information and update long-term states using
the Tanh function. It is expressed as

whereWi and bi are the weight and bias of Sigmoid function,Wg and bg are the weight and bias of Tanh function,
it and gt are the output at time t for the Sigmoid and Tanh function. Besides, the it and gt are multiplied as the
output information for the input gate. The current unit status Ct is updated based on the historical unit status Ct-1,
and it is expressed as

After being processed by the Sigmoid function, the output Ot is obtained for the condition monitoring of pressure
pipeline, while the status information ht changes with the Tanh function at the output gate. It is expressed as

whereWo and bo are the weight and bias of output gate, Ot is the output at time t for the output gate.

3.3. Intelligent Acoustic Sensor Framework for Pressure Pipeline

Based on the noise reduction model and real-time decision-making model, the Intelligent acoustic sensor
framework is proposed for pressure pipelines. The process of the proposed framework is shown in Figure 5. It
includes the following steps:
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Figure 5. The process of the proposed intelligent acoustic sensor framework.

1. Signal acquisition: Based on the pressure pipeline experimental platform, different types of acoustic
signals are collected to establish the training and monitoring dataset. Specially, the training dataset
includes noisy and noiseless signals under one working condition, and the monitoring dataset is consisted
of several noisy normal condition and abnormal condition signals under different working conditions;

2. Noise reduction model training and applying: The signals obtained from the training dataset are inputted
into the noise reduction model for training and testing. After adversarial training, the trained noise
reduction model is applied to generate denoising acoustic signals with normal and abnormal condition
label;

3. Real-time decision-making model training: The denoising acoustic signals obtained are inputted into the
real-time decision-making model. Based on the LSTM network, the real-time decision-making model is
training for abnormal sound detection;

4. Digital twins and condition monitoring for pressure pipeline: Based on the trained noise reduction model,
the noisy normal condition and abnormal condition signals are processed to generate denoising
monitoring dataset. Besides, the denoising signals are inputted into the trained real-time decision-making
model, and the abnormal sound is detected under different working conditions, which can realize digital
twins for the pressure pipelines with the core function of and condition monitoring. The digital twin
framework achieves dynamic synchronization between physical pipelines and virtual models through
continuous assimilation of de-noised monitoring data, enabling multi-physical field coupling analysis that
integrates acoustic patterns, pressure fluctuations, and mechanical vibration characteristics.

4. Experiment Platform and ConditionMonitoring Results

4.1. Experiment Platform

To evaluate the effectiveness and reliability of the proposed intelligent acoustic sensor framework, the
pressure pipeline experimental platform is established with several devices, as shown in Figure 6. It includes
motor, water pump, pressure reducing valve, pipelines, tank, lifting and fixing equipment, and acoustic sensor.
The water in tank is pumped out by a water pump, and it is regulated by a pressure reducing valve to move along
the pipeline. After passing through the experimental pipeline section, it flows back to the tank, which forms a
closed loop. As shown in the Figure 6b, the experimental pipeline section is a typical pipeline system, consisting
of four pipelines with three degrees of freedom. To simulate the installation way of the actual pipeline in boiler
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system, the experimental pipelines are suspended in the air through the lifting equipment, which are fixed at the
outlet of pressure pipeline, as shown in Figure 6c. Besides, the fixed device is loosened to simulate abnormal
vibration of the pressure pipeline, thereby generating abnormal sound signal.

(a) (b) (c)

Figure 6. The equipment of pressure pipeline experimental platform: (a) Experimental platform; (b) Typical
pipeline system; (c) Lifting equipment.

Besides, the acoustic sensor (INV9206) is employed to collect two types acoustic signals at noisy and
noiseless environments under three pressures: 5 PSI, 10 PSI and 15 PSI. To simulate the actual noise
environment of pressure pipelines, the sound recorded on boiler site is played during signal acquisition. The
sampling frequency is 2560 Hz with 1 s, and each condition has 100 samples. Finally, there are 2 × 2 × 3 × 100 (2
conditions: normal and abnormal sound, 2 environments: noisy and noiseless, 3 pressures: 5, 10 and 15 PSI)
monitoring acoustic signals with 2560 data in each sample. The parameters of the experimental platform are
shown in Table 1.

Table 1. The parameter of the experimental platform.

Type Value
Pressure/PSI 5, 10 and 15

Sampling frequency/Hz 2560
Environments Noisy and noiseless

Number of samples 100
Conditions Normal and abnormal sound

4.2. Results

Based on the length and characteristics of the acoustic samples, the parameters of the noise reduction
model are selected for the Encoder, Decoder and Discriminator. The structural and parameters of the proposed
model are shown in the Figure 7. The CONV, DECONV and FCN are the convolutional layer, deconvolution layer,
and fully connected layer, respectively.
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Figure 7. The structural and parameters of the proposed model.

The noisy and noiseless signals under one condition are employed to trained the proposed noise reduction
model. According to the 7:3 ratio for training and testing, there are 70 and 30 training and testing samples under
one condition. Specially, the training epoch is 100, and the maximum batch is 32 with the adaptive gradient
optimizer. After adversarial training, the noise reduction model is trained, and it is applied for noisy signals to
generate denoising signals under other two working conditions. To evaluate the performance of noise reduction
and verify the proposed model, the root mean square error (RMSE) [25] and signal-to-noise ratio (SNR) [26] are
used as the evaluation index to calculate the differences between noisy and denoising signals. It is expressed as

where RMSE is the value of mean square error, SNR is the value of signal-to-noise ratio. Based on the RMSE and
SNR, the performance of noise reduction is quantitatively analyzed. Taking normal samples as an example, the
noise reduction effect of training and transfer under different working conditions is shown in Table 2. Clearly,
the RMSE and SNR of noisy samples are higher and lower, indicating the presence of noise in the original
samples, which has significant effect on signal quality. After denoising by the proposed model, the RMSE
effectively decreased to below 0.02, while the SNR can reach over 3.5 dB for the samples at 15 PSI. It can increase
by about 5 dB for three conditions. It further verifies the effectiveness and reliability of the proposed noise
reduction model.

Table 2. Noise reduction effect of training and transfer under different working conditions.

Evaluation Index Sample
Type

Training at 5 PSI Training at 10 PSI Training at 15 PSI
10 PSI 15 PSI 5 PSI 15 PSI 5 PSI 10 PSI

RMSE Noisy 0.039 0.037 0.058 0.037 0.058 0.039
Denoising 0.017 0.008 0.019 0.007 0.020 0.016

SNR
Noisy –2.55 –2.18 –3.02 –2.18 –3.02 –2.55

Denoising 3.21 3.56 2.58 3.47 2.51 3.15

Based on the denoising acoustic signals, the real-time decision-making model is trained for abnormal sound
detection and condition monitoring for pressure pipeline. For the real-time decision-making model, the LSTM
network is employed with the hidden units of 200, the epoch of 100, the solver of the adaptive moment
estimation with the gradient threshold of 1 and dropping learning rate of 0.2, respectively. Specially, the
parameters of the LSTM network are selected based on the actual experience and testing results [27]. By training
and testing the real-time decision-making model through denoising signals, the abnormal sound is detected for
condition monitoring of pressure pipelines. By comparing the monitoring result, the noisy and noiseless samples
are trained and tested directly by the real-time decision-making model with the ratio of 7:3. To avoid
randomness, the result is the average value by repeating 5 times, and it is shown in the Table 3 for three
working conditions. Specially, the Mixture represents the trained denoising model is applied for all samples
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under three working conditions, which are trained and tested by the real-time decision-making model to
evaluate the proposed method.

Clearly, the accuracy of condition monitoring with noisy samples is only 68.33% for 10 PSI, and it illustrates
negative impact of noise. Based on the proposed intelligent acoustic sensor framework, the accuracy is
effectively improved for three conditions. Specially, by training the noise reduction model and real-time decision
-making model with the signals collected at 5 PSI, it can reach the highest detection accuracy of 91.67% and
87.00% by applying it into the signals collected at 5 and 10 PSI. The reason is that the noise is strong for low
pressure, and the anti-noise ability of the trained model is improved to be applicable to other conditions. When
applied the trained model to high pressure with low noisy, the accuracy is further improved for condition
monitoring. Besides, the accuracy of proposed intelligent acoustic sensor framework is close to the noiseless
samples, and it is about 15% higher than the noisy samples. This result further demonstrates the effectiveness
and reliability of the proposed intelligent acoustic sensor framework.

Table 3. The condition monitoring results for pressure pipeline.

Conditions
Denoising Samples Noisy Samples Noiseless Samples

Denoising Training Application

5 PSI

5 91.67% 71.67% 93.33%
10 86.33% 68.33% 90.67%
15 87.00% 73.33% 90.33%

Mixture 85.67% 69.33% 91.67%

10 PSI

5 84.67% 71.67% 93.33%
10 89.33% 68.33% 90.67%
15 86.33% 73.33% 90.33%

Mixture 84.67% 69.33% 91.67%

15 PSI

5 85.33% 71.67% 93.33%
10 84.33% 68.33% 90.67%
15 88.67% 73.33% 90.33%

Mixture 85.67% 69.33% 91.67%

4.3. Discussions

To test the performance of the proposed noise reduction model, the original, denoising and noiseless
acoustic signals are compared based on the proposed and original method in time frequency. Taking acoustic
sample at 5 PSI as an example, the three types signals are shown in Figure 8. The amplitude of the noisy signal is
higher and more chaotic. After being processed by the proposed noise reduction model, the amplitude of the
acoustic signal decreased by losing the noise, and the result is closer to the noiseless signal.

Figure 8. Noise reduction performance for three types signals.
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To intuitively reflect the accuracy and bias of the real-time decision-making model for abnormal sound
detection and condition monitoring, taking the one result of Mixture condition with 5 PSI training as an example,
the confusion matrix for three types signals is shown in Figure 9. Due to the interference of noise, the accuracy
of noisy samples is the lowest, and there are also more cases of false detection. Based on the denoising samples
obtained from the proposed noise reduction model, the accuracy is improved, and some false conditions are
modified. The result of the proposed real-time decision-making model is close to noiseless samples, and it
illustrates the effectiveness of the proposed intelligent acoustic sensor framework. Besides, the false samples are
basically equal for normal and abnormal sound signals, which proves the stability and balance of the proposed
intelligent acoustic sensor framework.

(a) (b) (c)

Figure 9. Confusion matrix for different signals: (a) Noisy sample; (b) Denoising sample; (c) Noiseless sample.

Due to the randomness and uncertainty of the noisy signals collected in the experiment, Gaussian white
noise is added to the noiseless signal to test the denoising effect of the proposed method. Due to sensor
placement variability and transient background noise, the noisy signals inherently exhibit randomness and
uncertainty, and the digital twin framework actively mitigates these challenges through bidirectional virtual-
physical synchronization. By continuously calibrating the virtual model with real-time de-noised signals and
feeding back diagnostic insights to the physical system, the DT reduces operational haphazardness and enhances
predictability across both domains.

Specifically, three types of Gaussian white noise are added, including –5 dB, –10 dB and –15 dB, which are
processed using the proposed method. This methodology enables quantitative evaluation of the denoising
method under progressively challenging pressure conditions. The results are compared with noiseless and noisy
data, as shown in Table 4.

Table 4. The comparative denoising results for different Gaussian white noise.

Different Types of
Experimental Data

Training at 5 PSI Training at 10 PSI Training at 15 PSI
RMSE SNR RMSE SNR RMSE SNR

–5 dB samples 0.185 –3.12 dB 0.198 –3.45 dB 0.214 –3.78 dB
–10 dB samples 0.201 –4.25 dB 0.215 –4.63 dB 0.228 –4.90 dB
–15 dB samples 0.238 –6.37 dB 0.242 –7.81 dB 0.275 –8.67 dB
Noisy samples 0.207 –1.96 dB 0.221 –2.60 dB 0.230 –2.38 dB

Due to the influence of noise, the RMSE value of the signal increases with the intensity of Gaussian white
noise. However, the proposed method improved the SNR value after processing and remained relatively stable
under different operating conditions. Specially, the pressure-induced error amplification shows strong noise-
level dependency, with –15 dB samples exhibiting 18.9% RMSE degradation at 15 PSI versus 5 PSI, compared to
11.1% for complex noisy samples. Besides, the signal preservation capability remains stable across pressure
variations, evidenced by <0.5 dB SNR fluctuations in noisy samples despite 11.1% RMSE growth. The result
illustrates the denoising performance before and after noise cleansing.

In addition, the experiments and comparative analysis is implemented through different methods, including
the signal processing method and denoising model. Specially, the WPD [11] is employed as the signal processing
method, while the DAE [16] and CGAN [28] is used as the noise reduction models. The RMSE and SNR are used as
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the evaluation index to measure the performance of noise reduction, and the results are shown in Table 5.
Specially, the results are the average value by applying to different pressure.

Table 5. The comparative denoising results for different methods.

Methods
Training at 5 PSI Training at 10 PSI Training at 15 PSI
RMSE SNR RMSE SNR RMSE SNR

Noisy samples 0.207 –1.96 dB 0.221 –2.60 dB 0.230 –2.38 dB
WPD 0.184 –0.73 dB 0.195 –1.15 dB 0.200 –1.21 dB
DAE 0.152 1.67 dB 0.155 1.93 dB 0.161 1.79 dB
CGAN 0.167 1.45 dB 0.145 1.95 dB 0.176 1.83 dB

The proposed method 0.114 3.39 dB 0.114 3.03 dB 0.134 2.83 dB

Clearly, the original noisy samples have poor RMSE and SNR due to the complex noisy. By processing with
the WPD, the signal quality is improved, and the RMSE can decrease about 0.11 for three conditions. Based on
different denoising models, the results of DAE and CGAN have effective performance on noise reduction, and it
ran reach the better result than the WPD. Besides, the result of the CGAN model is unstable for the complexity
and uncertainty of the input noise. Compared with other methods, the denoising signals obtained by the
proposed intelligent acoustic sensor framework have the smaller RMSE and higher SNR, and the result is
relatively stable in various conditions. This result quantitatively demonstrates the performance of the proposed
intelligent acoustic sensor framework for condition monitoring for pressure pipeline.

To analyze the effectiveness of the proposed intelligent acoustic sensor framework, the accuracy of
condition monitoring is calculated for different methods, and the average results are shown in Table 6.

Table 6. The comparative condition monitoring results for different methods.

Methods
Training at 5 PSI Training at 10 PSI Training at 15 PSI

10 PSI 15 PSI 5 PSI 15 PSI 5 PSI 10 PSI
Noisy samples 68.33% 73.33% 71.67% 73.33% 71.67% 68.33%

WPD 90.67% 90.33% 93.33% 90.33% 93.33% 90.67%
DAE 78.33% 82.00% 78.00% 80.33% 78.00% 81.33%
CGAN 82.67% 80.67% 80.33% 82.33% 81.67% 70.33%

The proposed method 84.67% 83.67% 80.67% 81.33% 82.67% 79.33%

The accuracy of abnormal sound detection is the lowest for the noisy sample, and it has been improved by
reducing the noise of noisy signals through different methods. The denoising methods based on WPD can
improve the accuracy about 10% for some condition, while the accuracy is unstable for some working conditions
due to the influence of noise. For the denoising model-based method, it has about 85% detection accuracy, such
as the DAE and the CGAN. It indicates the effectiveness of the denoising model. In addition, the proposed method
can achieve an accuracy of about 85% for different conditions, which is close to the result of noiseless samples
and better than other methods. It indicates that the proposed intelligent acoustic sensor framework can improve
the accuracy of abnormal sound detection and condition monitoring by reducing noise in the acoustic signal,
further verifying the effectiveness of the proposed intelligent acoustic sensor framework.

Specially, the physical experiments have confirmed the effectiveness of the original model in some cases,
but there are significant differences between the experiments and industrial sites. When applied to practical
industrial scenarios, a more concise and efficient model is crucial to meet the practical requirements of strong
noise and efficient processing. Besides, the programmatic implementation demonstrated that the simplified
version maintained equivalent predictive capability while significantly reducing computational demands.
Through cross-validation the condition results between experimental data and digital twin outputs, the
proposed model can be further simplified to improve processing efficiency and enhance applicability in the
future.

5. Conclusions
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This paper proposes intelligent acoustic sensor framework for pressure pipelines based on improved noise
reduction model and real-time decision-making model. It establishes the noise reduction model based on the
DAE and GAN, which is trained by comparing the noisy and noiseless acoustic signals under single working
condition. By continuous adversarial training, the denoising ability of noise reduction model is improved, and it
is applied for different conditions to obtain high-quality denoising signals. Further, the real-time decision-
making model is established for abnormal sound detection based on the LSTM network, and it realizes the
condition monitoring for pressure pipeline through complete denoising signals dataset. Based on the
experimental platform, the effectiveness and reliability of the proposed intelligent acoustic sensor framework is
tested and evaluated for three pressure conditions. The results indicate that the proposed intelligent acoustic
sensor framework can effectively reduce the noise of the noisy signals and reach about 92% condition
monitoring accuracy for different conditions, which is close to the accuracy of noiseless samples. In addition, the
ablation experiments and comparative analysis is implemented to verify the superiority of the proposed
intelligent acoustic sensor framework, and the result further demonstrates its effectiveness and performance.
Furthermore, the digital twin is established to integrate physical signals, virtual simulations, and operator
decisions as a three-dimensional socio-technical perspective, which is essential for balancing industrial safety,
environmental constraints, and human intervention in energy systems.

In the future, more abnormal sound conditions can be simulated and tested to generate abnormal acoustic
signals, which is the extension for implementing condition monitoring. In addition, there is a certain gap for the
noise between experimental and actual signal. By monitoring the abnormal sound obtained from the actual
condition, the applicability and stability of the proposed method can be further tested. Besides, the proposed
model can be further simplified to improve processing efficiency and enhance applicability, which can be applied
to practical industrial scenarios in the future. Additionally, geolocation-aware data integration and cross-
disciplinary collaborations with urban planners are significant to enhance the societal relevance for the
proposed framework.
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