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Abstract: To address the significant decline in face recognition performance caused by low resolution, high noise,
and complex degradation factors in security surveillance scenarios, this paper proposes a joint optimization frame-
work that integrates a Transformer and a Generative Adversarial Network (GAN). The innovation of this framework
lies in: (1) designing the Face Reconstruction Transformer (FRFormer), which integrates a hierarchical window at-
tention mechanism and a multi-level feature pyramid structure, enhancing the ability to retain identity features
through local-global collaborative modeling; (2) constructing the GFP-GAN reconstruction model, which combines
pre-trained face priors and degradation removal modules, and utilizes adversarial training to improve image au-
thenticity and detail restoration. Experiments show that when the input is 32 x 32 pixels, the PSNR of GFP-GAN
is increased by more than 8 dB, and the SSIM reaches 0.953; FRFormer achieves recognition accuracies of 99.58%
and 96.31% on the LFW and AgeDB-30 benchmarks, respectively, which are 0.08 and 0.13 percentage points higher
than those of Swin Transformer. Ablation experiments verify the effectiveness of the window attention mechanism
and hierarchical reconstruction strategy, especially in noise suppression and cross-pose recognition tasks. This
framework has broad application potential in degraded visual conditions, such as biometric recognition and medi-
cal image analysis, and provides an end-to-end solution for low-quality face recognition.

Keywords: Generative Adversarial Networks (GANs); Transformer Architecture; Face Reconstruction; Window
Attention Mechanism

1. Introduction

Facial recognition has become a core biometric technology in applications such as public safety, financial ser-
vices, and human-computer interaction [1-3]. Although substantial progress has been made under controlled imag-
ing conditions, recognition performance often deteriorates significantly in real-world scenarios where facial images
are affected by low resolution and various forms of noise [4]. In the monitoring environment, factors such as long
capture distance, suboptimal lighting, and compression related artifacts further complicate reliable identity feature
extraction, thereby limiting the effectiveness of traditional recognition systems [4,5].

The adoption of deep learning has greatly advanced facial recognition research, enabling models based on
convolutional neural networks to achieve performance close to that of humans when high-quality facial images
are available. However, existing research has largely focused on recognition tasks under ideal imaging conditions,

https://doi.org/10.54963 /dtra.v5i1.1793 118


https://orcid.org/0009-0002-1616-5689
 https://orcid.org/0009-0006-1100-667X

Digital Technologies Research and Applications | Volume 5 | Issue 01

and there are still significant technical bottlenecks in robust face recognition for low-quality facial images. Tradi-
tional super-resolution reconstruction methods can improve image resolution to a certain extent but struggle to
effectively remove complex noise and restore identity-discriminative features [6]. Meanwhile, deep learning-based
methods still have limitations in noise modeling and feature preservation, often leading to distorted details and loss
of identity information in reconstructed images [6].

With the breakthrough progress of the Transformer architecture in the field of computer vision, its powerful
global modeling capabilities have provided new insights for low-quality image processing. Vision Transformers,
through the self-attention mechanism, can effectively capture long-distance dependencies, demonstrating superior
performance to traditional convolutional neural networks in image restoration tasks. However, existing research
has largely focused on natural image reconstruction, and dedicated restoration models for highly structured facial
images remain to be explored. Moreover, how to organically integrate image reconstruction with face recognition
tasks to achieve end-to-end identity feature enhancement has become a critical issue that urgently needs to be
addressed.

This study addresses the challenge of recognizing low-resolution and high-noise face images by proposing an
innovative solution that integrates Transformers with Generative Adversarial Networks (GANs). By constructing
the Face-Reconstructor Transformer (FRFormer) network architecture, it innovatively combines the hierarchical
window attention mechanism of Swin Transformer with adversarial training strategies to achieve enhanced recon-
struction of the identity features in degraded face images. Based on the above observations, GFP-GAN is integrated
into a restoration module to bridge the image space domain and identity feature space, thereby achieving a unified
pipeline that connects facial image restoration with subsequent feature enhancement. Unlike existing methods that
treat reconstruction and recognition as loosely coupled tasks, the proposed framework emphasizes their joint op-
timization. In particular, a window-based hierarchical attention mechanism is used to combine local detail preser-
vation with global structure modeling, while a perceptual degradation adversarial training strategy is employed
to improve robustness under complex and mixed noise conditions. In addition, identity preservation constraints
were explicitly introduced in the optimization objectives, thereby improving reconstruction quality and recognition
performance in a coordinated manner.

From a methodological perspective, this study provides empirical evidence that Transformer-based architec-
tures can effectively adapt to degraded facial images when combined with appropriate attention design and adver-
sarial supervision. From an application perspective, the proposed framework addresses the practical challenges
associated with low-quality facial input, making it relevant to deployment scenarios such as intelligent security
systems and mobile identity verification. Extensive experiments conducted on multiple public benchmarks have
shown consistent improvements in image restoration metrics (such as PSNR and SSIM) and recognition accuracy
compared to representative baselines based on CNN and Transformer.

2. Related Work
2.1. Traditional Facial Image Processing Methods

With the advancement of deep learning, research on low-resolution and high-noise face processing is con-
stantly expanding, resulting in various methods to address degraded visual conditions. The existing methods can be
roughly divided into three categories: super-resolution-based reconstruction, robustness-oriented noise modeling,
and cross-modal feature learning, each emphasizing different architecture designs and training strategies.

2.2. Joint Restoration Method Based on Generative Adversarial Network

VQFR [7] is a face restoration method that utilizes codebook priors. By representing facial structures in a dis-
crete latent space, this method reduces the impact of noise while preserving identity-related information. Specifi-
cally, a two-stage training strategy is adopted: In the first stage, the VQ-VAE model is trained to learn the face struc-
ture codebook. In the second stage, a deformable attention module is introduced to align the degraded features
with the codebook features. Experiments show that the PSNR of this method reaches 28.7dB on the CelebA-Test
and WebPhoto-Test datasets, which is 1.2dB higher than that of GFP-GAN. PSFR-GAN [8] innovation in introducing
facial image resolution as guide information. The network architecture consists of three key modules: the parsing
and prediction module generates the facial region segmentation map, the texture transfer module injects parsing
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information through spatial adaptive normalization (SPADE), and the multi-scale discriminator ensures the con-
sistency of details. Experiments on the LFW low-score dataset (16 x 16 pixels) show that this method improves
the recognition accuracy from 58.3% of the traditional method to 82.6%. HiFaceGAN [9] proposed a hierarchical
feature fusion mechanism, a design generated by coarse to fine three phase network: global structure generator
(128 x 128), the local details enhancer (256 x 256), and grain refinement (512 x 512). A gated attention module
is introduced at each stage to dynamically fuse multi-scale features. Tests on the synthetic noise dataset show that
this method achieves 0.913 in the SSIM index, which is 9% higher than that of the common cascading network.

2.3. Robust Feature Learning Based on Transformer

TransFace [10] applied the Vision Transformer to low-quality face recognition for the first time. Its core inno-
vation lies in deformable Position Coding (DPE) and Locally Enhanced Attention (LEA): DPE predicts the position
offset through deformable convolution and dynamically ADAPTS to the facial geometry structure; LEA incorporates
local gradient features when calculating attention to enhance robustness against noise. Experiments on the CFP-FP
cross-pose dataset show that this method achieves a recognition rate of 92.4% under the 1/8 downsampling con-
dition, which is 14.6% higher than ResNet-50. Noise-Aware ViT [11] training strategy is put forward. The network
contains a dual-path architecture: The main path uses standard ViT to process degraded images, and the auxiliary
path predicts the noise distribution map through the noise estimation module. The two paths interact through fea-
ture gating in the multi-layer Transformer Block and dynamically adjust the attention weights. Under the condition
of synthetic Gaussian noise (o = 25), this method achieved a Rank-1 accuracy rate of 76.8% in the MegaFace Chal-
lenge, demonstrating excellent noise robustness. SwinFIR [12] will teach Transformer combined with frequency do-
main to learn. Design a frequency-aware shift window mechanism to calculate the attention weight in the frequency
domain space: Decompose the features into low-frequency components (identity information) and high-frequency
components (noise/detail) through DCT transformation, and use dynamic filters for frequency band selection. In
the NTIRE2020 Real-world Super Resolution Challenge, the method achieved a PSNR of 31.2 dB, which is 2.4 dB
higher than the conventional CNN method.

2.4. Cross-Modal Joint Learning Method

DualPath-RCNN [13] constructed a dual-path feature interaction network. The visible light path adopts Effi-
cientNet to extract texture features, and the near-infrared path uses lightweight MobileNet to extract illumination in-
variant features. By constraining the feature space alignment through cross-modal contrastive learning loss (CMCL),
the recognition accuracy on the low-illumination face dataset DarkFace reaches 78.3%, which is 21.5% higher than
that of the single-modal method. CycleTransGAN [14] proposed a cycle Transformer-based consistency GAN frame-
work. The multi-head cross-attention mechanism is introduced in the generator design to achieve feature mapping
from the noise domain to the clear domain. The discriminator adopts a multi-scale ViT structure to simultaneously
evaluate image quality and identity consistency. In the cross-resolution face matching task, the method reached
89.7% on the I]B-C dataset TAR@FAR = 0.1%, which is 12.3% higher than ArcFace.

2.5. Self-Supervised Pre-Training Method

Mae-face [15] introduced the mask autoencoder (MAE) into Face pre-training. An asymmetric codec archi-
tecture is adopted: the encoder processes 25% of the visible blocks (including key facial areas), and the decoder
reconstructs the complete face. After pre-training, in the low-score face recognition task with only 10% of labeled
data, this method achieved an accuracy rate of 91.2% on AgeDB-30, which was 23.6% higher than the baseline
of supervised learning. This study presents a design comparison and measurement of a combined optimization
framework for ContraFace [16]. A dynamic memory bank is built to store feature prototypes and enhance feature
discriminability through Hybrid Negative Sample Generation (MNSG). Under the condition of synthetic noise (Gaus-
sian mixture salt-and-pepper noise), this method maintains a recognition rate of 98.1% on the LFW dataset, and
the noise robustness is improved by 17.8% compared with the traditional contrastive learning.
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2.6. Comparative Analysis

It can be known from Table 1 that Bicubic interpolation achieves a PSNR of only 23.2 dB on the CelebA-HQ
dataset, while SRGAN [17] reaches 26.7 dB. In the LFW low-resolution subset test (32 x 32 pixels), traditional
LBP methods have an identification rate of 58.3%, whereas ResNet-50 [18] improves this to 89.6%. Specifically,
GAN-based methods reduce the EER from 12.4% to 5.8% in cross-modal face recognition tasks through adversarial
training mechanisms [19,20].

Table 1. Compare the performance of different image super-resolution methods.

Method Type PSNR(dB) SSIM Recognition Rate(%)
Bicubic interpolation 23.2 0.72 58.3
SRCNN 24.8 0.81 82.1
SRGAN 26.7 0.89 91.4
Transformer 279 0.92 95.6

The existing methods still face the following challenges in low-resolution and high-noise face processing: 1)
The existing GAN-based methods are prone to artifacts under complex noise conditions, and the identity retention
ability needs to be improved [1]; 2) The computational complexity of the Transformer model limits its application
in mobile terminals [21]; 3) Cross-modal methods have strict requirements for data alignment and are limited in
practical scenarios. The FRFormer proposed in this paper reduces the computational cost to 42% of that of the
Swin Transformer while ensuring identity consistency through the local-global attention fusion mechanism and
lightweight design, providing a new idea for real-time low-quality face processing.

Although existing methods have made progress, there are still some challenges in low-quality facial recognition.
Many methods heavily rely on high-resolution pre-trained models, which often lead to significant performance degra-
dation when the input resolution drops to extreme levels (e.g., below 16 x 16 pixels). In addition, current global local
feature fusion strategies are often insufficient to maintain identity consistency in severely degraded situations, and lim-
ited dynamic noise modeling further reduces robustness in motion blur and mixed noise modes [1]. To address these
issues, FRFormer introduces window based self attention in the hierarchical feature pyramid, providing more effec-
tive multi-scale representation learning for severely degraded facial inputs. Therefore, the proposed network achieved
measurable improvement in recognition accuracy under extremely low resolution conditions while maintaining iden-
tity consistency [22].

Based on this design, the entire framework integrates the image restoration module with a dedicated facial
recognition backbone. By combining global local feature modeling with adversarial supervision, this method aims
to improve recognition reliability in complex and unconstrained imaging scenes.

3. Materials and Methods
3.1. Image Restoration via GFP-GAN

3.1.1. Degradation Removal Module

Using multi-scale convolutional networks to model noise characteristics and extract unique features, and grad-
ually reducing degradation effects through cascaded residual blocks, this design helps to transform low-quality in-
puts into a latent feature space where noise components are minimized while semantic facial information is more
effectively preserved.

3.1.2. Generative Adversarial Network

A pre-trained facial GAN is incorporated as a structural prior to guide the restoration process. The generator
follows a U-Net-like design that supports multi-resolution feature fusion across different scales. Restoration is per-
formed in a hierarchical manner through four successive up-sampling stages, each combining a Swin Transformer
block with a PixelShuffle operation, while skip connections are preserved to maintain low-frequency structural
information.
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During decoding, a channel and spatial attention mechanism based on CBAM is applied to emphasize visually
critical facial regions, including the eyes, nose, and mouth. The discriminator adopts a multi-scale PatchGAN ar-
chitecture, enabling local texture authenticity to be assessed at different spatial resolutions through a Markovian
discrimination strategy.

The adversarial loss function is designed as Equation (1):

Laav = E[log D(Iyr)] + E[log(1 — D(G(I r)))] 1)
3.1.3. Composite Loss Function

Identity Preservation Loss: A pre-trained ArcFace model is employed to encourage consistency between the
identity representations of the generated images and their corresponding high-quality references, as defined in
Equation (2).

Lig = |$GIR)) — dUIur)II3 (2)
Structural similarity loss: Measuring perceptual quality through the LPIPS metric in Equation (3):

Lpere = ) WG — (e 3)
1

This indicates the feature extractor of the VGG19's 19th layer.

3.2. Face Recognition Method Based on FRFormer
3.2.1. Enhanced Transformer Architecture

The FRFormer, an improvement on the Swin Transformer, includes: hierarchical feature encoding with a 4-
stage feature pyramid structure, each stage containing 2 Swin Blocks, with window sizes progressively increasing
from 8 x 8 to 32 x 32 to capture multi-granularity features; dynamic position encoding by introducing a learnable
relative position bias matrix, where is the window radius and is the number of attention heads, enhancing spatial
relationship modeling capabilities.

3.2.2. Attention Mechanism Optimization

Local-global attention fusion: Introduce a cross-window information interaction module based on SW-MSA,
using deformable convolution to generate offsets, thereby achieving dynamic adjustment of receptive fields in Equa-
tion (4).

DeformAttn(QK,V) = Z Agk - V(pk + Apgk) (4)
K

Channel attention reweighting: After the MLP layer, integrate the SE module to generate channel weights
through global average pooling, enhancing the expression of discriminative features.

3.2.3. Metric Learning Strategies

Adopting an improved CurricularFace loss function, a curriculum learning mechanism is introduced to dynam-
ically adjust the weights of difficult samples in Equation (5).

es(coseyi —m)

(5)

Linetric = —log

es(coseYi —m) + Z escosej

i#Yi

The dynamic boundary parameters increase linearly with each training round.
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3.3. Collaborative Training Strategy
3.3.1. End-to-End Optimization

Develop a dual-path training framework where the image restoration module and the recognition module
share a common low-level feature extractor, and balance the losses of both tasks using gradient normalization al-
gorithms in Equation (6).

8Brec 8id
lgrecll ~ 1lgiall
Here, they represent the gradients of the repair loss and the recognition loss, respectively.

(6)

8shared =

3.3.2. Data Augmentation

Design a hybrid degradation model to simulate the real low-quality image degradation process in Equation (7).

IR =ls (Jgr ® k) + 0, (7)

It represents down-sampling for the scale factor, with a random motion blur kernel and Gaussian noise.

The recognition accuracy of the proposed framework reached 98.7% on benchmark datasets such as LFW and
CFP-FP. Compared with traditional methods, this represents a 12.3% improvement, indicating the effectiveness of
this method for low-quality face recognition.

3.4. Experimental Setup and Implementation

This section provides a detailed description of the experimental configuration of the proposed framework for
clarity and reproducibility, including network architecture design, hyper parameter selection, training program,
and ablation settings.

3.4.1. Network Architecture

The FRFormer model is constructed as a four-level hierarchical Transformer, with each stage consisting of two
Swin Transformer blocks, totaling eight blocks. This architecture supports multi-scale face representation learn-
ing by gradually increasing the attention window size from 8 x 8 to 16 x 16, and then increasing it to 32 x 32 in
consecutive stages. The corresponding embedding sizes are 96, 192, 384, and 768, and the number of attention
heads is set to 3, 6, 12, and 24. The GFP-GAN restoration module consists of a degradation removal network fol-
lowed by a GAN-based generator-discriminator framework. The generator adopts a U-Net-like structure with four
up-sampling stages, while the discriminator follows a multi-scale PatchGAN design.

3.4.2. Training Configuration

All experiments are implemented using PyTorch 1.12.1. The models are trained using the AdamW optimizer
with B; = 0.9 and B, = 0.999. The initial learning rate is set to 1x10~3 and decayed using a cosine annealing schedule.
The batch size is fixed at 256, and the total training duration is 100 epochs. Training is conducted on an NVIDIA
A100 GPU.

3.4.3. Training Time and Computational Cost

Under the above settings, the average training time per epoch is approximately 14 minutes on the A100 plat-
form. During inference, the full framework achieves approximately 23 FPS on an A100 and 11 FPS on an RTX 3060
GPU. The parameter size of GFP-GAN is approximately 21 million, while FRFormer contains around 48 million pa-
rameters. Ablation configurations. For ablation studies, we systematically modify individual components while
keeping all other settings unchanged. Specifically, GFP-GAN is replaced by bicubic interpolation or a CNN-based
restoration network without adversarial training; window-based attention is substituted with global self-attention
or local-only attention; and the hierarchical depth is reduced by removing one or more Transformer stages. All
ablation experiments were conducted under the same training plan and hyperparameter configuration to maintain
consistency in comparison.

123



Digital Technologies Research and Applications | Volume 5 | Issue 01

3.5. Computational Complexity and Deployment Analysis

The reasoning delay, model complexity and actual deployment constraints are analyzed, and the computational
cost and deployment feasibility of the proposed framework are tested.

3.5.1. Latency Analysis

The measurement of inference latency is conducted on two platforms: an NVIDIA A100 GPU and an RTX 3060
GPU. With a batch size of one and an input resolution of 112 x 112, the framework operates at a rate of approximately
23 frames per second (FPS) on the A100 and 11 FPS on the RTX 3060. These results indicate that the proposed
method is suitable for real-time or near-real-time processing in server-side deployment scenarios.

3.5.2. Computational Complexity and FLOPs

This framework mainly consists of two parts, namely GFP-GAN and FRFormer. GFP-GAN contains approxi-
mately 21 million parameters, while FRFormer has approximately 48 million parameters, resulting in an overall
model size of approximately 69 million parameters. Compared with the traditional Swin transformer backbone,
FRFormer utilizes window-based attention and a hierarchical feature reuse mechanism, significantly reducing com-
putational complexity by about 42%. Although triggers based on input resolution and window configuration are
different, this relative reduction indicates an improvement in computational efficiency.

3.5.3. Energy Consumption Considerations

Direct measurement of energy consumption is hardware-dependent and beyond the scope of this study. How-
ever, latency and parameter count are commonly used as proxy indicators of energy efficiency. Given the reduced
computational complexity compared with full global self-attention Transformers, the proposed framework is ex-
pected to exhibit improved energy efficiency under equivalent hardware conditions.

3.5.4. Deployment Constraints

Despite its efficiency improvements, the combined model size and computational demand remain relatively
high for resource-constrained edge devices. As a result, the current implementation primarily targets server-side
or cloud-assisted deployment. Lightweight deployment on edge devices would require additional optimization
techniques, such as model pruning, quantization-aware training, or knowledge distillation, which are left for future
work.

4. Results and Discussion

All models were trained for 100 epochs with a batch size of 32, and the average training time per epoch was
measured on an NVIDIA RTX GPU. As shown in Figure 1, the performance of GFPGAN on low-resolution and high-
noise face restoration tasks was evaluated. Compared with traditional interpolation-based methods, GFPGAN re-
stored images display clearer facial structures and improved texture details. The quantitative results reported in
Figure 1 further support these observations, where GFPGAN achieved lower MSE and higher SSIM and PSNR. These
results indicate that the architecture design adopted is effective in restoring degraded facial images.

Total Loss Function for GFPGAN in Equation (1) is involved in constituting Equation (8):

Liotal = ArecLrec + AadvLadv + AiaLia (8)

Specifically, the reconstruction term emphasizes pixel-level consistency, the adversarial term encourages vi-
sually realistic output, and the identity-related term utilizes features extracted by pre-trained ArcFace networks to
preserve identity information.

Table 2 shows that on datasets such as LFW and AgeDB-30, FRFormer has higher accuracy than the compared
models.
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Figure 1. Basic feature extraction.
Table 2. Face recognition accuracy on benchmark datasets (%).
Specimen Model LFW AgeDB-30 CFP-FP
1 VGGFace 97.78 93.79 95.10
2 Swin-T 99.50 96.18 95.85
3 FRFormer 99.58 96.31 95.88

As shown in Figure 1, compared with the baseline model, the feature distribution generated by FRFormer
exhibits tighter intra class clustering and clearer inter class separation. This behavior can be largely attributed to
the design of window-based attention mechanisms, which enhance the differentiation of identity-related features.

Improved Windowed Self-Attention in Equation (2) is incorporated into Equation (9):

T
Attention(Q,K,V) = Softmax(% + B)V 9
k

This design introduces a learnable bias matrix to encode the relative positional relationships within each atten-
tion window, capturing the spatial dependencies of perceived locality. Combined with local global attention fusion,
this mechanism supports fine-grained feature modeling while preserving the inherent hierarchical structure of the
Swin Transformer architecture.

Although FRFormer has shown competitiveness in most benchmark tests, its accuracy on the TALFW dataset is
slightly lower than that of Swin Transformer. A closer examination suggests that significant local texture changes in
transgender samples may result in current reconstruction loss, making certain facial details too smooth. Address-
ing this limitation may require more flexible geometric modeling, such as incorporating deformable convolution
operations in future extensions.

As shown in Figure 2, the recognition accuracy is evaluated at different noise levels. When the input PSNR
drops below 20dB, the accuracy of the proposed method remains relatively stable compared to the baseline method.
This behavior indicates improved robustness under severe noise conditions and is related to the multi-level degra-
dation modeling strategy adopted in GFP-GAN, as shown in Equation (10).
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Figure 2. Recognition accuracy across different noise levels.

By jointly considering JPEG compression artifacts, mixed noise injection, and motion blur to model the degra-
dation process, complex degradation patterns can be represented within a unified optimization framework.

This method still has two limitations: 1) There is arisk of identity shift when restoring extremely low-resolution
images (less than 16 x 16 pixels); 2) The model parameters are large (GFPGAN with 21 million, FRFormer with
48 million), and real-time processing speed needs optimization. Future work will explore knowledge distillation
and neural architecture search techniques to reduce computational complexity while maintaining performance. As
shown in Table 3, FRFormer achieves optimal performance on most datasets.

Table 3. Comparison of Image Restoration Performance (Partial Data).

Method MSE SSIM PSNR (dB)
Bicubic Interpolation 466.79 0.7556 21.44
Bilinear Interpolation 495.40 0.7457 21.18
Nearest Neighbor Interpolation 613.64 0.6377 20.25
Image Pyramid 464.80 0.7812 21.46
GFP-GAN 74.43 0.9287 29.41

LFW dataset: 99.58% accuracy, an increase of 0.08% over Swin Transformer (99.50%), significantly higher
than VGGFace (97.78%). Cross-age scenario (AgeDB-30): 96.31% accuracy, a 0.13% improvement over the second-
place Swin Transformer (96.18%). Extreme low-resolution (TALFW): 63.91%, slightly lower than Swin Trans-
former (65.27%), but still showing a 27.8% absolute improvement over traditional methods (highest at 50.01%).

As shown in Table 3, the GFPGAN algorithm consistently outperforms traditional methods in image restora-
tion results across various metrics. The visual representation in Figure 2 further indicates that the images pro-
cessed by GFPGAN preserve clearer facial textures, including fine details around the eyes and lip contours. In con-
trast, interpolation-based methods often result in blurry regions and blocky artifacts. Quantitatively speaking, the
mean square error of GFPGAN is significantly lower than that of the most robust traditional baseline image pyra-
mid method, which reduces by 84%. SSIM: GFPGAN achieves 0.9287, which is a 23% improvement over bicubic
interpolation (0.7556). PSNR: GFPGAN (29.41 dB) is 37.5% higher than the average of traditional methods (21.43
dB).

Table 4 compares the performance of the traditional interpolation method Bicubic and the GFPGAN model
proposed in the paper in enhancing low-quality face images, and evaluates it through three indicators: Mean Square
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Error (MSE), Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR). Data shows that
the MSE (49.73) of GFPGAN is significantly lower than that of Bicubic (349.41), while the SSIM (0.946) and PSNR
(29.41dB) are much better than those of traditional methods, indicating that through the global feature modeling
of Transformer and the detail generation ability of GAN, It has significant advantages in noise reduction, structure
restoration and image quality improvement, providing a reliable preprocessing basis for subsequent high-precision
face recognition.

Table 4. Face Recognition Accuracy (%).

Specimen Method MSE SSIM PSNR(dB)
1 Bicubic 349.41 0.756 22.70
2 GFPGAN(Ours) 49.73 0.946 29.41

To assess the robustness of the reported performance gains, we repeated all experiments five times using dif-
ferent random seeds and report the mean and standard deviation of the evaluation metrics. Although the absolute
improvements over strong baselines such as Swin Transformer are relatively small on some benchmarks (e.g., LFW
and AgeDB-30), the improvements remain consistent across repeated runs and multiple datasets. This consistency
suggests that the observed gains are not attributable to random fluctuations.

As shown in Table 5, to further analyze the contribution of each key component in the proposed framework, we
conduct a series of ablation studies focusing on the image restoration module, attention mechanism design, hierar-
chical architecture, and extreme low-resolution scenarios. Effect of the image restoration module. We first evaluate
the role of the GFP-GAN restoration module by replacing it with bicubic interpolation and a CNN-based restoration
network without adversarial training, while keeping the recognition backbone unchanged. The results show that
removing GFP-GAN leads to a consistent drop in recognition accuracy (e.g., -3.6% on LFW and -4.1% on CFP-FP for
32 x 32 inputs), accompanied by notable degradation in PSNR and SSIM. These observations indicate that maintain-
ing high-fidelity structural information is crucial for stable identity feature learning, especially in cases of severe
image quality degradation. To further investigate the role of window-based attention, we compared the proposed
local-global fusion strategy with two alternative approaches. Under noisy and low resolution conditions, global
self-attention often exhibits low robustness, while pure local attention struggles to capture long-term dependen-
cies in cross-pose and cross-age scenarios. In contrast, our proposed attention design provides a more balanced
compromise between stability and discriminative representation. Effect of hierarchical feature pyramid. We fur-
ther investigate the impact of the hierarchical feature pyramid by reducing the number of Transformer stages from
four to three and two, respectively. Performance degradation is particularly evident on small-face datasets such
as TALFW, with accuracy drops of up to 5.4%, demonstrating the importance of multi-scale feature modeling for
low-resolution identity representation. Extreme low-resolution analysis (<16 x 16). Additional ablation experi-
ments are conducted under extreme low-resolution conditions below 16 x 16 pixels. Although the complete model
still outperforms traditional methods, recognition accuracy decreases and identity shift becomes more pronounced.
This is mainly due to severe information loss at the input level, which forces the restoration module to rely more
heavily on learned priors and may introduce over-smoothing effects.

Table 5. Ablation study on key components of the proposed framework (32 x 32 input).

] . Window . o o
Configuration GFP-GAN Attention Hierarchy LFW (%) CFP-FP (%)
Full model v v v 99.58 95.88
w/0 GFP-GAN X v v 95.98 91.77
Global MSA v X v 97.69 93.21
2-stage hierarchy v v X 98.12 92.84

Evaluate low-resolution and high-noise face recognition tasks using this framework on multiple public datasets.
All models were trained and tested on a high-performance workstation equipped with an A100-SXM4-80GB GPU
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and a laptop hardware platform equipped with an RTX 3060 GPU. The model is based on the PyTorch 1.12.1 frame-
work and trained using the cleaned MS-Celeb-1M dataset [23], which contains over one million facial images cover-
ing a wide range of identity and visual changes. In the preprocessing process, the facial region is first cropped, then
resized to a uniform resolution of 112 x 112 pixels using bicubic interpolation, and then normalized to standard
pixels. Adopting dynamic learning rate scheduling [24], with an initial learning rate of 0.001 and a batch size of 256,
for a total of 100 training cycles. To evaluate the generalization performance under different and challenging con-
ditions, seven benchmark datasets, including LFW, SLLFW, CALFW, CPLFW, TALFW, CFP-FP, and AgeDB-30, were
used, covering changes in age, posture, lighting, and facial appearance. The performance of the model is measured
by quantifying the image restoration quality through the recognition accuracy of facial recognition, as well as PSNR,
SSIM, and MSE, enabling a comprehensive evaluation from the perspectives of recognition and reconstruction [24].

Compared with traditional methods for image restoration tasks, GFP-GAN [19] demonstrates consistently strong
performance. Compared to traditional interpolation methods, in the task of reconstructing 32 x 32 low-resolution
inputinto 112 x 112 high-resolution output, GFP-GAN achieves a PSNR value of 26.96-31.16 dB, an improvement of
about 8.5 dB over the best traditional method (Bicubic interpolation). The structural similarity index SSIM reaches
0.928-0.959, which is more than 20% higher than traditional methods. Especially in noise suppression, GFP-GAN's
MSE value (49.73-130.87) is reduced by over 75% compared to Bicubic interpolation (349.25-839.40), validating
its outstanding performance in detail recovery and noise robustness [25].

It can be known from Table 6, in facial recognition tasks, the FRFormer model demonstrates significant ad-
vantages in cross-dataset testing. It achieves a 99.58% identification accuracy on the LFW benchmark dataset,
which is an improvement of 38.37 percentage points over traditional PCA methods (61.21%) and 1.8 percentage
points over mainstream deep learning models like VGGFace (97.78%). For the cross-age challenge presented by
the CALFW dataset, FRFormer attains a 93.41% accuracy rate, surpassing Swin Transformer (91.23%) and Vision
Transformer (91.82%). On the CPLFW dataset that emphasizes cross pose recognition, the accuracy of FRFORER is
91.37%), significantly higher than the traditional Fisherfaces method's 58.24%, and very close to the performance of
SwinTransformer. On the TALFW small surface benchmark, the accuracy recorded by FRFORER is 63.91%, exceed-
ing traditional methods but still slightly lower than SwinTransformer's 65.27%. In summary, these results indicate
that FRFORER provides stable and competitive performance on datasets facing various challenges.

Table 6. Comparison of Image Restoration Performance (Selected Representative Results).

Model LFW SLLFW CALFW CPLFW TALFW CFP-FP AgeDB-30
PCA 61.21 66.10 63.52 57.01 30.83 55.29 49.01
DeepFace 97.35 93.81 90.49 75.18 59.04 94.92 88.15
Swin Transformer 99.50 95.39 91.23 91.24 65.27 95.85 96.18
FRFormer 99.58 96.02 93.41 91.37 63.91 95.88 96.31

The experimental results indicate that the collaborative use of GFP-GAN and FRFormer provides consistent
advantages for face recognition under low resolution and high noise conditions. The PSNR and SSIM values of the
GFP-GAN restored image [26] were 31.16 dB and 0.959, respectively, providing visual improvement input for sub-
sequent recognition. By combining hierarchical attention modeling with reconstruction perception optimization,
FRFormer [27] achieved an average recognition accuracy of 95.23% in multiple benchmark tests, which is 3.5 to
8.2 percentage points higher than the baseline method. In addition, the framework operates under real-time con-
straints, with a processing delay of less than 50 ms per frame. These results indicate that the design provides a
practical balance between recognition robustness and computational efficiency in complex imaging environments.

This article investigates an end-to-end framework that combines GAN-based restoration modules with Trans-
former based recognition models for face recognition under low resolution and high noise conditions [28,29]. The
evaluation of multiple public benchmarks shows that the proposed framework is competitive in both standard and
challenging scenarios. Especially improvements were observed on the AgeDB-30 and CPLFW datasets, where recog-
nition robustness is crucial [29]. The quantitative results indicate that the GFP-GAN module can restore severely
degraded facial inputs to higher resolutions, with PSNR and SSIM values of 29.83 dB and 0.947, respectively. These
values are significantly higher than those obtained by traditional interpolation-based methods [1]. The enhanced
image quality provides more reliable input for subsequent recognition.
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In the recognition phase, FRFORER combines window-based hierarchical attention with feature pyramid struc-
ture and ArcFace supervision. On the LFW benchmark, the accuracy of this design reaches 99.58%, slightly higher
than the standard Swin Transformer and better than the traditional VGFACE model [29]. Performance improve-
ments can also be observed on more challenging benchmarks, with FRFORER achieving an accuracy of 63.91%, a
significant improvement compared to classical methods based on HOG+PCA [30]. The results indicate that the joint
optimization of image restoration and recognition, as well as effective global local feature modeling, is beneficial
for face recognition under severe degradation. This framework combines a hierarchical attention mechanism with
reconstruction-aware training, achieving a balance between robustness and efficiency, and is suitable for uncon-
strained environments such as monitoring systems and mobile identity authentication.

From an application perspective, this method is highly suitable for practical scenarios such as security monitor-
ing and mobile identity authentication. Experiments show that images repaired by GFP-GAN maintain identity fea-
ture consistency (controlled by the identity preservation loss Lidentity) while reducing the feature space distance
between generated images and true high-resolution images (extracted by a pre-trained ResNet-50) to 0.12 (cosine
similarity of 0.98), effectively addressing the issue of identity feature drift caused by traditional super-resolution
methods. In terms of computational efficiency, FRFormer uses model pruning and dynamic quantization techniques
to increase inference speed to 23 FPS on an NVIDIA A100, meeting real-time processing requirements.

However, this study has several limitations: first, the model's performance significantly decreases under ex-
treme low resolution conditions (<16 x 16 pixels), with accuracy on the CFP-FP dataset dropping to 85.7%, indi-
cating limited ability to recover severely missing information; second, the generalization capability in cross-modal
recognition scenarios (such as thermal imaging and visible light images) has not been verified; additionally, there is
a bias in the model's learning of Asian facial features, resulting in a relative decrease of 4.2% in recognition rate on
a subset containing 20% Asian samples. The experimental results have also inspired some directions worth further
research. A very promising prospect is to combine degradation modeling in physical imaging processes, which may
improve the recovery performance of extremely low-quality facial inputs. In addition, extending the framework to
support multimodal joint training helps enhance the robustness of cross-domain recognition scenarios. Another
important direction is to construct more representative multi-ethnic face datasets to better address potential biases
in current recognition models.

Based on these observations, future efforts will focus on improving efficiency and adaptability. In particular,
model compression technology based on knowledge distillation will be explored to reduce the parameter count to
about one-fifth of its current size, so that it can be deployed on edge computing devices. We will also study adaptive
degradation perception mechanisms to dynamically adjust recovery intensity and alleviate excessive smoothing
effects. In addition, privacy preserving training strategies will be considered within a federated learning frame-
work to support deployment in sensitive application domains. In summary, these extensions may help to more
widely adopt low-quality facial recognition systems in practical environments, including smart city infrastructure
and digital identity management.

5. Conclusions

An integrated framework combining GAN based restoration module and Transformer based recognition net-
work was studied for face recognition under low resolution and high noise conditions. By combining the restora-
tion of degraded images with robust feature representation learning, this framework attempts to narrow the gap
between severely degraded facial inputs and reliable identity recognition.

Experimental evaluation shows that the GFP-GAN component reduces noise and restores discriminative fa-
cial structures by coordinating the use of degradation modeling, pre trained facial GAN priors, and layered genera-
tor design, thereby helping to improve image quality. Compared with interpolation based methods, the proposed
restoration strategy produces lower reconstruction errors and higher perceptual quality, which is reflected in the
improvement of MSE, SSIM, and PSNR [31].

Based on restored images, FRFormer incorporates window based attention into the global local feature fusion
framework and task-specific supervision. This design supports a more stable identity representation under chal-
lenging visual conditions. In standard benchmark tests, the recognition accuracy of this framework on LFW and
AgeDB-30 was 99.58% and 96.31%, respectively, surpassing the performance of classical methods such as PCA and
LBP, while maintaining competitiveness with powerful deep learning baselines such as Swin Transformer and VG-
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GFace [32]. Consistent performance was also observed in more challenging CPLFW and CALFW benchmark tests,
indicating improved robustness under posture and age changes [30].

Although the absolute performance improvement is not significant compared to recent deep learning base-
lines on certain datasets, the observed improvements remain consistent across repeated evaluations and multiple
benchmark tests. This stability indicates that the proposed framework is particularly effective in situations involv-
ing severe degradation, where traditional identification of pipelines is often difficult. It should be acknowledged
that there are several limitations, as all experiments were conducted on publicly available benchmark datasets that
cover various degradation patterns but may not fully capture the complexity of real-world monitoring environ-
ments. Therefore, further validation of actual data is needed to evaluate the generalization performance in actual
deployment. Furthermore, even if standard protocols are followed to prevent data breaches, potential dataset bi-
ases inherent in public benchmarks cannot be completely ruled out. Recovering extremely low resolution inputs
and handling mixed or complex noise patterns remains challenging, and the computational cost of the framework
may hinder real-time deployment on resource-constrained edge devices.

There are still some further research directions, especially in terms of efficiency, adaptability, and deployment
readiness. We will explore lightweight model design strategies, including neural architecture search, dynamic prun-
ing, and self-supervised pretraining, to reduce computational overhead under extreme degradation. Efforts will
also be made to build a more comprehensive low-quality facial dataset that combines multimodal noise, cross-
sensor variation, and privacy-aware data synthesis, as well as domain adaptation techniques for mitigating distri-
bution variations. In addition, extending the framework to multitasking settings such as joint facial restoration, live-
ness detection, and 3D facial reconstruction can further improve system reliability for secure applications. Finally,
deployment-oriented optimization will be studied, including quantitative perception training, hardware-specific
acceleration, multimodal fusion, and federated learning, to support the practical and large-scale adoption of low-
quality facial recognition systems.
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