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Abstract: In data transmission systems, ensuring reliable communication while maximizing spectrum efficiency is a 
challenge. Code Division Multiple Access (CDMA) systems, widely used in wireless networks, depend on spreading 
codes to manage interference and support users. Achieving a balance between low cross-correlation and optimal auto-
correlation properties is complex and involves trade-offs that affect system performance, especially as modern systems 
demand higher data rates and efficiency. In systems that use spectral spreading, achieving optimal autocorrelation char-
acteristics often compromises cross-correlation characteristics, and vice versa. Codes with low cross-correlation values 
typically exhibit high out-of-phase autocorrelation values. Therefore, a balance between autocorrelation and cross-cor-
relation properties is necessary for an efficient CDMA communication system. These desirable correlation properties 
are crucial in both periodic and aperiodic contexts. Recent innovations have led to a patented code generator derived 
from Golay codes/sequences, which exhibits low periodic cross-correlation values and a periodic autocorrelation func-
tion characterized by a prominent correlation peak and null values surrounding it. This development not only enhances 
signal quality but also mitigates interference in multi-user communication scenarios, making it particularly relevant for 
modern wireless networks. Furthermore, a novel solution is proposed to minimize the Peak-to-Average Power Ratio 
(PAPR) and reduce the cost of a new Orthogonal Perfect Discrete Fourier Transform Golay (OPDG) power transmission 
circuit. This approach leverages advanced signal processing techniques to achieve energy efficiency, addressing a crit-
ical challenge in high-performance communication systems. Experimental results demonstrate the practicality of these 
innovations in real-world implementations, paving the way for future advancements in CDMA technology.
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1. Introduction

In many communication systems, such as Code Division Multiple Access (CDMA) and Orthogonal Frequency Di-
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vision Multiple Access (OFDMA), the need for suitable coding sequences is paramount. These sequences must exhibit 
excellent periodic autocorrelation and near-perfect cross-correlation features to ensure effective synchronization and 
code identification in noisy environments. Popular orthogonal codes used in CDMA include Golay sequences [1], Frank 
and Chu codes [2], and Gold codes [3]. A perfect sequence is a complex sequence where all out-of-phase periodic au-
to-correlation values are zero. Unfortunately, perfect bipolar sequences longer than 4 and perfect quadri-phase sequenc-
es longer than 16 are currently unknown [4].

To achieve higher data rates and improved spectral efficiency, communication systems using OFDMA employ lin-
ear modulation techniques like quadrature phase-shift keying and quadrature amplitude modulation [5]. However, a sig-
nificant challenge is the high Peak-to-Average Power Ratio (PAPR) of the transmitted Orthogonal Frequency Division 
Multiple (OFDM) signal. High PAPR results in performance degradation due to nonlinear distortion from High-Power 
Amplifiers (HPAs). This non-linearity leads to in-band distortion, which increases Bit Error Rate (BER), and out-of-
band radiation, causing adjacent channel interference [6]. Thus, addressing the PAPR issue is critical for maintaining 
system power efficiency and minimizing nonlinear distortion in future wireless communication systems [7].

Pereira and Silva [8] introduced a patented Coder/Decoder (CODEC) with perfect sequences of length 2N (N ∈ ℕ), 
based on the Inverse Discrete Fourier Transform (IDFT) of Golay sequences [1]. These Golay sequences are not the 
well-known error correcting code invented by Golay. These new obtained codes are perfect sequences and comple-
mentary, unaffected by multipath Interferences (MPI) due to their correlation properties. Termed Orthogonal Perfect 
DFT Golay (OPDG) codes, or simply Perfect Golay codes, they exhibit satisfactory correlation properties. This paper 
presents an OPDG code generator to simplify the hardware implementation of lengthy perfect bipolar and quadri-phase 
sequences. Additionally, a novel solution to reduce PAPR and offer an economical OPDG power transmission circuit is 
proposed.

Section 2 reviews the concept of Perfect Sequences, while Section 3 introduces the OPDG Codec. Section 4 dis-
cusses a solution for the error probability and section 5 shows a PAPR solution based on a binary decomposition of 
OPDG codes. A conclusion is written at the end.

2. Perfect Sequences

In the study of stochastic processes, particularly those that are Wide-Sense Stationary (WSS), understanding the 
nature of perfect sequences is crucial. We should remember that, as noted by Theodoridis [9], for any WSS stochastic 
process, there is a unique autocorrelation sequence that characterizes it. However, the reverse is not true; a single auto-
correlation sequence may correspond to multiple WSS processes. Recall that the autocorrelation function correspond to 
the mean value of the product of random variables, but many different random variables may share the same mean val-
ue. The Fourier transform of an autocorrelation sequence  is nonnegative. Furthermore, if a sequence  
has a nonnegative Fourier transform, it is positive definite, and we can always construct a WSS process with  as its 
autocorrelation sequence. Thus, the necessary and sufficient condition for a sequence to be an autocorrelation sequence 
remains the nonnegativity of its Fourier transform.

One common example of a WSS process is the white noise [9] sequence. White noise is essential in signal process-
ing and communication systems. It is a random signal characterized by equal intensity at different frequencies, resulting 
in a constant power spectral density. The mean of white noise is zero, and its autocorrelation function is zero for any 
non-zero time shifts.

Instead of modeling the input signals using a white noise signal, we will use a discrete  sequence generat-
ed by a Codec described in the next section. This can be a periodic sequence of length N, where the index point 

. Its Discrete Fourier Transform (DFT) [10] is defined by the following expression (1):
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. (1)

The Inverse Discrete Fourier Transform (IDFT) [10] can be expressed as follows (2):

. (2)

For convenience of notation  is defined to be (3)

, where . (3)

Using the DFT and IDFT transformations, periodic cross-correlation can be defined [10, 11] by the following ex-
pression (4):

, (4)

where  is an integer, the superscript * represents the complex conjugate and  is the rest of an integer 
division of (a:b). A complex value is equal to  when “u” is a periodic sequence with the period N.

When u = v, (4) is defined as the periodic autocorrelation function. A sequence u is called a “perfect sequence” if it 
has an ideal periodic autocorrelation function proportional to a Dirac unit impulse, defined by (5):

. (5)

As it is known ( ), any sequence of constant amplitude in the frequency domain corresponds to a 
perfect sequence in the time domain.

The IDFT of a constant sequence (such as a sequence of ones) results in a Dirac unit impulse (also known as the 
Kronecker delta function) in the discrete-time domain.

Here is the detailed reasoning:
Given a sequence =1 for k=0,1,…,N−1, which means is constant and equal to 1 for all k, the IDFT[ ] 

of (4) is computed. The terms are evenly distributed around the unit circle in the complex plane, and their sum is 
zero due to symmetry.

Thus, the sequence is as follows (6):

. (6)

Considering one period, this is the discrete-time equivalent of the Dirac unit impulse, often represented as  on 
equation (7):

. (7)

Therefore, the IDFT of a constant sequence s indeed a Dirac unit impulse.
In other words, we can say that the sequence (8):

(8)

when , is a normalized perfect sequence if

. (9)

Using (8) we can generate perfect sequences (with constant envelope or not) of any length N, when it  is con-
stant for all values . However, what is usually intended with communication systems is to find perfect 
sequences with good correlation properties. For example, perfect sequences with low cross-correlation values (in abso-
lute value).

Ideally, sequences used in Code Division Multiple Access (CDMA-type) systems or Orthogonal Frequency-Divi-
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sion Multiplexing - Code Division Multiple Access (ODFM-type) systems should have a perfect periodic autocorrela-
tion function [12-14] when multi-path interference is predominant. In other words, the perfect periodic autocorrelation 
function must be equal to the function of a Dirac unit impulse . However, since bipolar sequences with the perfect 
periodic autocorrelation function are not known except for  x = {1, 1, 1,  -1} or for any cyclic rotation of x [15, 16], it is 
desirable to find new sequences. Alternative solutions can be found with periodic complex sequences defined by some 
authors as sequences of multiple small or large alphabet phases [12, 17, 18], unimodular perfect sequences [19], codes 
of the type “Phase Shift Pulse” [20], perfect sequences of the root of the unit [21], sequences of Bent functions [22], or 
simply as perfect sequences [23-25]. Additionally, perfect sequences with four phases (small alphabet) exist for lengths 
N equal to 2, 4, 8, 16 (Milewski sequences and Frank sequences). Many other sequences with perfect periodic autocor-
relation function can be found if a mathematical transformation is used [13,14].

Codes with a near-perfect periodic autocorrelation function and that have a reduced MaxCC (maximum periodic 
cross-correlation in absolute value) can be applied in asynchronous CDMA communication systems, for fast equaliza-
tion, for estimation of a communication channel, for synchronization, or in other applications impaired by strong inter-
ference of the multiple paths type [26].

As already mentioned, a variety of perfect sequences have been proposed by several authors/researchers. The low-

er bound of the maximum absolute cross-correlation value MaxCC is a constant equal to  [2, 11, 27]. It is interesting 
to note that, theoretically, it should not be possible to generate perfect sequences with zero periodic cross-correlation for 
any temporal displacement.

3. OPDG code generator

Figure 1 depicts a simplified diagram of the application of real OPDG codes in a data communication system in the 
presence of noise [8]. It illustrates the integration of electronic circuits for coding and decoding OPDG sequences within 
the communication system.

• The OPDG encoder (block 101) represents the circuits in Figures 2(a) and 2(b).
• The circuit transforming the sequences is shown as the ‘floor of the encoder with DAC’ (block 102), represent-

ing Figures 3(a) and 3(b).
• The ‘Transmission medium’ (block 103) indicates the means of transmission, receiving the sequences with ad-

ditive noise.
• The ‘floor of the decoder with ADC’ (block 104) includes an ADC converter and filters to minimize noise ef-

fects.
• The OPDG decoder (block 105) corresponds to the circuits in Figures 4(a), 4(b), or the simplified circuit in 

Figure 6.

Figure 1. Block diagram of the proposed solution.
The OPDG coding block (101) serves as the electronic generator of OPDG codes, while the OPDG decoder (105) 

acts as the electronic detector of OPDG codes transmitted in a CDMA medium (103) with noise or electronic interfer-
ence. The information transmitted by the user is proportional to the detection of the assigned OPDG code.
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(a)

(b)
Figure 2. (a) Hardware implementation of the generator circuit (encoder) of a pair of perfect orthogonal sequences 

(b) Hardware implementation of the electronic encoder of OPDG codes using recursive process.

(a)

(b)
Figure 3. (a) Transformation of the complex sequence shows how to apply a set of electronic transformations 
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to codes. (b) Transformation of the complex sequence illustrates how to apply the same set of electronic transforma-
tions to codes.

Figure 2(a) illustrates the generator circuit (encoder) of a pair of perfect orthogonal sequences. The perfect se-
quences aN[t] is called the OPDG code 1 and bN[t] is called the OPDG code 2.

• The generator circuit produces a pair of discrete orthogonal and perfect sequences, OPDG 1 and OPDG 2, of 
length L = 2N.

• The encoder incorporates adders, differentiators, and multipliers (multiplying by a vector complex ‘twiddle 
factor’ WL = exp (-j2π/L) ).

• The value of the ‘twiddle factor’ in each module is crucial for generating OPDG codes with perfect autocorre-
lation and zero cross-correlation.

Figure 2(b) shows the hardware implementation of the coder of OPDG codes using a recursive process.
• This method employs a single module called recursively N times, advantageous when N is high.
• The recursive process involves input vectors an-1[t] and bn-1[t] and output vectors an[t] and bn[t], with n as an 

integer (1 ≤ n ≤ N).
• The initial condition is  and , where A is a real constant vector or signal, performed only at 

the first iteration (n = 1).
Mathematical Proofs
Golay Sequences Recap
We start with the Golay sequences generated using Budisin’s recursive method [28], defined as (10-13):

          (10)
          (11)

        (12)
.        (13)

After applying the IDFT to the bipolar Golay sequences (12) and (13), we get the sequences  and  as fol-
lows (14,15):

        (14)
       (15)

Here,  .
The initial condition is  and , where A is a real constant vector or signal, and each electronic 

module uses a complex hardware implementation equal to (16):

 (16)

Length L = 2N, with WL = exp(-j2π/L).
Autocorrelation Analysis

Autocorrelation of 
The autocorrelation function of  is defined as (17,18):

        (17)
       (18)

The autocorrelation becomes (19):

 (19)
Expansion of Terms
Breaking it down, we have (20):
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     (20)

Simplification Using Complementary Properties

First and Last Terms: The terms  and  contribute significantly at zero offset 
due to the Golay sequence’s autocorrelation property, maintaining the main peak.

Mixed Terms Cancellation: The mixed terms  and 

 cancel for , thanks to the orthogonal properties imposed by the phase shifts .

Result: This ensures , resulting in a Dirac-like impulse for the autocorrelation.
Cross-Correlation Analysis

Cross-Correlation between  and 
The cross-correlation function is (21):

        (21)
Using the recursive definitions we have (22, 23):

       (22)

       (23)

Substitute to get (24, 25):

 (24)

     (25)

Simplification

Mixed Terms Cancellation: The terms  and  
cancel each other, significantly reducing cross-correlation contributions.

Zero Cross-Correlation: The structure ensures that , ensuring near-zero cross-correlation.
Mathematical Proof of the Orthogonality of  and  for Any Cyclic Translation 
Let’s prove the orthogonality of the real and imaginary parts of the sequences  and  generated by apply-

ing the IDFT to Golay pairs. We aim to show that for any cyclic translation  (26):

        (26)

for any , where  is the sequence length.
Step-by-Step Proof
Expand  in terms of real and imaginary parts (27):

        (27)
and similarly for .
Substitute the recursive definition:

Orthogonality condition: The condition for orthogonality between  and  requires that (28):

        (28)
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for all  m.
This means the real and imaginary parts are uncorrelated for any shift .
Recursive nature and symmetry: The recursive nature of  and  ensures that both the real and imaginary 

parts are constructed in such a way that they are balanced (i.e., their contributions cancel out over a full cycle of length ). 
Given the symmetry and the orthogonality properties imposed by the IDFT and Golay sequences, we get (29):

 
            (29)

due to the orthogonality and symmetry in the frequency domain.
General result: The same logic applies to , proving that the real and imaginary parts of the sequences  

and  are orthogonal under any cyclic translation.
Why this property is rare and useful in communication systems?
Rarity: Orthogonality between the real and imaginary parts of sequences after cyclic shifts is rare because it re-

quires a careful balance in the construction of the sequences. Most random sequences do not exhibit this property due to 
the lack of inherent structure and symmetry.

Utility in communication systems:
Improved Signal Separation: Orthogonality between the real and imaginary parts means that these components can 

be separated cleanly, which is particularly useful in quadrature amplitude modulation (QAM) schemes where signals are 
transmitted using both real and imaginary components.

Reduced Interference: In systems where multiple sequences are used simultaneously (e.g., CDMA), orthogonal 
components reduce the likelihood of cross-interference, leading to cleaner signal detection and decoding.

Enhanced Multiplexing: With orthogonal real and imaginary parts, it becomes easier to multiplex different data 
streams in a way that minimizes interference, enhancing the overall system capacity.

In summary, the orthogonality of  and  (and similarly for  and ) is a direct 
consequence of the structured recursive construction of the sequences and the inherent symmetry and balance provided 
by the IDFT of Golay pairs. This property is highly desirable in communication systems due to its ability to reduce in-
terference and enhance signal clarity, especially in complex modulation schemes.

In Fig. 2 (b) the two outputs (14) and (15) are stored in a memory component before being injected into the two 
inputs of the basic electronic module (with index n) in the next iteration. The hardware implementation of the encoder 
of OPDG codes alternative to that of Figure 2(a) incorporates an adder, a differentiator and a multiplier.

Figure 3(a) is a complex sequence  transformation, and shows how to apply a set of hardware implementations 
to codes ; and Figure 3(b) shows transformation of the complex sequence , and illustrates how to apply the 
same set of hardware implementations to the codes . Figures 3(a) and 3(b) are complementary to Figure 2(a). The 
OPDG codes 1, in Figure 2(a), will be the entry codes in Figure 3(a). The OPDG 2 codes, in Figure 2(a), will be the 
entry codes in Figure 3(b). The multiplexers (307) and (317) will allow the user to use the desired exit codes which can 
be , , and .

The hardware implementation of the encoder in Figure 2(a), of an OPDG code pair, requires an hardware imple-
mentation of the decoder capable of reversing the operation of the specific encoding.

Figure 4(a) represents the decoder circuit of a pair of perfect orthogonal sequences and , consisting 
of N basic electronic modules. Each basic electronic module consists of an adder, a differentiator and a multiplier by a 
complex hardware implementation derived from a “twiddle factor” (WL = exp (j2π/L)) specific to each electronic mod-
ules. The specific connections of the three operators, of the basic module of Figure 4(a), allow the electronic decoding 
of OPDG codes of a certain length. This hardware implementation is a recursive process, that is, the decoding of an 

OPDG code of length 2N is obtained based on the electronic decoding of a code of length 2N-1. The entry codes 
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and , the first basic module of Figure 4(a), can be the same as the codes and  of Figure 2(a), respec-
tively. However, entry codes  and  may also be the codes , ,  and , of Figures 3(a) 
and (b). In addition, entry codes  and  may also be the codes referred to above when they are contaminated by 
noise or another source of electronic interference. The block (432) of Figure 4(a) performs the electronic operation ‘real 
part’ of an FFT (Fast Fourier Transform) that allows generating the signal equal to a Dirac unit impulse with amplitude 
A[q]N22N+1. This impulse will appear to be temporarily displaced by a 2N-1 value.

Figure 4(b) shows the electronic OPDG code decoder (105) when the basic modules are used in a recursive pro-
cess. Instead of having N electronic modules connected in a chain, only one is used which is called recursively N times. 
This method is advantageous when the N value is high. The recursive process is defined by two complex input vectors 

 and , and two complex output vectors  and , where n is an integer. The output is the same as 
the expression (30):

(30)

The output  is equal to the expression (31)

(31)

with .

(a)

(b)
Figure 4. (a) Decoder circuit of a pair of perfect orthogonal sequences (b) OPDG hardware implementation of the 

decoder (105) when the basic modules are used in a recursive process.
In the last iteration, two output vectors  and  are added together to generate a unimodular complex vec-

tor. Each specific module of an iteration, represented by an index n, uses a complex vector equal to (32)
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(32)

of length L = 2N, where WL = exp(-j2π/L).
The two outputs  and  of the electronic module are stored in a memory component before being 

injected into the two inputs of the basic electronic module (index n) in the next iteration. The initial condition is and is 
only performed the first time, at the first iteration n = N. Unlike the OPDG encoder, here the iteration index is decre-
mented by one, starting at n = N and ending at n = 1.

Figure 5 depicts a simplified diagram of the application of bipolar codes OPDG {-1, +1} in a data communica-
tion system in the presence of noise, illustrating the communication system of Figure 1 when a single signal , of 
Figure 3(a), is used and transmitted by the transmission medium (603). This signal is a bipolar sequence {-1, +1} that 
depends on the cyclical displacement Di (302) applied. Because the value i can take L different values (0 i < L), it will 
be possible to generate L different bipolar sequences of length L. These bipolar codes have excellent correlation proper-
ties. The detection of the correct sequence can be done with an electronic circuit that allows estimating the value of the 
autocorrelation.

Figure 5. Simplified illustration of the application of bipolar codes OPDG in a data communication system with noise.
Figure 6 depicts a circuit that implements a classic correlation function where the input signal is multiplied by the 

sequence  (which has a specific cyclic shift i). The integrator will electronically implement a sum of L discrete el-
ements. This circuit is an alternative to the decoder of Figures 4(a) and 4(b), when the strings have a short length. When 
the length (L = 2N) is long, it is preferable to use the circuit of the Figures 4(a) or 4(b). 

Figure 7 shows a correlation function between the vector received  and the reference vector . The 
multiplication of this correlation function is performed by the block (701) and the integration (or summation) function is 
performed by the block (702).

Figure 6. Simplified application of bipolar codes OPDG {-1, +1} in a data communication system in the presence of noise.
Figure 8 illustrates the implementation of the electronic circuit encoding in Figure 2(a) when N = 5. Five basic 

electronic modules in Figure 2 were used. Figure 8 is equivalent to the generator of Figure 2(a) when there are 5 basic 
electronic modules that allow the generation of OPDG codes of length 32. 
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Figure 7. Circuit to perform a correlation function of the codes .
When N = 5, the normalized periodic autocorrelation function of OPDG1 (and OPDG2) is qual to  and the pe-

riodic cross-correlation between OPDG1 and OPDG2 has a maximum value equal to 1/16. This maximum value is low-
er than the maximum value of the normalized periodic cross-correlation between the two Golay sequences of the same 
length 32.

Figure 9 illustrates the hardware implementation of the decoder circuit of Figure 4(a) when N = 5. Five basic 
electronic modules of Figure 4(a) were used. Depending on the type of application, blocks (932) and (933) may be 
omitted. Figure 9 represents the hardware implementation of the decoder of the OPDG codes of Figure 2(a) when the 
hardware implementation of the encoder consists of 5 basic electronic modules. 

Figure 8. Generator circuit (encoder) of a pair of OPDG sequences of length 32.

Figure 9. Decoder circuit of a pair of OPDG sequences of length 32.
Figure 10 represents some periodic autocorrelation functions for different codes generated based on the encoder 

in Figure 8. The superiority of the OPDG 1 and OPDG 2 codes are highlighted in relation to the Golay codes. The peri-
odic autocorrelations of the OPDG 1, OPDG 2, [Re (OPDG 1) + Im (OPDG 1)] and [Re (OPDG 2) + Im (OPDG 2)] se-
quences are proportional to a Dirac unit impulse. This does not happen with the complementary Golay code pairs (Golay 
1 and Golay 2).

Figure 11 represents the periodic cross correlation functions for different codes. The complementary sequences 
Re(OPDG 1) and Im(OPDG 1) are orthogonal to any cyclic shifts with . The same happens with the pair of 
sequences Re(OPDG 2) and Im(OPDG 2), but not with the complementary pairs of Golay (Golay 1 and Golay 2). In 
this last property lies the great difference between the Golay codes and the OPDG codes of the present codec.
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Figure 12 represents aperiodic cross correlation functions for different codes. A pair of complementary sequences 
Re(OPDG 1) and Im(OPDG 1) has low correlation values for any cyclic shifts with . The same happens with 
the pair of sequences Re(OPDG 2) and Im(OPDG 2), but it is not so efficient with the complementary pairs of Golay 
(Golay 1 and Golay 2).

Figure 13 presents absolute values of the aperiodic autocorrelation functions for bipolar codes. The bipolar se-
quences derived from the OPDG sequences have maximum, lagged, absolute values lower than those of the Golay se-
quences.

Finally, Figure 14 shows the absolute values of the periodic autocorrelation functions for four bipolar codes, with 
better values than Golay sequences.

Figure 10. Periodic autocorrelation functions for various codes.
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Figure 11. Periodic cross correlation functions for different codes showing complementary sequences having low corre-
lation values for any cyclic shifts.

Figure 12. Absolute values of the aperiodic cross correlation functions for bipolar codes.
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Figure 13. Absolute values of the aperiodic autocorrelation functions for four bipolar codes.

Figure 14. Absolute values of the periodic autocorrelation functions for four bipolar codes.

4. Error probability

To streamline the study and analysis of the PAPR solution through binary decomposition, we opted to focus ex-
clusively on bipolar codes. In this context, a straightforward CDMA system is suitable for evaluating these new bipolar 
codes. The phase modulation utilized is a simple Binary Phase-Shift Keying (BPSK) modulation, allowing us to employ 
a known error probability  to establish an upper bound for the CDMA system. This upper bound, , can be 
expressed as a function of the cross-correlation power contrast ratio,  (in dB), where 

 represents the cross-correlation and  denotes the autocorrelation [27].
Several upper bounds for P/C, applicable to periodic correlations, have been identified. One notable example is the 

Welch bound [25] for K perfect sequences of length N, given by (33):

. (33)
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For the case of aperiodic correlation, the upper bound is (34):

. (34)

For an effective communication system, any set of codes should exhibit a high power contrast ratio. For instance, it 
has been recommended that codes should have power contrast ratios exceeding 17 dB for 127-chip Gold codes [28]. In 
this study, we examine the upper bound of the error probability, which is a function of the power contrast ratio P/C (35):

. (35)

Figures 15 and 16 illustrate the variation in error probabilities as a function of the number of simultaneously used 
codes. These graphs demonstrate the superiority of bipolar codes derived from OPDG sequences over Gold codes of 
equivalent length and quantity. The favorable autocorrelation and cross-correlation properties of these codes make them 
particularly well-suited for use in CDMA communication systems.

The proposed method enables the generation of optimal code sets in quantities equal to the length L. Additionally, 
due to their low cross-correlation values, a receiver can effectively extract its designated code and binary information 
even when all other codes are transmitted simultaneously. In essence, the codes generated by the new CODEC are high-
ly resistant to interference, both from multipath effects and from adjacent communication channels.

Figures 15 and 16 reveal that bipolar codes derived from OPDG codes presents lower error probability than the 
well-known orthogonal Gold codes, when 4 codes are transmitted simultaneously in a CDMA systems with BPSK mod-
ulation.

Figure 15. Probability of error according to the number of codes used simultaneously.
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Figure 16. Probability of error as a function of Eb/No.

5. PAPR Solution with Binary Decomposition

In an OFDM system, radio frequency signals can exhibit high peak amplitude values in the time domain due to 
the summation of multiple subcarrier factors via an IDFT operation. Consequently, OFDM systems are known to have 
a high PAPR compared to single-carrier systems. Decomposed sequences generated by the OPDG generator can be bi-
polar {+1, -1} codes, ensuring a minimal PAPR of 1. A real sequence can be decomposed into a sum of several bipolar 
Seq_n sequences, each having a PAPR of 1 for n = 0, 1,..., N.

The well-known definition of PAPR [29] is given in Equation (36), where  is the absolute maximum value 
and Xrms is the root mean square value of the sequence 𝑋:

 (36)

To minimize the PAPR of any 𝑋 sequence, we demonstrate that it is possible to transform 𝑋 into a sum of bipolar 



40

Digital Technologies Research and Applications  | Volume 03 | Issue 01

sequences, each with a PAPR of 1. The process begins by converting the complex sequence into two parts (real and 
imaginary). Each part is then converted into positive sequences by adding a constant offset value if necessary. The 
sequences are sampled with an Analog-to-Digital Converter (ADC) resolution of 𝑁+1 bits and converted into binary 
numbers within the range [0; 2N+1]. Any positive base-10 number can be expressed as the sum of 𝑁+1 weighted base-2 
numbers for each sequence element.

In other words, a sequence can be the sum of 𝑁+1 Seq_n sequences of any length 𝐿, as defined in (37), where 𝑛 is 
an integer ranging from 0 to 𝑁, and 𝑖 ranges from 0 to 𝐿:

 (37)

Here, Bit_n[i] are the values at each 𝑛-level binary conversion, with level zero representing the least significant bit 
and level 𝑁 the most significant bit. For example, the transformation of a real sequence is as follows (38):

 . (38)

PAPR is crucial in communication systems because low-cost electronic amplifiers struggle to implement linear 
functions effectively. However, if the amplifier’s response is nonlinear, it can transmit significantly more power at a 
reduced cost. Rather than using a single amplifier, multiple nonlinear amplifiers can be employed. We propose using 
𝑁+1 low-cost amplifiers for all Seq_n bipolar sequences (n = 0, 1, ..., N), each with a PAPR of 1. Each Seq_n bipolar 
sequence can be transmitted separately using 𝑁+1 BPSK modulators and low-cost nonlinear amplifiers. Each Seq_n 
bipolar sequence can be transmitted synchronously in the same channel using 𝑁+1 BPSK modulators, effectively uti-
lizing the channel’s bandwidth. At the receiver, a MIMO-like (Multiple-input Multiple-output) processing approach can 
be employed to separate and reconstruct these sequences, leveraging the orthogonality of the sequences or their distinct 
transmission characteristics. This technique ensures robust signal recovery despite potential channel variations. The pro-
posed method not only minimizes the PAPR across all sequences, allowing for the use of low-cost nonlinear amplifiers, 
but also improves overall system power efficiency and signal integrity. By capitalizing on MIMO techniques, the system 
can achieve scalable, high-quality transmission with reduced complexity and cost, making it a practical and efficient 
solution for modern communication systems.

Figure 17 illustrates the construction of a signal estimator with a resolution of 𝑁+1 bits. By decomposing a signal 
into 𝑁+1 bipolar signals and summing these components (at the MIMO-like receiver), we obtain an estimated combined 

signal . The sum of 𝑁+1 Seq_n signals is also depicted in Figure 17.
The signal 𝑋 in Figure 17 can be either a perfect sequence or any other multilevel sequence within the range [-2N; 

2N], while the estimated signal  is the sum of the 𝑁+1 bipolar sequences (Seq_0, Seq_1, …, Seq_N). Each of these 
sequences has a PAPR of 1. These 𝑁+1 bipolar sequences can be transmitted over separate channels or different BPSK 
modulation carriers using low-cost nonlinear amplifiers, as shown at the input of amplifier 𝐴 in Figure 17.

Utilizing a single bipolar sequence Seq_N derived from OPDG codes, it is possible to achieve excellent correla-
tion values in CDMA or OFDMA wireless systems employing BPSK modulation. Our comparison between the Seq_
N sequences from OPDG codes and Golay codes reveals that OPDG codes significantly outperform Golay sequences 
in terms of correlation characteristics [8][30]. The performance of CDMA transmission improves with each additional 
sequence, reducing the error between  and . As anticipated, these bipolar sequences maintain a minimum PAPR [31] 
value of 1.



41

Digital Technologies Research and Applications  | Volume 03 | Issue 01

Figure 17. The signal estimation  is the sum of the N bipolar sequences (Seq_0, Seq_1, …, Seq_N).

6. Conclusions

The superiority of bipolar codes derived from OPDG sequences over other orthogonal codes for the same lengths 
and quantities was demonstrated in this paper. The autocorrelation and cross-correlation of its codes makes it suitable 
for use in CDMA communication systems. The codes generated by the new CODEC are immune to interference caused 
by the code itself (multiple paths) and by the other codes.

Using low-cost nonlinear amplifiers to make the amplification of bipolar sequences, before the reconstruction of 
real sequences, will avoid the PAPR problem. All pre-amplified bipolar sequences will be summed at the end of the re-
construction process (a MIMO-like receiver) to generate the real perfect OPDG sequences with enough power. By this 
way, the PAPR problem is mitigated and costly linear amplifier are not required.
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