
Digital Technologies Research and Applications | Volume 3 | Issue 2

https://doi.org//10.54963/dtra.v3i2.259 66

Digital Technologies Research and Applications
https://ojs.ukscip.com/journals/dtra

Article

Raspberry-PI based Design of An Interactive Smart Mirror for
Daily Life
Joe Reginald Lyons, Ogbonnaya Anicho and Emanuele Lindo Secco *

School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Hope Park, L16 9JD, UK
* Correspondence: seccoe@hope.ac.uk; Tel.: +44 (0)151 291 3641

Received: 22 April 2024; Revised: 20 May 2024; Accepted: 24 May 2024; Published: 12 June 2024

Abstract: The Internet of Things and spatial computing are increasingly popular in today's technological
environment. These devices can sometimes produce counterproductive effects, complicating the interaction
between non-expert end users and the device itself. In this paper, we propose a simple, user-friendly, and cost-
effective configurable smart mirror, which can display usefully relevant real-time information. This system is
designed based on a low-cost Raspberry Pi paired with an LCD screen. The system can connect with a personal
computer (PC) through the IEEE 802.15 wireless communication protocol. The preliminary results in this paper
show the intuitive usability of the device in daily life.

Keywords: Internet of Things; low-cost interactive design; intuitive design; user-friendly design

1. Introduction
The smart home industry is continuously developing [1]. Smart mirrors, one kind of home technology, can

display relevant useful information and provide applications in health and energy efficiency [2].
At present, the market for this device is limited, and it is produced mainly by hobbyists—almost impossible

to acquire one [3]. Therefore, we can infer that there is a lack of customisable software, which is the gap we aim
to fill in this project. Like smart mirrors, smart displays visualise relevant information. Having Reached $3.78
billion in 2020, the global smart display market continues to increase, signalling a growing demand for smart
home technologies [4]. This growth in popularity is attributed to increased functionality and configurability, with
voice assistants now integrated into the technology, further improving functionality.

Homes are customised according to user needs and differ greatly in requirements. Therefore, smart devices
must be configurable to meet this range of requirements. Regardless of the growing industry, these devices have
not been adopted, this is considered due to a lack of configurability and cost. Some smart mirrors do provide
reconfigurability, however, these devices are on average more than double the cost of similar smart home
technologies this price is not justified, an idea explored within this paper. In this context, the main contributions
of this paper are:

• A smart mirror design that combines the advantages of low cost, configurability, and energy efficiency;
• An overview of the deficits in the smart mirror industry;
• Improvements that can be made to current smart mirror technologies.
We want to design a novel smart mirror with the following objectives: the device will be used frequently,

retained for a long time and be a part of the user's home. Therefore, it is recommended that the design should be
robust, aesthetically pleasing, and functional.

https://ojs.ukscip.com/journals/dtra
mailto:seccoe@hope.ac.uk

Digital Technologies Research and Applications | Volume 3 | Issue 2

67

The proposed device must also maintain user privacy, a growing concern in the home technology
industry [5]. In order to achieve these goals, the development will be user-centred, based on user feedback
and testing, namely:

• User data remains secure.
• The application and device display data graphically.
• Up-to-date relevant information is displayed.
• The user can configure the location and content of displayed data.
• The interface is easy to understand and use.
• There is a range of gadget options.
• The device can be connected to the internet wirelessly.
• The device can be connected to the device via Bluetooth.
The paper is organised as follows: Section 2 presents the hardware and software of the system, Section 3

explores system testing and corrective maintenance, and Section 4 contains the evaluation and conclusion of the
system.

Two applications are developed using Python 3.12.2, one for configuration, running on a Windows machine
and the other running the mirror's interface on a Raspberry Pi 3B. Python is a high-performance, portable
language that supports rapid development, which makes development easier, and reduces developing time and
multiple iterations of the device being made across a range of operating systems [6].

2. Materials andMethods
The device will need to access the internet for API requests, and a Wi-Fi network is ideal for this. However,

the mirror cannot connect to a Wi-Fi network due to a lack of credentials and input. Instead, the application will
communicate via IEEE 802.15 protocol, namely Bluetooth PAN initially, and receive the Wi-Fi network
credentials later via this protocol.

A set of algorithms needs to be designed: precisely, two differing flowcharts detail the execution path of the
applications, which helps to develop the application, decrease development time, and ensure the realisation of
project aims by aiding algorithm comprehension [7]. An overview of these algorithms is reported in Figures 1
and 2.

2.1. Software
The applications use various libraries to improve software functionality and help to meet the success

criteria. Libraries required and the justification of each:
• The Requests library is required to retrieve the API information displayed by the application.
• CustomTkinter is used to create the graphical user interface (UI). It adds methods and classes that can

be used to create custom graphical interfaces.
• Pillow is an image library for loading and formatting images so they can be displayed graphically.
• The subprocess library allows terminal commands to be issued from the program, which is necessary to

fetch the nearby network credentials sent to the Pi and used for connection.
• The Threading library offers support for simultaneous multi-threading; this can reduce program

execution time by allowing multiple processes requiring CPU attention to be executed simultaneously,
this is used for updating the user interface [8].

• The socket library is used to connect and send data via Bluetooth from and to the mirror.
• Datetime is required to retrieve the system time and date, which will be parsed and update the widget

as needed.
• CTkListBox is a small library built on “CustomTkinter”, which adds functionality for another type of

graphical widget.
• CTkMessageBox is another small library built on “CustomTkinter”, which adds functionality for pop-up

message windows.

Digital Technologies Research and Applications | Volume 3 | Issue 2

68

Figure 1. The mirror algorithm flow chart.

Digital Technologies Research and Applications | Volume 3 | Issue 2

69

Figure 2. The configuration algorithm flow chart.

Digital Technologies Research and Applications | Volume 3 | Issue 2

70

2.2. Hardware

The project involves not only software but also major hardware. The basic principles for selecting the
hardware are listed below:

• LCD: The project requires an LCD screen to display the graphical user interface. This screen is located
behind a transparent two-way mirrored Perspex sheet. The LCD is a 1024 × 600, a 7 Inch HDMI display,
suitable for the planned Graphical User Interface (GUI).

• Raspberry Pi 3B: The Raspberry Pi 3B is a single-board computer with four 1.2 GHz cores with 1 GB
RAM. This is sufficient for the application and the physical design of the device due to its small size and
high energy efficiency [9].

• Transparent mirror: This material is a two-way mirror. It is acrylic Perspex, so it will not shatter
making the device safer. The material allows light to pass through while maintaining its mirror-like
appearance.

• Cables: A 12 V power supply is needed for the Raspberry Pi 3B, a USB A to Micro USB cable for display
power, and a High-Definition-Multimedia (HDMI) cable connecting the Liquid Crystal Diode (LCD)
display to send visual data.

When selecting the hardware, the cost was taken into account. Each component and its respective cost are
listed in Table 1. A comparison with other commercial products is also reported in Figure 3. This hardware is
displayed in Figure 4 displaying the size and limited hardware used. Figure 5 details the overall proposed design
of the system combining all hardware displayed in Figure 4.

Table 1. Components and their respective costs.

Figure 3. Comparison between the cost of similar devices.

Hardware Cost (£) Supplier

Raspberry Pi Model 3B 27.89 Amazon

Raspberry Pi heat sync 2.20 Amazon

LCD 1024 × 600 display 54.99 Amazon

Two-way reflective Perspex (A5) 10.00 Ebay

12 V micro USB power supply 5.30 Amazon

HDMI cable 3.46 Amazon

Wooden frame 9.67 B&Q

Total Cost 113.51 -

Digital Technologies Research and Applications | Volume 3 | Issue 2

71

Table 1 and Figure 3 show the low-cost nature of the device compared to similar systems in the market
(Costs taken on May 2024 from: https://uk.pcmag.com/smart-home/39701/amazon-echo;
https://formelife.com/pages/hardware?sscid=51k8_hgutk;
https://www.amazon.co.uk/dp/B086MBPXWJ?ascsubtag=&linkCode=gs2&tag=hearstmagazin-21). The device's
overall cost is similar to devices with less functionality such as the Amazon Echo, rather than similar smart
mirror devices at a higher price, indicating that it is possible to create a configurable low-cost smart mirror.

Power efficiency is another important factor when considering hardware components, and energy
certifications can have a significant impact on product sales in order to comply with energy efficiency regulations
and to compete with similar smart devices, with Energy Star ratings being a widely recognised program [10].

The Raspberry Pi 3B uses a Reduced Instruction Set Computer (RISC) processor, which is more efficient
than a Complex Instruction Set Computer (CISC) processor as less heat is produced [11]. The device also uses a
small LCD. With it mounted in a thin wooden frame, with a two-way mirrored Perspex on the front, heat can
easily dissipate, so no further cooling is required, because passive cooling is sufficient, reducing energy
consumption further.

Figure 4. The project hardware layout.

Figure 5. Initial sketch design.

https://uk.pcmag.com/smart-home/39701/amazon-echo
https://formelife.com/pages/hardware?sscid=51k8_hgutk
https://www.amazon.co.uk/dp/B086MBPXWJ?ascsubtag=&linkCode=gs2&tag=hearstmagazin-21

Digital Technologies Research and Applications | Volume 3 | Issue 2

72

2.3. Design of the User Interface
Due to the different functionalities of applications, two types of graphical designs of the user interface are

required. The interface designs should be easy to use, which can display relevant information and be easily
understood to achieve project aims.

2.3.1. TheMirror Interface

This interface is displayed on the mirror. It is used frequently, to display data of different quantities and
types.

First Iteration - The focus of this design is readability. To achieve this, the information and interface widgets
are separated, leaving a gap for the mirror's reflection. The bold large titles ensure that the data is easy to
identify and understand. This design includes a quote that generates the daily time greeting, the date, the current
Spotify song, and reminders and headlines news on the left top (Figure 6a).

Second Iteration - This design is an improved version of the first iteration which contains less information.
However, it is easier to read and understand due to the increased spacing, the more readable “Arial” font and the
increased font size [12]. A weather widget has been added to the design to replace Spotify, which requires a paid
account; these widgets can be swapped and customised according to user preferences (Figure 6b).

(a) First mirror interface design. (b) Second mirror interface design.

Figure 6. First and second mirror interface designs.

This interface will be configurable regarding the displayed information and the location of the data on the
interface. Possible configuration changes are listed below:

 Widget interface locations
 Real-time weather data
 Time and Date
 No data
 Real-time news
 Time table
 Reminders
 Updating complements
 Greeting based on time e.g., “Good Morning {name}!”
 Generic time-based greeting

Digital Technologies Research and Applications | Volume 3 | Issue 2

73

2.3.2. Configuration and Setting

The configuration application will run on a Windows machine. Its interface will be like a mirror, simulating
the mirror. The interface needs to handle user input, Wi-Fi information and UI options; therefore, the interface
will need easily interactable elements (Figure 7).

(a) Configuration Interface showcasing
widget options.

(b) Configuration Interface showcasing
no widget options chosen.

Figure 7. Configuration interface design.

Dropdown elements are typical for other UIs, making them intuitive and providing a dynamic solution for
widget choices as they can add more options without significantly changing the UI [13].

The color of dropdown menus should be great different from that of the background and other UI colors to
make it stand out and improve the interface’s accessibility. The implementation of this interface can be seen in
Figure 8a. This user interface design can be seen implemented into the solution in Figure 8b with differing
customisable options.

2.4. Development of the Algorithm
The applications are graphically user-centered, therefore programmed modularly. Modularity provides an

opportunity to reuse program components in other applications, allowing multiple UI instances to be created,
each with its own attributes. The code can be found in the following link: System source code. Figure 7 displays
an overview of the resulting interfaces’ aspect.

2.4.1 Configuration Algorithms

The following functions and methods have been integrated into the algorithm.
Send_Pi_Data () - This function is used in the “Send_Widget_Data” method in the App class. It is used by a

separate thread, so that UI can be updated continuously. The function connects to the Pi through Bluetooth, and
then formatted parameters and variable data are sent in a specific order and unpackaged relative to this. A
Bluetooth socket object is initialised through the socket library, and relevant methods are then used to connect
and send encoded byte data to the application’s port and the Pi’s Mac Address. If the Pi Wi-Fi status stored as a
Boolean value in a text file is false, the program will wait for another thread's execution before continuing. This is
necessary because the waiting thread will be gathering Wi-Fi credential inputs, which will be sent to the Pi via
Bluetooth.

Get_Near_NetworksName () – This function is used in the constructor method of the Wi-Fi Selection class.
This function is responsible for fetching network credentials so that Pi can connect through Wi-Fi. The function

https://github.com/Numb11/Magic_Mirror_Py

Digital Technologies Research and Applications | Volume 3 | Issue 2

74

uses the subprocess library to fetch nearby network data. The extracted data is formatted to Unicode, whitespace
is removed and nearby network SSIDS is appended to the local SSID list and returned. If an exception occurs,
“Absent” is returned.

(a) Mirror interface, displayed on the
device.

(b) Configuration interface, used to configure
the device, used by a separate machine.

Figure 8. The mirror interface and the configuration interface.

Get_NetworkPass() - Taking a network's SSID as a parameter, this function uses the SSID to execute a
terminal command requesting to save network password. The return is decoded and formatted, enabling the
password to be fetched and returned. If the password cannot be attained or an exception occurs the local
variable “Network_Pass” is initialized to None.

WifiSelection Class – This function is used to create a pop-up window interface. Nearby network SSIDs are
displayed through the usage of a “ListBox” widget. Once the appropriate network is selected the respective
password will be fetched, and the data will be sent to the Pi through the “Send_Pi_Data()” function.

Methods - The class's methods are designed to fetch data, process inputs and update interface widgets.
Update_ConnectionsList() – This setup is used to update the “ListBox” widget displaying nearby networks.

This method first assigns a local RGB variable. This is decremented per appended value and used to change the
text color of the object, creating a unique aesthetic and improving readability. The value list passed in by the
“values” parameter is looped by a for loop. Each value is formatted and appended to the widget option attribute;
a break line character is added to the middle of each value to ensure readability.

Get_password() – The function is responsible for fetching network credentials indicated by the SSID
parameter and updating necessary variables. This function first strips the SSID to avoid errors. After stripping,
the “Get_NetworkPass” method will be used with the SSID parameter. Through selection, a status message is
displayed via a “CTKMessageBox” object, dependent on the result returned by the “Get_network” function use. If
“None” has been returned, a button object will be created to prompt the user to continue to use Bluetooth. The
variables “Wifi_Pass” and Pi Wi-Fi status will be updated.

ContinueBlue() - This method is used by a button widget, the object offers the option to continue with a
Bluetooth connection. And it will only be created if the network password can't be attained. The method destroys
the “WifiSelection” object instance through the usage of the “destroy()” method.

App class – This class defines the main window display. Due to the similarity to the App class of the Mirror
script, the differences have been listed:

Digital Technologies Research and Applications | Volume 3 | Issue 2

75

ComboBoxes and Inputs - This script version of the class uses “Combobox” widgets offering configuration
input. Example data is used whenever possible instead of making API requests, as this is not necessary to
represent the configuration. In addition to “ComboBox” widgets, the class fetches input through the usage of
“CTkInputDialog” objects which produce pop-up windows. These objects prompt Timetable and Reminder input,
which is sent to the Pi after submission.

Widget placements - Due to differences between screen size and of “ComboBox” widget requirements,
interface elements are placed in different locations through screen coordinates without using anchors as the data
is predefined. Widget placement is representative of the mirror interface.

2.4.2 Mirror Algorithms

The Raspberry Pi 3B has the least resources and is passively cooled, so in order to avoid overheating, the
program must be time-saving and memory-efficient. The mirror will only have network input and will likely be
left on for days. Therefore, it is essential for the program to detect and handle errors efficiently.

Get_IP_Location() – This function is used to fetch the Pi's public IP address location. And its return is used
to gain weather information. The function will make an API request through the usage of the requests library,
this is returned in a JSON format.

The JSON format will be decoded into a dictionary data type and relevant information will be fetched and
returned. If an exception occurs the longitude and latitude for Manchester will be returned.

Get_Weather_Data() – This class is responsible for fetching weather data. This function takes latitude and
longitude as parameters which are used to make an API request. The returned JSON data is formatted to a data
type dictionary, and the relevant data will be saved and returned. If an exception occurs, the universal image
path of no Wi-Fi icon will be returned.

Get_Date_prefix() – The function takes an integer value as a parameter to represent the date. A local
dictionary is defined and initialised with the relevant date postfixes, through the selection of relevant postfix to
be returned.

Get_quote() - This function produces an API request, fetching a random quote. The request return is cast
from JSON to dictionary data type and the quote is fetched. If the quote’s length is greater than eight or less than
five characters, recursion is used to request another, otherwise the quote is returned.

Quote length is limited to maintain usability and readability.
Get_time() - The result of the “now()” method on the “DateTime” object is returned, providing the current

date and time.
Class App - This class is very similar to the class used in the configuration application. It is used to create a

main window instance. This window acts as the primary user interface displaying widgets according to the user
preference.

App class methods - This class has been designed to differ in method functionality, including different
location and the updating and creation of widgets.

2.4.3 Location Methods

Location methods act as controllers for specific areas of the screen. They use methods dependent on
parameters to create or destroy widgets.

Upp_left(), Upp_Right(), Bott_Centre(), Centre() - Sharing the same functionality,hese methods create the
widget specified by the parameter “type” through the selection of appropriate method use. If the widget already
exists, it will be swapped from that location by updating its attribute and using the “Widget_Destory()” method.
This prevents errors from occurring due to multiple API requests and unsupported thread instances overloading
the Pi.

2.4.4Widget Updating Methods

Widget updating methods are used to update specific widgets based on parameter values. They are
typically used within the time updating threads.

Digital Technologies Research and Applications | Volume 3 | Issue 2

76

Update_Compliment(), Update_Greeting(), Update_Quote(), Update_Day(), Update_Weather() and
Update_Date() - Sharing similar functionality, these methods are necessary to obtain up-to-date relevant
information to update widgets. Widgets are updated using the “configure()” method.

Update_Interface() and Update_Hour() - Responsible for updating widgets at specific times, these
methods are calld in separate threads. The methods require constant CPU attention as “while true” loops are
used to avoid recursion depth limits. Widgets are updated using the sleep() method of the “time” class and
selection specifying which widgets to update.

Instead of using time the “Update_Interface()” method acts upon a Bluetooth connection. When data is
received it is decoded, unpackaged, and the relevant widget objects and variables updated.

2.4.5Widget Creation Methods

Widget creation methods are called to create a new widget, which depends on parameter value and other
widgets.

WeatherWidget(), Create_Greeting_Widget(), Create_Subgreet_Widget(), Create_ListWidget() and
Greeting_Widget() - Sharing similar functionality, these methods update necessary widget objects, depending
on parameter and attributes, by fetching relevant information.

3. Results
An input/output table has been used to test both applications. The mirror application do not rely on input

from the configuration algorithm. Therefore, this test will identify errors in both applications (Table 1). Table 2
shows that the applications can handle boundary, erroneous and normal input data.

Table 2. Results of the testing.

A 24-hour use test has been conducted, including the hardware and the application's usability. The device
and application stayed on for 24 hours without major error. However, a logical error did occur. The date did not
update, after examination, it was found the “Update_Hour()” method was comparing the “date” attribute to the
starting date local variable that wasn’t being updated, this resulted in the “Update_day()” method not being
called. Figure 9 displays the results of this test.

Data Type Input Output

Normal Upper Right Interface combo box choices Expected, interface updated

Normal Upper Left Interface combo box choices Expected, interface updated

Normal Centre Interface combo box choices Expected, interface updated

Normal Bottom Centre Interface combo box choices Expected, interface updated

Erroneous Upper Right Interface choice is equal to Upper
left Interface choice

Expected, error handled, the widgets were
swapped

Erroneous The network chosen has no network password
saved on the system

Expected, error handled, the continue Bluetooth
button was displayed

Boundary The submit button is pressed multiple times
while data is sent

Expected output, the configuration data sent as
normal

Erroneous The submit button is pressed while the mirror
is not connected

Expected output, error handled, warning message
displayed notifying the user to “try again”

Digital Technologies Research and Applications | Volume 3 | Issue 2

 77

Figure 9. The device's power consumption.

A comparison with other devices in the power consumption is also reported in Figure 10 (Power
consumption reported on data sheet of the products at the following links: howtogeek.com (How Much
Electricity Does the Amazon Echo Use?);
https://www.argos.co.uk/product/9325195?clickSR=slp:term:smart%20home:5:566:2). As shown in the
Figures 9 and 10, the smart device uses minimal power during the initial start-up of the system with a maximum
power of 5.58 W. Compared to similar products, the device outperforms them significantly with the only
exception being the Amazon Echo. This device provides fewer functions and lacks a screen. This comparison
shows that this design's power consumption is closer to a device offering significantly less functionality than a
similar device that displays data visually. The final system can be seen in Figure 11.

Figure 10. The average power consumption of different devices.

https://www.argos.co.uk/product/9325195?clickSR=slp:term:smart%20home:5:566:2

Digital Technologies Research and Applications | Volume 3 | Issue 2

 78

Figure 11. The Smart Mirror final iteration.

4. Conclusions
The following aims and objectives have been covered in the project:
 User data is secure - User data is kept secure, and sensitive information is not recorded, or sent
anywhere else other than the mirror via the Bluetooth connection.

 The application displays data graphically - This has been met, as seen by the images below. The
application displays data graphically via a graphical user interface.

 The application displays up-to-date relevant information - The application does display relevant up-
to-date information by using various methods and update the interface's widgets.

 The user can configure where and what data is displayed - Through the configuration application,
widget location and type can be changed.

 The interface is easy to understand and use - The interface has been designed to be intuitive by
increasing readability and following common standards.

 There are a series of widget options - The configuration application offers multiple widget options
supported by the mirror.

 The device can connect to the internet wirelessly - The device can connect to the internet via WI-FI
with the application making API requests.

 The device can connect to devices via Bluetooth - The device is able to connect to different windows
devices via Bluetooth.

In summary, the project has highlighted the shortcomings of home technologies and the benefits of
innovation within this sector. This design can be produced quickly at a low cost, customised according to users’
requirements, and used in a range of applications. The device can display the latest relevant information in an
easily understandable way, which can be configured to user needs.

Clearly, a series of further work can be foreseen: the smart mirror proposed in this project can be easily
improved, the software is modularized, and designed to allow perfect maintenance. The next step for this device
is to gain further user feedback to add additional widgets to support interface changes, and consider integrating
machine learning and assistive technologies to further provide service and support for end-users [14,15]. Such a
system could also be integrated with a set of sensors and other smart home devices or connected to an Ambient

Digital Technologies Research and Applications | Volume 3 | Issue 2

 79

Assisted Living or medical system [16,17]. In this context, it is reasonable to also foresee the integration with
gesture recognition systems making the mirror more intuitive when interacting with the end-user [18,19].
Hardware could be changed to increase size and reduce depth; increasing usability and functionality while
reducing noticeability. And Artificial Intelligence and augmented reality could be implemented by using a camera.
More importantly further support should be added for different devices to achieve greater accessibility when
configuring the device. The configuration application could be moved to the web through the usage of Javascript,
HTML and CSS to increase the application's portability and ultimately its accessibility.

SupplementaryMaterials
The project code is reported on the following GITHUB repository – System source code.

Author Contributions
Conceptualisation, J.R.L. and E.L.S.; methodology, J.R.L.; software, J.R.L.; validation, J.R.L.; supervision, O.A.

and E.L.S.; writing—original draft preparation, J.R.L. and E.L.S. All authors have read and agreed to the published
version of the manuscript.

Funding
This work received no external funding.

Institutional Review Board Statement
Not applicable.

Informed Consent Statement
Not applicable.

Data Availability Statement
We encourage all authors of articles published in our journals to share their research data. In this section,

please provide details regarding where data supporting reported results can be found, including links to publicly
archived datasets analyzed or generated during the study. Where no new data were created, or where data is
unavailable due to privacy or ethical restrictions, a statement is still required.

Acknowledgments
This work was completed by Joe Lyons as part of his coursework requirements for the BSHH in Computer

Science at Liverpool Hope University's within the School of Mathematics, Computer Science, and Engineering. We
thank Mr I Steel for his support.

Conflicts of Interest
The authors declare no conflict of interest.

References
1. Buil-Gil, D.; Kemp, S.; Kuenzel, S.; Coventry, L.; Zakhary, S.; Tilley, D.; Nicholson, J. The Digital Harms of Smart Home

Devices: A Systematic Literature Review. Comput. Hum. Behav. 2023, 145, 1–3. [CrossRef]
2. Morris, M.; Adair, B.; Miller, K.; Ozanne, E.; Hansen, R.; Pearce, A.; Santamaria, N.; Viega, L.; Long, M.; Saidet, C. Smart-

Home Technologies to Assist Older People to Live Well at Home. J. Aging Sci. 2013, 1, 1–9. [CrossRef]
3. Kulovic, S.; Ramic-Brkic, B. DIY Smart Mirror. In Proceedings of the International Symposium on Innovative and

Interdisciplinary Applications of Advanced Technologies, Jahorina, Bosnia and Herzegovina, 21–24 June 2018. [CrossRef]
4. Smart Display Market Size, Share and Industry Analysis | 2028 (alliedmarketresearch.com). Available online:

https://www.alliedmarketresearch.com/smart-display-market-
A11780#:~:text=The%20smart%20display%20market%20size%20was%20valued%20at,a%20CAGR%20of%2021.6
%25%20from%202021%20to%202028 (accessed on 7 June 2024).

https://github.com/Numb11/Magic_Mirror_Py
https://doi.org/10.1016/j.chb.2023.107770
https://doi.org/10.4172/2329-8847.1000101
https://doi.org/10.1007/978-3-319-71321-2_31
https://www.alliedmarketresearch.com/smart-display-market-A11780
https://www.alliedmarketresearch.com/smart-display-market-A11780
https://www.alliedmarketresearch.com/smart-display-market-A11780
https://www.alliedmarketresearch.com/smart-display-market-A11780

Digital Technologies Research and Applications | Volume 3 | Issue 2

 80

5. Guhr, N.; Werth, O.; Blacha, P.P.H.; Breitner, M.H. Privacy Concerns in the Smart Home Context. SN Appl. Sci. 2020, 2, 1–
12. [CrossRef]

6. The Python Language Reference. Available online: https://docs.python.org/3/reference/index.html (accessed on 7
April 2024).

7. Scanlan, D.A. Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE Software 1989, 6, 28–
36. [CrossRef]

8. Mahmmod, B.M.; Flayyih, W.N.; Fakhri, Z.H.; Abdulhussain, S.H.; Khan, W.; Hussain, A. Performance Enhancement of High
Order Hahn Polynomials Using Multithreading. PLoS One 2023, 18. [CrossRef]

9. Gamess, E.; Hernandez, S. Performance Evaluation of Different Raspberry Pi Models for a Broad Spectrum of Interests.
Int. J. Adv. Comput. Sci. Appl. 2022, 13, 819–828. [CrossRef]

10. Brown, R.; Webber, C.; Koomey, J.G. Status and Future Directions of the Energy Star Program. Energy 2002, 27, 505–520.
[CrossRef]

11. Gupta, K.; Sharma, T. Changing Trends in Computer Architecture: A Comprehensive Analysis of ARM and x86 Processors.
Int. J. Sci. Res. Comput. Sci., Eng. Inf. Technol. 2021, 7, 619–631. [CrossRef]

12. Tullis, T.S.; Boynton, J.L.; Hersh, H. Readability of Fonts in the Windows Environment. In Proceedings of the Human
Factors in Computing Systems, CHI '95 Conference Companion: Mosaic of Creativity, Boston, USA, 7–11 May 1995.
[CrossRef]

13. Raskin, J. Viewpoint: Intuitive Equals Familiar. Commun. ACM 1994, 37, 17–18. [CrossRef]
14. Innes, M.; Secco, E.L. An Understanding of How Technology Can Assist in the Epidemic of Medicine Nonadherence with

the Development of a Medicine Dispenser. Eur. J. Appl. Sci. 2023, 11, 522–550. [CrossRef]
15. Manolescu, V.D.; Secco, E.L. Design of an Assistive Low-Cost 6 d.o.f. Robotic Arm with Gripper. In Proceedings of the 7th

International Congress on Information and Communication Technology, London, UK, 21–24 February 2022. [CrossRef]
16. Van Eker, M.; Secco, E.L. Development of a Low-cost Portable Device for the Monitoring of Air Pollution. Acta Sci. Comput.

Sci. 2023, 5. [CrossRef]
17. Brown, K.; Secco, E.L.; Nagar, A.K. A Low-Cost Portable Health Platform for the Monitoring of Human Physiological

Signals. In EAI International Conference on Technology, Innovation, Entrepreneurship and Education, 1st ed.; Reyes-
Munoz, A., Zheng, P., Crawford, D., Callaghan, V., Eds.; Springer: Canterbury, Great Britain, 2016; Volume 532, pp. 221–
224. [CrossRef]

18. McHugh, D.; Buckley, N.; Secco, E.L. A Low-cost Visual Sensor For Gesture Recognition via AI CNNS. In Proceedings of the
Intelligent Systems Conference, Amsterdam, Netherlands, 3–4 September 2020.

19. Buckley, N.; Sherrett, L.; Secco, E.L. A CNN Sign Language Recognition System With Single & Double-handed Gestures. In
Proceedinggs of IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16
July 2021. [CrossRef]

Copyright © 2024 by the author(s). Published by UK Scientific Publishing Limited. This is an open access
article under the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

Publisher’s Note: The views, opinions, and information presented in all publications are the sole responsibility of the
respective authors and contributors, and do not necessarily reflect the views of UK Scientific Publishing Limited and/or its
editors. UK Scientific Publishing Limited and/or its editors hereby disclaim any liability for any harm or damage to
individuals or property arising from the implementation of ideas, methods, instructions, or products mentioned in the
content.

https://doi.org/10.1007/s42452-020-2025-8
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html
https://ieeexplore.ieee.org/document/35587
https://doi.org/10.1371/journal.pone.0286878
http://dx.doi.org/10.14569/IJACSA.2022.0130295
https://doi.org/10.1016/S0360-5442(02)00004-X
https://doi.org/10.32628/CSEIT2173188
https://dl.acm.org/doi/pdf/10.1145/223355.223463
https://doi.org/10.1145/182987.584629
https://doi.org/10.14738/aivp.113.14878
https://doi.org/10.1007/978-981-19-1607-6_4
https://actascientific.com/ASCS/ASCS-05-0369.php
https://doi.org/10.1007/978-3-030-02242-6_16
https://doi.org/10.1109/COMPSAC51774.2021.00173

	1. Introduction
	2. Materials and Methods
	2.1. Software
	2.2. Hardware
	2.3. Design of the User Interface
	2.4. Development of the Algorithm

	3. Results
	4. Conclusions
	Supplementary Materials
	Author Contributions
	Funding
	Institutional Review Board Statement
	Informed Consent Statement
	Data Availability Statement
	Acknowledgments
	Conflicts of Interest
	References

