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Abstract: The shortest path problem which can not be solved by classical Dijkstra algorithm and Moore‑Bellman‑
Ford algorithm appears frequently, for example, the Anti‑risk Path Problem proposed by Xiao et al. To address this
kindof shortest pathproblem, thepresentworkproposes and studies a general single‑source shortest pathproblem,
which is motivated by current interest in needing to extend the total weight function of paths on a network and the
classical shortest path problem. Firstly, define the path functional on a set of certain paths with same source on
a graph; introduce a few concepts of the defined path functional; and make some discussions on the properties
of the path functional. Secondly, develop a kind of general single‑source shortest path problem (GSSSP). Thirdly,
following respectively the approaches of the well known Dijkstra’s algorithm and Moore‑Bellman‑Ford algorithm,
design an extended Dijkstra’s algorithm (EDA) and an extended Moore‑Bellman‑Ford algorithm (EMBFA) to solve
the problem GSSSP under certain given conditions. Fourthly, under the assumption that the value of related path
functional for any path can be obtained in 𝑀(𝑛) time, prove respectively the algorithm EDA solving the problem
GSSSP in 𝑂(𝑛2)𝑀(𝑛) time and the algorithm EMBFA solving the problem GSSSP in 𝑂(𝑚𝑛)𝑀(𝑛) time. Finally, some
applications of the designed algorithms are shown with a few examples. What we done can not only improve both
the researches and the applications of the shortest path theory, but also promote the development of the researches
and the applications of other combinatorial optimization problems, promote the development of the algorithm
theory and promote the development of the artificial intelligence.
Keywords: Graph; Network; Path Functional; Shortest Path; Algorithm

1. Introduction
Shortest path problems are the best known class of combinatorial optimization problems and have been exten‑

sively studied formore than half a century, which havemany applications in network, electrical routing, transporta‑
tion, robot motion planning, critical path computation in scheduling, quick response to urgent relief, etc.; and can
also unify framework for many optimization problems such as knapsack, sequence alignment in molecular biology,
inscribed polygon construction, and length‑limited Huffman‑coding, etc. For the basic knowledge of shortest path
problems, please refer to chapter 7 of the monograph of Korte and Vygen [1] and the other literatures afterwords.

The classical single‑source shortest path problem of network, denoted by CSSSP, is the most famous one of
shortest path problems, and a lot of works have been done to study and solve this kind of shortest path prob‑
lem. Amongmany algorithms for the problemCSSSP, Dijkstra’s Algorithm (DA) andMoore‑Bellman‑Ford Algorithm
(MBFA), called also by Bellman‑Ford Algorithm, are two well‑known and most fundamental, which have now been
the core technique to solve many optimization problems. As we all know, the first one can solve the problem CSSSP
with nonnegative edge weights in 𝑂(𝑛2) time and the second one can deal with the problem CSSSP with arbitrary
conservative weights in 𝑂(𝑛𝑚) time. Here, 𝑛 and𝑚 denote respectively the number of vertices and the number of
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edges on the underlying graph. See, e.g., chapter 7 of the monograph, and the studies of Bellman [2], Dijkstra [3],
Ford Jr. [4], and Moore [5].

The study of shortest paths is a research areawith a long history. And there are still substantial researchworks
in the area in this century. On thework over the last two decades, please see the following introduction, for example.

Motivated by the recent interest in pricing networks and other computational problems, Hershberger and
Suri [6] studied the problem how to determine the Vickrey payments of all the agents between the given two nodes
with a pricing network in less time, which is closely related to the shortest path algorithm and the replacement path
problem, see the study of Hershberger et al. [7], and they proposed an algorithm to complete the computation in
essentially the same time bound as a single‑source shortest path computation. Hershberger et al. [7] also explained
and investigated the replacement path problem and the other shortest path problems; and made some results on
the time complexity of computing the related problems. Cho et al. [8] developed and studied a hybrid shortest path
algorithm of navigation system. Du et al. [9] based on the known heuristic algorithm CST for Euclidean Steiner Tree
(EST), proposed the algorithms CST(A) to find EST, and by making the worst‑case analysis of algorithms CST and
CST(A), presented the restricted submodularity technique to analyze approximation algorithm with nonsubmodu‑
lar functions; for Connected Dominating Set (CDS), based on the known 1—greedy algorithm, they also proposed
(2𝑘−1)—greedy algorithm to compute aminimumCDS, and bymaking theworst‑case analysis of (2𝑘−1)—greedy
algorithm, presented the shifted submodularity technique to analyze approximation algorithm with nonsubmodu‑
lar functions; in the process they obtain some excellent results.

Noted the fact that the transportation system of a city and the roads of the city can be respectively modeled by
a network and its edges, some roads of which may be blocked at certain times; and the traveler only observes that
upon reaching an adjacent site of the blocked road. Xiao et al. [10] (2009) introduced the definition of the risk of
paths on a network, which is really a function on the set of all the paths with a same source on the network; and
introduced also the anti‑risk path (ARP) problem of finding a path such that the solution of its has minimum risk,
which, on the one hand, is a kind of single‑source shortest path problem, and on the other hand, is different from
the classical single‑source shortest path problem, so cannot be solved by the classical DA and MBFA. They showed
also the ARP problem can be solved in 𝑂(𝑚𝑛 + 𝑛2𝑙𝑜𝑔𝑛) time supposed that at most one edge may be blocked.
Afterwards, Mahadeokar and Saxena [11] (2014) proposed a faster algorithm to solve the ARP problem.

Srivastava and Tyagi [12] bymodifying the Prim’s Algorithm, proposed an algorithm to find the shortest path in
a specific network that consists of host systems on land and satellites in air. Murota and Shioura [13] from the view‑
point of discrete convex analysis and linear programming formulation, showed that the shortest path problem can
be seen as a special case of L‑concave function maximization; and solving the LP dual of the shortest path problem
with the steepest ascent algorithm for L‑concave function maximization is exactly coincident to solving the short‑
est path problem with Dijkstra’s algorithm. Feng [14] presented a new exact algorithm to solve 𝑘 shortest simple
paths (KSP) in a network; and demonstrated that the algorithm performs significantly better than the existing exact
polynomial time algorithm that have polynomial worst‑case complexity. Basing on the concept of the replacement
path and the real time detour path, Zhang et al. [15] proposed the definition of shortest path set and the definition
of optimal shortest path set, on an undirected graph with source node 𝑠 and destination node 𝑡; they also, under
some conditions, investigated and presented the polynomial time algorithms to compute the optimal shortest path
set. By combining the flow shop scheduling problem and the shortest path problem, Nip et al. [16] first developed a
synthetical optimization problem; then they discussed the complexity to compute the solutions and separately pro‑
posed two approximation algorithms, for the case that the number of machines is an input and for the case that the
number of machines is fixed. Meng et al. [17] reported the results of their experiment and research on the multi‑
ple shortest path algorithms. By combining Bellman‑Ford algorithm and Dijkstra algorithm, Dinitz and Itzhak [18]
presented a new hybrid algorithm for the single‑source shortest path problem with general edge costs, which can
improve the running time bound of Bellman‑Ford algorithm for graphs with a sparse distribution of negative cost
edges; and made some related researches; in addition, they also suggested a new straightforward proof that the
Bellman‑Ford algorithm produces a shortest paths tree. Noting the wide and important applications of Dijkstra al‑
gorithm andBellman‑Ford algorithm in the field of computer and software sciences, andmany researches interested
in the problem to solve the shortest path problem in these applications, AbuSalim et al. [19] made a more profound
comparison between the two popular algorithms on the complexity and the performance in terms of shortest path
optimization. Xia et al. [20], based Ant Colony Optimization ACO algorithm, proposed BiA*‑ACO algorithm to recom‑
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mend the fastest route for taxicabs in a complex urban road network; and showed it is at least 49.81%more efficient
than the algorithms ACO, DA andMBFA. Gajjar et al. [21] developed and studied a problem of reconfiguring shortest
paths.

In addition, the types and applications of functional are expanding, e.g., see the studies of Wu [22] and Xu et
al. [23], and the types and applications of networks are expanding, see the studies of Bäusing et al. [24], Deen et
al. [25], Henke and Wulf [26], Hooshmand and Huchaiah [27], and Kovács [28] for example. Moreover, in view of
the critical role of Manhattan Steiner Problem in VLSI‑design, we can clearly know that algorithms and networks
are crucial to the intelligent technology. At present, muchwork has been done to develop the intelligent technology
through the research of algorithms and networks, for example, see the studies of Acuña et al. [29], Mao et al. [30],
and Jahanmanesh et al. [31].

Motivated by the stated background of researches above, in particular the studies of Xiao et al. [10,11], tomeet
practical needs, to deepen algorithm theory and to improve intelligence level, the present paper will carry out the
following work.
1. Through generalizing the total weight path function of networks as the path functional of graphs, develop a

general single‑source shortest path problem (GSSSP), which include the classical problem CSSSP and the ARP
problem as its special cases.

2. Try to design an Extended Dijkstra’s Algorithm (EDA) and an Extended Moore‑Bellman‑Ford Algorithm (EM‑
BFA) to solve the problem GSSSP under certain conditions, which respectively reduce to Dijkstra’s Algorithm
and Moore‑Bellman‑Ford Algorithm when the problem GSSSP is the classical problem CSSSP.

3. Moreover, make some related studies to analyse and believe the two designed algorithms.

2. Preliminaries
This section provides some preliminaries for our sequel research.
Artificial intelligence (AI) is a key modern technology. Digitalization is the foundation of AI. To effectively sup‑

port AI development, we will strive to enhance the level of digitalization of content, here.

2.1. Conceptual Framework
(1) Suppose 𝑉 is a set of 𝑛(> 1) points.

Let 𝑢, 𝑣 ∈ 𝑉 and 𝑢 ≠ 𝑣. We use [𝑢, 𝑣] to denote an edge connecting two points 𝑢 and 𝑣. And use (𝑢, 𝑣) ((𝑣, 𝑢))
to denote a road from 𝑢 to 𝑣 (𝑣 to 𝑢) on the edge [𝑢, 𝑣] . (Note: [𝑢, 𝑣] = [𝑣, 𝑢], while (𝑢, 𝑣) ≠ (𝑣, 𝑢).)
When there are more than one edge between 𝑢 and 𝑣, namely there are the parallel edges between 𝑢 and 𝑣,
[𝑢, 𝑖, 𝑣]maybeused todenote the 𝑖th edge; and (𝑢, 𝑖, 𝑣)maybeused todenote the 𝑖th road from𝑢 to𝑣. However,
to simplify in notation afterwards, [𝑢, 𝑖, 𝑣] is denoted as [𝑢, 𝑣] and (𝑢, 𝑖, 𝑣) is denoted as (𝑢, 𝑣) when 𝑖 needn’t
be indicated.
A edge [𝑢, 𝑣] is called undirected (/directed) if there are two roads (𝑢, 𝑣) and (𝑣, 𝑢) (/there is only one road
(𝑢, 𝑣) or (𝑣, 𝑢)) on it.
For set 𝐴, we use |𝐴| denotes the number of all elements in the set 𝐴.
Let 𝐸 be all the edges and 𝑅 be all the roads. The triple (𝑉, 𝐸, 𝑅) is called as a graph, which is also denoted
by the tuple (𝑉, 𝐸) (/(𝑉, 𝑅)) when all the roads 𝑅 (/edges 𝐸) needn’t be indicated for clearness and briefness.
Graphs without parallel edges are called simple. For graph (𝑉, 𝐸, 𝑅), an element of 𝑉 is called a vertex of the
graph. In this work we always assume that |𝐸| is finite.
A graph is called as an undirected graph (/directed graph) if it has only undirected edges (/has only directed
edges).

(2) Suppose 𝐺 = (𝑉, 𝐸, 𝑅) is a graph.
When [𝑣(𝑖−1), 𝑣𝑖] ∈ 𝐸, 𝑖 = 1, 2,⋯ , 𝑘, the orderly combination of edges,

{[𝑣0, 𝑣1], [𝑣1, 𝑣2],⋯ , [𝑣𝑘−1, 𝑣𝑘]}([𝑣(𝑖−1), 𝑣𝑖] ≠ [𝑣(𝑗−1), 𝑣𝑗], 𝑖 ≠ 𝑗)
is called as a chain connecting𝑣0 and𝑣𝑘 , denotedby𝐶[𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑘−1, 𝑣𝑘]. (Note: 𝐶[𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑘−1, 𝑣𝑘] =
𝐶[𝑣𝑘 , 𝑣𝑘−1, ⋯ , 𝑣2, 𝑣1, 𝑣0].) If 𝑣0 = 𝑣𝑘 , the chain is called as a cycle (chain).
When (𝑣(𝑖−1), 𝑣𝑖) ∈ 𝑅, 𝑖 = 1, 2,⋯ , 𝑘, the orderly combination of roads,
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{(𝑣0, 𝑣1), (𝑣1, 𝑣2),⋯ , (𝑣𝑘−1, 𝑣𝑘)}
is called as a path from 𝑣0 to 𝑣𝑘 , denoted by𝑃(𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑘−1, 𝑣𝑘), in briefness denoted by𝑃(𝑣0, 𝑣𝑘), if there
will be no confusion; 𝑣𝑘 is said to be reachable from𝑣0. (Note: 𝑃(𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ≠ 𝑃(𝑣𝑘 , 𝑣𝑘−1, ⋯ , 𝑣2, 𝑣1,
𝑣0).) We also use (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘), or (𝑣0, 𝑣1) + (𝑣1, 𝑣2) +⋯+ (𝑣𝑘−1, 𝑣𝑘), or (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1) + (𝑣𝑘−1, 𝑣𝑘)
to denote 𝑃(𝑣0, 𝑣𝑘). That is,

𝑃(𝑣0, 𝑣𝑘) = {(𝑣0, 𝑣1), (𝑣1, 𝑣2),⋯ , (𝑣𝑘−1, 𝑣𝑘)} = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘)
= (𝑣0, 𝑣1) + (𝑣1, 𝑣2) + ⋯ + (𝑣𝑘−1, 𝑣𝑘) = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1) + (𝑣𝑘−1, 𝑣𝑘).

𝑣0 and𝑣𝑘 are respectively called the source and the terminal of path𝑃, denotedby 𝑠(𝑃) and 𝑡(𝑃); (𝑣(𝑖−1), 𝑣𝑖), 0 <
𝑖 ≤ 𝑘, is called a road of 𝑃, denoted by (𝑣(𝑖−1), 𝑣𝑖) ∈ 𝑃. For path 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1) and path 𝑃′ =
(𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) = 𝑃 + (𝑣𝑘−1, 𝑣𝑘), we call 𝑃 as the father of 𝑃′, denoted by 𝐹(𝑃′); and 𝑃′ as a son of 𝑃,
denoted by 𝑆(𝑃). A path 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) is called no cycle if 𝑣𝑖 ≠ 𝑣𝑗 while 𝑖 ≠ 𝑗.
A mapping𝑤 ∶ 𝐸(/𝑅) → (−∞,∞) is called as a weight of edges (/roads). And the triple (𝑉, 𝑤, 𝐸) (/(𝑉, 𝑤, 𝑅)) is
called as a networkwith edge (/road)weight. The tuple (𝐺, 𝑤) is used to represent both the networks (𝑉, 𝑤, 𝐸)
and (𝑉, 𝑤, 𝑅)when𝑤([𝑢, 𝑣]) = 𝑤((𝑢, 𝑣)), ∀𝑢, 𝑣 ∈ 𝑉.
Let 𝑠 ∈ 𝑉 (called source point). A path of graph 𝐺 with the source point 𝑠 is called a path of [𝐺, 𝑠]. Some paths
of [𝐺, 𝑠] is called a path system on [𝐺, 𝑠]. All the paths of [𝐺, 𝑠] is called the complete path system on [𝐺, 𝑠]. All
the no cycle paths of [𝐺, 𝑠] is called the no cycle path system on [𝐺, 𝑠]. To be convenient and clear, we stipulate
(𝑠, 𝑠) is a special road and a special path with the source point 𝑠, and (𝑠, 𝑠)+ (𝑠, 𝑣) = (𝑠, 𝑣) for each road (𝑠, 𝑣).

(3) Suppose 𝒫 is a path system on [𝐺, 𝑠].
Put𝒫(𝑢) = {𝑃 ∈ 𝒫|𝑡(𝑃) = 𝑢} (particulary,𝒫(𝑠) = {(𝑠, 𝑠)}), 𝑉(𝒫) = {𝑢|𝒫(𝑢) ≠ ∅},𝑅(𝒫) = {(𝑢, 𝑣) ∈ 𝑃|𝑃 ∈ 𝒫}
and 𝐸(𝒫) = {[𝑢, 𝑣]|(𝑢, 𝑣) ∈ 𝑅(𝒫)}. Moreover, 𝒫𝑛𝑐 denotes all the no cycle paths in 𝒫, and 𝒫𝑛𝑐(𝑢) denotes all
the no cycle paths in 𝒫(𝑢).
∀𝑃 ∈ [𝒫∖{(𝑠, 𝑠)}], define (𝑠, 𝑠) ≺ 𝑃; ∀𝑃, 𝑃′ ∈ [𝒫∖{(𝑠, 𝑠)}], define𝑃 ≺ 𝑃′ if and only if𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘), 𝑃′ =
(𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣𝑘+1, ⋯ , 𝑣𝑘′), 0 ≤ 𝑘 < 𝑘′; and ∀𝑃, 𝑃′ ∈ 𝒫, define 𝑃 ⪯ 𝑃′ if and only if 𝑃 ≺ 𝑃′ or 𝑃 = 𝑃′.
A mapping 𝑓 ∶ 𝒫 → (−∞,∞) is called as a path functional on 𝒫.
Finally, ∀𝑣 ∈ 𝑉(𝒫), define𝑚𝑓(𝑣) = inf{𝑓(𝑃)|𝑃 ∈ 𝒫(𝑣)}. And 𝑃 ∈ 𝒫 is called a shortest (minimum) path on 𝑓
if 𝑓(𝑃) = 𝑚𝑓(𝑡(𝑃)).
Below, we always assume that 𝐺 is a graph, 𝑠 ∈ 𝑉(𝐺) is a source, 𝒫 is a path system on [𝐺, 𝑠], 𝑓 is a path
functional on the system 𝒫 and 𝑓((𝑠, 𝑠)) = 0. In addition, please note: 𝑃(∈ 𝒫) denotes a path of system 𝒫;
𝑠(𝑃) denotes the source of 𝑃 and 𝑡(𝑃) denotes the terminal of 𝑃; 𝑆(𝑃) denotes the son of 𝑃 and 𝐹(𝑃) denotes
the father of 𝑃; 𝑓(𝑃) represents the value of functional 𝑓 at path 𝑃. In addition, we should note: 1. 𝑃 denotes
a path with source 𝑠; 2. 𝑠(𝑃) denotes the source of 𝑃 and 𝑡(𝑃) denotes the terminal of 𝑃; 3. 𝑆(𝑃) denotes the
son of 𝑃 and 𝐹(𝑃) denotes the father of 𝑃; 4. 𝑓 denotes a path functional of 𝒫; 5. 𝑓(𝑃) indicates the value of
path functional 𝑓 in path 𝑃.

2.2. Basic Definitions
Definition 1. (i.) 𝑓 is said to be non‑decreasing if and only if ∀𝑃, 𝑃′ ∈ 𝒫, provided 𝑃 ⪯ 𝑃′, we have 𝑓(𝑃) ≤ 𝑓(𝑃′).
(ii.) 𝑓 is said to be increasing if and only if ∀𝑃, 𝑃′ ∈ 𝒫, provided 𝑃 ≺ 𝑃′, we have 𝑓(𝑃) < 𝑓(𝑃′).
(iii.) 𝑓 is said to be weak order‑preserving (WOP) if and only if ∀𝑢, 𝑣 ∈ 𝑉, provided ∀𝑃, 𝑃′ ∈ 𝒫(𝑢), 𝑃 + (𝑢, 𝑣), 𝑃′ +

(𝑢, 𝑣) ∈ 𝒫(𝑣) and 𝑓(𝑃) < 𝑓(𝑃′), we have 𝑓(𝑃 + (𝑢, 𝑣)) < 𝑓(𝑃′ + (𝑢, 𝑣)).
(iv.) 𝑓 is said to be semi ‑order‑preserving (SOP) if and only if ∀𝑢, 𝑣 ∈ 𝑉, provided ∀𝑃, 𝑃′ ∈ 𝒫(𝑢), 𝑃 + (𝑢, 𝑣), 𝑃′ +

(𝑢, 𝑣) ∈ 𝒫(𝑣) and 𝑓(𝑃) ≤ 𝑓(𝑃′), we have 𝑓(𝑃 + (𝑢, 𝑣)) ≤ 𝑓(𝑃′ + (𝑢, 𝑣)).
(v.) 𝑓 is said to be order‑preserving (OP) if and only if 𝑓 isWOP, and∀𝑢, 𝑣 ∈ 𝑉, provided∀𝑃, 𝑃′ ∈ 𝒫(𝑢),𝑃+(𝑢, 𝑣), 𝑃′+

(𝑢, 𝑣) ∈ 𝒫(𝑣) and 𝑓(𝑃) = 𝑓(𝑃′), we have 𝑓(𝑃 + (𝑢, 𝑣)) = 𝑓(𝑃′ + (𝑢, 𝑣)).

Definition 2. 𝑓 is said to have no negative (/non‑positive) cycle if and only if ∀𝑣 ∈ 𝑉, provided ∀𝑃 ∈ 𝒫(𝑣) and
∀𝑃′ = 𝑃 + (𝑣, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣) ∈ 𝒫(𝑣), we have 𝑓(𝑃′) − 𝑓(𝑃) ≥ 0 (/𝑓(𝑃′) − 𝑓(𝑃) > 0). 𝑓 is called conservative if it has
no negative cycle.
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Definition 3. 𝑓 is said to be weak inherited on shortest path (WISP) if ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], provided that the shortest
path from 𝑠 to 𝑣 exists, then there must be a path 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘) ∈ 𝒫(𝑣), 𝑘 ≥ 1, such that 𝑃𝑖 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑖) is
the shortest path, 𝑖 = 1, 2,⋯ , 𝑘. (Note: 𝑣𝑘 = 𝑣). 𝑓 is said to be inherited on shortest path (ISP) if ∀𝑃 ∈ [𝒫 ∖ {(𝑠, 𝑠)}],
provided that 𝑃 is the shortest path, then 𝐹(𝑃)must be the shortest path.

2.3. Basic Propositions
For the above definitions, we have the following statements.

Proposition 1. ∀𝑣 ∈ 𝑉, |𝒫𝑛𝑐(𝑣)| is finite.

Proposition 2. If 𝑓 is increasing, then it must have no non‑positive cycle. If 𝑓 has no non‑positive cycle or is non‑
decreasing, then it must have no negative cycle; that is, 𝑓 is conservative.

Proposition 3. If 𝑓 is OP, then it must be WOP and SOP.

For the proofs of the three propositions above is trivial, here we omit them.

Proposition4. Let𝒫 be the complete path system. (i) If𝑓 has nonon‑positive cycle and isWOP, then,∀𝑣 ∈ [𝑉(𝒫)∖{𝑠}],
the shortest path from 𝑠 to 𝑣 has no cycle, and𝑚𝑓(𝑣) = min{𝑓(𝑃)|𝑃 ∈ 𝒫𝑛𝑐(𝑣)}. (ii) If 𝑓 is conservative and SOP, then,
∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}],𝑚𝑓(𝑣) = min{𝑓(𝑃)|𝑃 ∈ 𝒫𝑛𝑐(𝑣)}. (iii) If 𝑓 is conservative, SOP and WISP, then, ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}],
there is a path 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫𝑛𝑐(𝑣)(𝑘 ≥ 1) such that 𝑃𝑖 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑖) is the shortest path for any
𝑖 = 0, 1, 2,⋯ , 𝑘.

Proof. ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], let 𝑃 be a path from 𝑠 to 𝑣 and have cycles. We can assume

𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣′1, 𝑣′2, ⋯ , 𝑣′𝑙′ , 𝑣𝑙 , 𝑣𝑙+1, 𝑣𝑙+2, ⋯ , 𝑣𝑘)
(𝑣𝑘 = 𝑣), 𝑙′ ≥ 1. Put 𝑃1 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙), 𝑃2 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣′1, 𝑣′2, ⋯ , 𝑣′𝑙′ , 𝑣𝑙) and 𝑃3 = 𝑃1 + (𝑣𝑙 , 𝑣𝑙+1) + ⋯ +

(𝑣𝑘−1, 𝑣𝑘) = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣𝑙+1, 𝑣𝑙+2, ⋯ , 𝑣𝑘−1, 𝑣𝑘). For 𝒫 is the complete path system, 𝑃1, 𝑃2, 𝑃3 ∈ 𝒫.
(1) For𝑓 hasnonon‑positive cycle,wehave𝑓(𝑃2) > 𝑓(𝑃1). Since also𝑓 isWOP,we furtherhave𝑓(𝑃2+(𝑣𝑙 , 𝑣𝑙+1)) >

𝑓(𝑃1 + (𝑣𝑙 , 𝑣𝑙+1)),⋯ , 𝑓(𝑃2 + (𝑣𝑙 , 𝑣𝑙+1) + ⋯ + (𝑣𝑘−1, 𝑣𝑘)) > 𝑓(𝑃1 + (𝑣𝑙 , 𝑣𝑙+1) + ⋯ + (𝑣𝑘−1, 𝑣𝑘)). Thus,
𝑓(𝑃) > 𝑓(𝑃3). This implies that 𝑃 can not be a shortest path from 𝑠 to 𝑣 and leads to𝑚𝑓(𝑣) = inf{𝑓(𝑃)|𝑃 ∈
𝒫(𝑣)} ≤ min{𝑓(𝑃)|𝑃 ∈ 𝒫𝑛𝑐(𝑣)} ≤ inf{𝑓(𝑃)|𝑃 ∈ 𝒫(𝑣)} = 𝑚𝑓(𝑣) ⇒ 𝑚𝑓(𝑣) = min{𝑓(𝑃)|𝑃 ∈ 𝒫𝑛𝑐(𝑣)}. Hence
(i) holds.

(2) For 𝑓 is conservative, we have 𝑓(𝑃2) ≥ 𝑓(𝑃1). Since also 𝑓 is SOP, we further have 𝑓(𝑃2 + (𝑣𝑙 , 𝑣𝑙+1)) ≥
𝑓(𝑃1+(𝑣𝑙 , 𝑣𝑙+1)),⋯ , 𝑓(𝑃2+(𝑣𝑙 , 𝑣𝑙+1)+⋯+(𝑣𝑘−1, 𝑣𝑘)) ≥ 𝑓(𝑃1+(𝑣𝑙 , 𝑣𝑙+1)+⋯+(𝑣𝑘−1, 𝑣𝑘)). Thus𝑓(𝑃) ≥ 𝑓(𝑃3).
This implies that there must be a shortest path from 𝑠 to 𝑣 such that it has no cycle. Hence (ii) holds.

(3) Let 𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}]. In terms of the conclusion (ii), there must be a shortest path from 𝑠 to 𝑣. Since also
𝑓 is WISP, we can further know there is a path (𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑘) ∈ 𝒫(𝑣) such that (𝑣0, 𝑣1, 𝑣2, ⋯ , 𝑣𝑖), 𝑖 =
0, 1, 2,⋯ , 𝑘, are all the shortest pathes. Finally, following the approach to prove conclusion (ii), we can easily
prove that there is a path 𝑃 = (𝑣0, 𝑣′1, 𝑣′2, ⋯ , 𝑣′𝑘′) ∈ 𝒫𝑛𝑐(𝑣) such that (𝑣0, 𝑣′1, 𝑣′2, ⋯ , 𝑣′𝑖), 𝑖 = 0, 1, 2,⋯ , 𝑘′, are all
the shortest paths. Hence (iii) holds.

Corollary1. Let𝒫 be the complete path system. If𝑓 is non‑decreasingandSOP, then∀𝑣 ∈ 𝑉(𝒫),𝑚𝑓(𝑣) = min{𝑓(𝑃)|𝑃 ∈
𝒫𝑛𝑐(𝑣)}.

Lemma 1. Let 𝒫 be the complete path system. Suppose also 𝑓 has no non‑positive cycle. If the path

𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣(𝑘+1), 𝑣(𝑘+2), ⋯ , 𝑣(𝑘+𝑙)) (𝑘 ≥ 0, 𝑙 ≥ 1)
such that

𝑃(𝑘+𝑖) = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣(𝑘+1), 𝑣(𝑘+2), ⋯ , 𝑣(𝑘+𝑖)), 𝑖 = 1, 2,⋯ , 𝑙,
are all the shortest paths, then 𝑣(𝑘+𝑖) ≠ 𝑣(𝑘+𝑗) while 1 ≤ 𝑖 < 𝑗 ≤ 𝑙.
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Proof. It is obvious that𝑣(𝑘+𝑖) ≠ 𝑣(𝑘+𝑗)when 𝑗 = 𝑖+1. Assume that1 ≤ 𝑖 < 𝑗 ≤ 𝑙, 𝑗−𝑖 ≥ 2, and𝑣(𝑘+𝑖) = 𝑣(𝑘+𝑗) = 𝑣.
Then, 𝑓(𝑃(𝑘+𝑖)) = 𝑓(𝑃(𝑘+𝑗)) = 𝑚𝑓(𝑣). For 𝑓 has no non‑positive cycle, we have 𝑓(𝑃(𝑘+𝑗)) > 𝑓(𝑃(𝑘+𝑖)). This is
contradictory to 𝑓(𝑃(𝑘+𝑖)) = 𝑓(𝑃(𝑘+𝑗)). Hence the lemma holds.

Proposition 5. Let 𝒫 be the complete path system. If 𝑓 has no non‑positive cycle and is SOP, then 𝑓 is WISP.

Proof. ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], let 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣), 𝑘 ≥ 0, be a shortest path. If (𝑣0, 𝑣1, ⋯ , 𝑣𝑘) is not the shortest
path, then, from the term (ii) of Proposition 4, there must be a shortest path 𝑃′ = (𝑣0, 𝑣′1, ⋯ , 𝑣′𝑘′ , 𝑣𝑘). For 𝒫 is
complete, [𝑃′ + (𝑣𝑘 , 𝑣)] ∈ 𝒫. Since 𝑓 is SOP, we have 𝑓(𝑃′ + (𝑣𝑘 , 𝑣)) ≤ 𝑓(𝑃). This implies that [𝑃′ + (𝑣𝑘 , 𝑣)] is also
the shortest path. If (𝑣0, 𝑣′1, ⋯ , 𝑣′𝑘′) is not the shortest path, then, in the same way, there must be a shortest path
𝑃″ = (𝑣0, 𝑣″1 , ⋯ , 𝑣″𝑘″ , 𝑣′𝑘′) such that [𝑃″+(𝑣′𝑘′ , 𝑣𝑘)], [𝑃″+(𝑣′𝑘′ , 𝑣𝑘)+(𝑣𝑘 , 𝑣)] are all the shortest path. ⋯Assume that
the step has been performed 𝑙 times. Then we can obtain a path 𝑃∗ = (𝑣0, 𝑣∗1, ⋯ , 𝑣∗𝑘∗ , 𝑣∗(𝑘∗+1), 𝑣∗(𝑘∗+2), ⋯ , 𝑣∗(𝑘∗+𝑙)) ∈
𝒫(𝑣) (𝑘∗ ≥ 0, 𝑙 ≥ 1) such that,

𝑃(𝑘∗+𝑖) = (𝑣0, 𝑣∗1, ⋯ , 𝑣∗𝑘∗ , 𝑣∗(𝑘∗+1), 𝑣∗(𝑘∗+2), ⋯ , 𝑣∗(𝑘∗+𝑖)), 𝑖 = 1, 2,⋯ , 𝑙,
are all the shortest paths. By Lemma 1, we have 𝑣∗(𝑘∗+𝑖) ≠ 𝑣∗(𝑘∗+𝑗) while 1 ≤ 𝑖 < 𝑗 ≤ 𝑙. This implies that 𝑙 ≤ 𝑛.
Therefore, we can eventually get a shortest path 𝑃̄ = (𝑣0, 𝑣̄1, ⋯ , 𝑣̄𝑘̄ , 𝑣) such that,

𝑃̄𝑖 = (𝑣0, 𝑣̄1, ⋯ , 𝑣̄𝑘̄), 𝑖 = 1, 2,⋯ , 𝑘̄,
are all the shortest paths. Hence the proposition holds.

Proposition 6. Let 𝒫 be the complete path system. If 𝑓 is conservative, SOP and WOP, then 𝑓 is ISP.

Proof. Let 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘) ∈ 𝒫, 𝑘 ≥ 1, be a shortest path. If 𝐹(𝑃) is not the shortest path, then, from the term
(ii) of Proposition 4, there must be another path 𝑃′ ∈ 𝒫𝑛𝑐(𝑣𝑘−1) such that 𝑓(𝑃′) = 𝑚𝑓(𝑣𝑘−1) < 𝑓(𝐹(𝑃)). For 𝒫
is complete path system, we have [𝑃′ + (𝑣𝑘−1, 𝑣𝑘)] ∈ 𝒫(𝑣𝑘). Since also 𝑓 is WOP and [𝑃′ + (𝑣𝑘−1, 𝑣𝑘)], [𝐹(𝑃) +
(𝑣𝑘−1, 𝑣𝑘)] ∈ 𝒫(𝑣𝑘), we further have 𝑓(𝑃′ + (𝑣𝑘−1, 𝑣𝑘)) < 𝑓(𝐹(𝑃) + (𝑣𝑘−1, 𝑣𝑘)) = 𝑓(𝑃), which is contradictory
with that 𝑃 is the shortest path. Hence the proposition holds.

Corollary 2. Let𝒫 be the complete path system. If 𝑓 is conservative and OP, then ∀𝑣 ∈ 𝑉(𝒫),𝑚𝑓(𝑣) = min{𝑓(𝑃)|𝑃 ∈
𝒫𝑛𝑐(𝑣)} and 𝑓 is ISP.

Proof. From Propositions 4 and 6, we can easily know the corollary holds.

Remark 1. The propositions above are not only the basis for our to design and study the next algorithms EDA and
EMBFA, but also fully shows that the contents of the path functional, especially its order relations, are very profound,
extensive and interesting, which means that for the path functional, there are still many problems needing to research.

3. Problem
Definition 4. The problem to find a path 𝑃 ∈ 𝒫(𝑣) such that 𝑓(𝑃) = 𝑚𝑓(𝑣) for all 𝑣 ∈ 𝑉(𝒫) is called as general
single‑source shortest path problem (GSSSP) on [𝐺, 𝑠, 𝒫, 𝑓].

It is clear that the problem GSSSP is just the problem CSSSP when 𝐺 is the graph with weight 𝑤 and 𝑓 is the
path functional 𝑑 in the Example 1 of Section 6. It is also clear that the ARP problem, see Xiao et al. [10] (2009) or
Example 3, is an instance of the problem GSSSP. The two facts show that the problem GSSSP is really generalization
of the problem CSSSP.

Theorem 1. Let 𝒫 be the complete path system. If 𝑓 is conservative and SOP, then the problem GSSSP can be solved.
That is, ∀𝑣 ∈ 𝑉(𝒫), there is a path 𝑃 ∈ 𝒫(𝑣) such that 𝑓(𝑃) = 𝑚𝑓(𝑣), namely 𝑃 is a shortest path from 𝑠 to 𝑣.

Proof. From the term (ii) of Proposition 4, the Theorem 1 holds.
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4. Algorithms
For problemGSSSP, following the approaches of the algorithmsDA andMBFA, an extendedDijkstra’s algorithm

(EDA) and an extended Moore‑Bellman‑Ford algorithm (EMBFA) can be respectively designed to solve it under
certain conditions. We accomplish the tasks in this section (Algorithms 1–3).

Algorithm 1 Extended Dijkstra’s Algorithm (EDA)
Input: graph 𝐺 = (𝑉, 𝐸, 𝑅) and vertex 𝑠 ∈ 𝑉, with a path functional 𝑓 on the complete path system 𝒫 of [𝐺, 𝑠], which is non‑decreasing and SOP.
Output: a path system 𝒯 on [𝐺, 𝑠] and the graph 𝑇 = (𝑉(𝒯), 𝐸(𝒯), 𝑅(𝒯)).
Process:
1. Put 𝑃𝑇[𝑠] = (𝑠, 𝑠), 𝑓(𝑃𝑇[𝑠]) = 𝑓((𝑠, 𝑠)) = 0;
∀𝑣 ∈ [𝑉 ∖ {𝑠}], set 𝑃𝑇[𝑣] ← (𝑠,∞, 𝑣), 𝑓(𝑃𝑇[𝑣]) ← +∞.
Set 𝐶 ← ∅, 𝒯 ← ∅. (Set 𝑘 ← (−1).)

2.
(1) Find a 𝑢 ∈ [𝑉 ∖ 𝐶] such that𝑓(𝑃𝑇[𝑢]) = min{𝑓(𝑃𝑇[𝑣])|𝑣 ∈ [𝑉 ∖ 𝐶]}.
(2) Set 𝐶 ← [𝐶 ⋃{𝑢}], 𝒯 ← [𝒯⋃{𝑃𝑇[𝑢]}].

∀𝑣 ∈ [𝑉 ∖ 𝐶], if (𝑢, 𝑣) ∈ 𝒫 and 𝑓(𝑃𝑇[𝑣]) > 𝑓(𝑃𝑇[𝑢] + (𝑢, 𝑣)), set
𝑃𝑇[𝑣] ← (𝑃𝑇[𝑢] + (𝑢, 𝑣)).
(Set 𝑘 ← (𝑘 + 1), then put 𝑣(𝑘) = 𝑢.)

(3) If [𝑉 ∖ 𝐶] = ∅ or min{𝑓(𝑃𝑇[𝑣])|𝑣 ∈ [𝑉 ∖ 𝐶]} = +∞, go to the step 3.
Otherwise, return to step 2.

3. Output the path system 𝒯 and the graph 𝑇 = (𝑉(𝒯), 𝐸(𝒯), 𝑅(𝒯)).
(Output the vertices: 𝑣(𝑖), 𝑖 = 0, 1, 2,⋯ , |𝑉(𝒯)| − 1.) Then stop.

In order to simplify the analytical process of algorithm EDA, we also propose the next algorithm STA.

Algorithm 2 Spanning Tree Algorithm (STA)
Input: graph 𝐺 = (𝑉, 𝐸, 𝑅), point 𝑠 ∈ 𝑉.
Output: a graph 𝑇.
Process:
1. Set 𝐶 ← {𝑠}, 𝑅(𝑇) ← {(𝑠, 𝑠)}.

(Set 𝑘 ← 0, then put 𝑣(𝑘) = 𝑠, 𝑇𝑘 = (𝐶, 𝑅(𝑇)).)
If {(𝑢, 𝑣)|𝑢 ∈ 𝐶, 𝑣 ∈ [𝑉 ∖ 𝐶], (𝑢, 𝑣) ∈ 𝑅} ≠ ∅, implement the next step. Otherwise, go to step 3.

2. Find a 𝑢 ∈ 𝐶 and a 𝑣 ∈ [𝑉 ∖ 𝐶] such that (𝑢, 𝑣) ∈ 𝑅. Then set
𝐶 ← [𝐶 ∪ {𝑣}], 𝑅(𝑇) ← [𝑅(𝑇) ∪ {(𝑢, 𝑣)}].

(Set 𝑘 ← (𝑘 + 1), 𝑣(𝑘) = 𝑣, 𝑇𝑘 = (𝐶, 𝑅(𝑇)).)
If {(𝑢, 𝑣)|𝑢 ∈ 𝐶, 𝑣 ∈ [𝑉 ∖ 𝐶], (𝑢, 𝑣) ∈ 𝑅(𝒫)} ≠ ∅, return to step 2. Otherwise, implement the next step.

3. Put 𝑉(𝑇) = 𝐶 and 𝑇 = (𝑉(𝑇), 𝑅(𝑇)). Output the graph 𝑇. Then stop.

Algorithm 3 Extended Moore‑Bellman‑Ford Algorithm (EMBFA)
Input: graph 𝐺 = (𝑉, 𝐸, 𝑅) and vertex 𝑠 ∈ 𝑉, with a path functional 𝑓 on the complete path system 𝒫 of [𝐺, 𝑠], which is conservative and OP.
Output: a path system 𝒯 on [𝐺, 𝑠] and the graph 𝑇 = (𝑉(𝒯), 𝐸(𝒯), 𝑅(𝒯)).
Process:
1. Put 𝑃𝑇[𝑠] = (𝑠, 𝑠), 𝑓(𝑃𝑇[𝑠]) = 0;
set 𝑃𝑇[𝑣] ← (𝑠,∞, 𝑣), 𝑓(𝑃𝑇[𝑣]) ← +∞,∀𝑣 ∈ [𝑉 ∖ {𝑠}].
Set 𝒯 ← {𝑃𝑇[𝑠]}.

2. For 𝑖 = 1, 2,⋯ , 𝑛, do:
for each road (𝑢, 𝑣) ∈ [𝑅(𝒫) ∖ {(𝑠, 𝑠)}], if 𝑃𝑇[𝑢] ∈ 𝒯 and

𝑓(𝑃𝑇[𝑣]) > 𝑓(𝑃𝑇[𝑢] + (𝑢, 𝑣)),

then in turn set: 𝒯′ ← [𝒯 ∖ {𝑃𝑇[𝑣]}]; 𝑃𝑇[𝑣] ← 𝑃𝑇[𝑢] + (𝑢, 𝑣);
and 𝒯 ← [𝒯′ ∪ {𝑃𝑇[𝑣]}].
(Set 𝑇 = (𝑉(𝒯), 𝐸(𝒯), 𝑅(𝒯)).)

3. Output the path system 𝒯 and the graph 𝑇 = (𝑉(𝒯), 𝐸(𝒯), 𝑅(𝒯)).
Then stop.

Remark 2. To be concise, please first understand the EDA and the related proof (see next section) under the condition
that𝐺 is a simple graph. When𝐺 is not a simple graph, we should consider the parallel edges. For instance, when there
exist two parallel roads (𝑢, 1, 𝑣), (𝑢, 2, 𝑣) ∈ 𝑅(𝒫) and 𝑢 is 𝑣(𝑘), on the update of 𝑃𝑇[𝑣] in the (𝑘 + 1) time iteration,
𝑃𝑇[𝑢]+(𝑢, 1, 𝑣) and 𝑃𝑇[𝑢]+(𝑢, 2, 𝑣) should be simultaneously involved in the comparison and the replacement. More
specifically, we should understand and execute the term (2) of step 2 as follows.

Set 𝐶 ← [𝐶 ⋃{𝑢}], 𝒯 ← [𝒯⋃{𝑃𝑇[𝑢]}].
∀𝑣 ∈ [𝑉∖𝐶], if (𝑢, 𝑖, 𝑣) ∈ 𝒫, 𝑖 = 1, 2,⋯ , |𝐼(𝑢, 𝑣)|, 𝐼(𝑢, 𝑣) = {all the roads (𝑢, 𝑖, 𝑣)}, and𝑓(𝑃𝑇[𝑣]) > min{𝑓(𝑃𝑇[𝑢]+

(𝑢, 𝑖, 𝑣))|𝑖 = 1, 2,⋯ , |𝐼(𝑢, 𝑣)|}, find 𝑖′ such that 𝑓(𝑃𝑇[𝑢] + (𝑢, 𝑖′, 𝑣)) = min{𝑓(𝑃𝑇[𝑢] + (𝑢, 𝑖, 𝑣))|𝑖 = 1, 2,⋯ , |𝐼(𝑢, 𝑣)|},
set
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𝑃𝑇[𝑣] ← (𝑃𝑇[𝑢] + (𝑢, 𝑖′, 𝑣)).
(𝑆𝑒𝑡𝑘 ← (𝑘 + 1), 𝑡ℎ𝑒𝑛𝑝𝑢𝑡𝑣(𝑘) = 𝑢.)

Remark 3. For EDA, ∀𝑣 ∈ 𝑉(𝒫), 𝑃𝑇[𝑣] will not change after it become a member of 𝒯. However, for EMBFA, some
𝑃𝑇[𝑣] may change after it become a member of 𝒯. The two facts are useful for us to understand the algorithms EDA
and EMBFA.

5. Analysis of Algorithms
Lemma 2. For algorithm STA, we have the following conclusions.

(i) The algorithmworks well. (That is, it can effectively input, output and stop.) (ii) The output 𝑇 of STA is a spanning
tree of 𝐺̄. (iii) 𝑇 is an arborescence rooted at 𝑠. (iv) The running time of STA is no more than 𝑂(𝑚𝑛). Here
𝐺̄ = (𝑉(𝒫), 𝐸(𝒫), 𝑅(𝒫)), 𝒫 is the complete path system on [𝐺, 𝑠] and𝑚 = |𝐸(𝑉)|.

Proof. Obviously, we always have that 1 ≤ |𝐶| ≤ 𝑛 = |𝑉| and |𝐶| is increasing. This implies that the step 2 is
performed no more than 𝑛 times. Hence (i) holds.

In terms of the process of Algorithm STA and (i), it is obvious that 𝑇 is connected subgraph of 𝐺̄. Note that
{(𝑢, 𝑣)|𝑢 ∈ 𝐶, 𝑣 ∈ [𝑉 ∖ 𝐶], (𝑢, 𝑣) ∈ 𝑅} ≠ ∅ so long as |𝐶| < |𝑉(𝐺̄)|. We can also know that |𝑉(𝑇)| = |𝑉(𝐺̄)|.
Therefore, in order to show (ii) is true, we need only to prove that 𝑇 has no cycle. Clearly, 𝑇0 has no cycle. Suppose
that 𝑇𝑘 has no cycle. Then, for 𝑣(𝑘 + 1) ≠ 𝑣(0), 𝑣(1),⋯ , 𝑣(𝑘), 𝑇(𝑘+1) also has no cycle. This implies that 𝑇 has no
cycle. Hence (ii) holds.

By the process of STA, we can easily know that for any edge [𝑢, 𝑣] of 𝑇, there exists only one road ((𝑢, 𝑣) or
(𝑣, 𝑢)), that is, 𝑇 is a directed graph. Moreover, we can easily know also that |𝛿−(𝑠)| = 0 and |𝛿−(𝑣)| = 1, ∀𝑣 ∈
[𝑉(𝑇) ∖ {𝑠}]. Here |𝛿−(𝑣)| is the in‑degree of 𝑣 in the directed graph 𝑇. Therefore 𝑇 is an arborescence rooted at 𝑠.
Hence (iii) holds.

Finally, it is obvious that the running time of STAdepends on the complexity of the step 2. However, the number
of total iterations of the step 2 do not exceed 𝑛 and the complexity of each run of the step 2 does not exceed 𝑂(𝑚).
Hence (iv) holds.

Remark 4. For the necessary basic concepts of graphs, such as spanning tree, arborescence, induced subgraph, the
degree of a vertex, the in‑degree of a vertex, so on, please see 2.1 and 2.2 of the monograph [1] or other related books.

Remark 5. For algorithm STA, by properly designing the method to find the road (𝑣, 𝑢) in step 2, the running time
can be greatly simplified. Please see the Graph Scanning Algorithm in 2.3 of the monograph [1]. However, the current
STA can more effectively implement its functionality in the present work, which helps to prove the following Theorem
2, so we propose it in the current pattern.

Theorem 2. For algorithm EDA, we have the following conclusions.

(i) The algorithm works well. (ii) The output 𝑇 is a spanning tree of graph 𝐺̄. (iii) 𝑇 is an arborescence rooted at 𝑠.
(iv) ∀𝑣 ∈ 𝑉(𝒫), the path from 𝑠 to 𝑣 on the tree 𝑇 is 𝑃𝑇[𝑣]. (v) ∀𝑣 ∈ 𝑉(𝒫), 𝑓(𝑃𝑇[𝑣]) = 𝑚𝑓(𝑣). (vi) The running
time is𝑀(𝑛)𝑂(𝑛2), provided Δ(𝐺) = 𝑂(𝑛) and 𝑓(𝑃) can be obtained in𝑀(𝑛) time of calculation for any 𝑃 ∈ 𝒫.

Here, 𝐺̄ = (𝑉(𝒫), 𝐸(𝒫), 𝑅(𝒫)), which is the subgraph of𝐺 induced by𝑉(𝒫); 𝑛 = |𝑉|; Δ(𝐺) = max{|𝛿(𝑣)||𝑣 ∈ 𝑉},
|𝛿(𝑣)| is the degree of vertex 𝑣, which is called as the maximum degree of graph 𝐺;𝑀(𝑛) is a constant related to 𝑛.

Proof. Note that 𝑉 and 𝑅 are all the finite sets. By observing the process of algorithm EDA, we can easily know that
(i) holds. Note that [𝑉∖𝐶] = ∅ ormin{𝑓(𝑃𝑇[𝑣])|𝑣 ∈ [𝑉∖𝐶]} = +∞ is equivalent to {(𝑢, 𝑣)|𝑢 ∈ 𝐶, 𝑣 ∈ [𝑉∖𝐶], (𝑢, 𝑣) ∈
𝑅(𝒫)} = ∅. By carefully examining the second step of EDA and the second step of STA, it can be easily known that
the second step of EDA is a specific implementation of the second step of STA. Hence (ii) and (iii) can be immediately
obtained from Lemma 2. Note 𝑃𝑇[𝑣] ∈ 𝒯. According to the relation between 𝑇 and 𝒯, 𝒯 is actually the complete
path system on [𝑇, 𝑠]. Hence (iv) holds. As Δ(𝐺) = 𝑂(𝑛) and 𝑓(𝑃) can be obtained in𝑀(𝑛) times of calculation for
any 𝑃 ∈ 𝒫, the running time of the step 2 of EDA is 𝑀(𝑛)𝑂(𝑛). Note that the total iterations of step 2 is no more
than 𝑛 time. We can further know the running time of EDA is𝑀(𝑛)𝑂(𝑛2). That is, (vi) holds. Next we focus to prove
(v).
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Note that the outputted vertices: 𝑣(𝑙), 𝑙 = 0, 1,⋯ , |𝑉(𝒫)|−1, actually are all the elements of𝑉(𝒫). The term (v)
can be interpreted as: 𝑓(𝑃𝑇[𝑣(𝑙)]) = 𝑚𝑓(𝑣(𝑙)), 𝑙 = 0, 1,⋯ , |𝑉(𝒫)|−1. We use mathematical induction to complete
the proof.

In the first place, it is obvious that (v) holds when 𝑙 = 0, namely 𝑓(𝑃𝑇[𝑣(0)]) = 𝑚𝑓(𝑣(0)). In fact, 𝑣(0) = 𝑠.
Hence 𝑃𝑇[𝑣(0)] = (𝑠, 𝑠) and 𝑓(𝑃𝑇[𝑣(0)]) = 𝑓((𝑠, 𝑠)) = 0 = 𝑚𝑓(𝑣(0)). Assume |𝒫| ≥ 2. Then, it is also obvious
that (v) is true when 𝑙 = 1, namely 𝑓(𝑃𝑇[𝑣(1)]) = 𝑚𝑓(𝑣(1)).

Suppose (v) is true for 0 ≤ 𝑙 ≤ 𝑘 < |𝑉(𝒫)| − 1 with 𝑘 ≥ 1. Then we can prove that it is also true for
0 ≤ 𝑙 ≤ (𝑘 + 1).

In fact, we only need to prove that (v) holds for (𝑘 + 1).
Assume that (v) does not holds for (𝑘 + 1), namely, 𝑚𝑓(𝑣(𝑘 + 1)) < 𝑓(𝑃𝑇[𝑣(𝑘 + 1)]). We can show that the

assumption is not true as follows.
Let 𝑣(𝑘 + 1) = 𝑣∗ and 𝑃𝑇[𝑣(𝑘 + 1)] = (𝑠,⋯ , 𝑣̃, 𝑣∗). Then 𝑚𝑓(𝑣∗) < 𝑓(𝑃𝑇[𝑣∗]), and from term (iv), we have

𝑃𝑇[𝑣̃] = (𝑠,⋯ , 𝑣̃).
In terms of the assumption and Corollary 1, there is a path

𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑖 , 𝑣∗) ∈ 𝒫𝑛𝑐(𝑣∗) (1)
such that 𝑓(𝑃) = 𝑚𝑓(𝑣∗) < 𝑓(𝑃𝑇[𝑣∗]) and (𝑣0, 𝑣1, ⋯ , 𝑣𝑖) ≠ 𝑃𝑇[𝑣̃]. For the vertex 𝑣𝑖 , there are only three situations:
(1) 𝑣𝑖 ∈ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}, and 𝑣𝑖 = 𝑣̃; (2) 𝑣𝑖 ∈ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}, but 𝑣𝑖 ≠ 𝑣̃; (3) 𝑣𝑖 ∉ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}.

In the situation (1), 𝑓(𝑃𝑇[𝑣𝑖]) = 𝑚𝑓(𝑣𝑖) for 𝑣𝑖 ∈ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}, and then 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖)) ≥ 𝑚𝑓(𝑣𝑖) =
𝑓(𝑃𝑇[𝑣𝑖]) = 𝑓(𝑃𝑇[𝑣̃]). Because 𝑓 is SOP, we have𝑚𝑓(𝑣∗) = 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖 , 𝑣∗)) = 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖) + (𝑣𝑖 , 𝑣∗)) ≥
𝑓(𝑃𝑇[𝑣̃] + (𝑣𝑖 , 𝑣∗)) = 𝑓(𝑃𝑇[𝑣∗]). This is in contradiction with𝑚𝑓(𝑣∗) < 𝑓(𝑃𝑇[𝑣∗]).

In the situation (2), 𝑓(𝑃𝑇[𝑣𝑖]) = 𝑚𝑓(𝑣𝑖) ≤ 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖)). Because 𝑓 is SOP,

𝑓(𝑃𝑇[𝑣𝑖] + (𝑣𝑖 , 𝑣∗))
≤ 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖) + (𝑣𝑖 , 𝑣∗)) = 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖 , 𝑣∗)) < 𝑓(𝑃𝑇[𝑣∗]).

(2)

For 𝑣𝑖 ≠ 𝑣̃, we have

𝑃𝑇[𝑣𝑖] + (𝑣𝑖 , 𝑣∗) ≠ 𝑃𝑇[𝑣̃] + (𝑣𝑖 , 𝑣∗) = (𝑠,⋯ , 𝑣̃, 𝑣∗). (3)
Since𝑣𝑖 ∈ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘} and𝑣∗ ∉ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}, on the basis of the process of EDA, fromEquations

(2) and (3), we have 𝑃𝑇[𝑣(𝑘 + 1)] ≠ (𝑠,⋯ , 𝑣̃, 𝑣∗). This is in contradiction with 𝑃𝑇[𝑣(𝑘 + 1)] = (𝑠,⋯ , 𝑣̃, 𝑣∗).
In the situation (3), for 𝑣0 = 𝑠, we can find a vertex

𝑣𝑖′ ∈ [{𝑣0, 𝑣1, ⋯ , 𝑣𝑖−1} ∩ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}]
such that 𝑣𝑖′+1, 𝑣𝑖′+2, ⋯ , 𝑣𝑖 ∉ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}. Following the approach of situation (2), we can obtain

𝑓(𝑃𝑇[𝑣𝑖′] + (𝑣𝑖′ , 𝑣𝑖′+1))
≤ 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑖′) + (𝑣𝑖′ , 𝑣𝑖′+1)) = 𝑓(𝑣0, 𝑣1, ⋯ , 𝑣𝑖′ , 𝑣𝑖′+1).

(4)

On the other hand, for 𝑓 is non‑decreasing, we have

𝑓(𝑣0, 𝑣1, ⋯ , 𝑣𝑖′ , 𝑣𝑖′+1) ≤ 𝑓(𝑃) < 𝑓(𝑃𝑇[𝑣∗]). (5)
From Equations (4) and (5), we can obtain 𝑓(𝑃𝑇[𝑣𝑖′] + (𝑣𝑖′ , 𝑣𝑖′+1)) < 𝑓(𝑃𝑇[𝑣∗]). By Equation (1), 𝑣𝑖′+1 ≠ 𝑣∗.

Noting 𝑣𝑖′ ∈ {𝑣(𝑙)|𝑙 = 0, 1,⋯ , 𝑘}, on the basis of the process of EDA, we can derive 𝑣(𝑘 + 1) ≠ 𝑣∗. This is in
contradiction with 𝑣(𝑘 + 1) = 𝑣∗.

Combinedwith the above results of the three situations,weknowthat the assumption𝑚𝑓(𝑣(𝑘+1)) < 𝑓(𝑃𝑇[𝑣(𝑘+
1)]) is incorrect. That is,𝑓(𝑃𝑇[𝑣(𝑘+1)]) = 𝑚𝑓(𝑣(𝑘+1)). Finally, by the inductionprinciple, 𝑓(𝑃𝑇[𝑣(𝑙)]) = 𝑚𝑓(𝑣(𝑙))
for 𝑙 = 0, 1,⋯ , |𝑉(𝒫)| − 1. Hence (v) holds.

Theorem 3. For algorithm EMBFA, we have the following conclusions.
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(i) The algorithm EMBFAworks well. (ii) The output 𝑇 is a spanning tree of graph 𝐺̄. (iii) 𝑇 is an arborescence rooted
at 𝑠. (iv) ∀𝑣 ∈ 𝑉(𝒫), the path from 𝑠 to 𝑣 on the tree 𝑇 is 𝑃𝑇[𝑣], and 𝑓(𝑃𝑇[𝑣]) = 𝑚𝑓(𝑣). (v) The running time is
𝑀(𝑛)𝑂(𝑛𝑚), provided 𝑓(𝑃) can be obtained in the𝑀(𝑛) time of calculation for any 𝑃 ∈ 𝒫.

Here, 𝐺̄ = (𝑉(𝒫), 𝐸(𝒫), 𝑅(𝒫)), which is the subgraph of𝐺 induced by𝑉(𝒫); 𝑛 = |𝑉|,𝑚 = |𝐸|;𝑀(𝑛) is a constant
related to 𝑛.

Proof. Note that 𝑉 and 𝑅 are all the finite sets. We can easily know (i) holds. Note that 𝑓(𝑃) can be obtained in
the𝑀(𝑛) time of calculation. Following the approach to analyse the running time of algorithmMBFA, we can easily
know that (v) holds by the process of algorithm EMBFA. Next we focus to prove (ii), (iii) and (iv).

For they evidently hold when |𝑉(𝒫)| ≤ 2, we prove them under the condition |𝑉(𝒫)| > 2.
Above all, we claim:

(a) ∀𝑣 ∈ 𝑉(𝒫), 𝑓(𝑃𝑇[𝑣]) = 𝑚𝑓(𝑣); further, once 𝑓(𝑃𝑇[𝑣]) attains𝑚𝑓(𝑣), 𝑃𝑇[𝑣]will remain unchanged in the after
process; and 𝑃𝑇[𝑣] is unique.

(b) ∀𝑣 ∈ 𝑉(𝒫), let 𝑃𝑇[𝑣] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣), 0 ≤ 𝑘, then

𝑃𝑇[𝑣𝑖] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑖), 𝑖 = 0, 1, 2,⋯ , 𝑘;
further, 𝑃𝑇[𝑣] ∈ 𝒫𝑛𝑐(𝑣); and 𝑘 ≤ |𝑉(𝒫)| − 2.

(c) 𝑇 has no cycle; further, 𝑇 is directed graph; and

|𝛿−(𝑠)| = 0, ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], |𝛿−(𝑣)| = 1.

Prove (a). When 𝑣 = 𝑠, (a) clearly holds. For 𝒫 is the complete path system on [𝐺, 𝑠], ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], from
Corollary 2, there is a path𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣) ∈ 𝒫𝑛𝑐(𝑣), 0 ≤ 𝑘 ≤ 𝑛−2, such that𝑓(𝑃) = 𝑚𝑓(𝑣). From the process
of EMBFA, this implies that 𝑃𝑇[𝑣]must become a path and 𝑓(𝑃𝑇[𝑣])must attain𝑚𝑓(𝑣)within (𝑘 + 2) iterations of
step 2. Since also 𝑓(𝑃𝑇[𝑣]) never increases in the process of EMBFA, 𝑓(𝑃𝑇[𝑣]) = 𝑚𝑓(𝑣) in the end. Thus, the first
statement is true. The correctness of the latter two statements is obvious. Hence (a) holds.

Prove (b). ∀𝑣 ∈ 𝑉(𝒫), let 𝑃𝑇[𝑣] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘 , 𝑣). Assume that 𝑃𝑇[𝑣𝑖] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣𝑙+1, ⋯ , 𝑣𝑖), 𝑙 < 𝑖 ≤ 𝑘
and 𝑃𝑇[𝑣𝑙] = (𝑣0, 𝑣′1, ⋯ , 𝑣′𝑙′ , 𝑣𝑙) ≠ (𝑣0, 𝑣1, ⋯ , 𝑣𝑙). Then it is implemented first that 𝑃𝑇[𝑣𝑙] = (𝑣0, 𝑣′1, ⋯ , 𝑣′𝑙′ , 𝑣𝑙)
and 𝑓(𝑃𝑇[𝑣𝑙]) = 𝑚𝑓(𝑣𝑙). By Corollary 2, 𝑓 is ISP, so 𝑓((𝑣0, 𝑣1, ⋯ , 𝑣𝑙)) = 𝑚𝑓(𝑣𝑙) = 𝑓(𝑃𝑇[𝑣𝑙]). This implies that
(𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣𝑙+1, ⋯ , 𝑣𝑘 , 𝑣) can no longer be the path of 𝑇 (element of 𝒯) at any stage of EMBFA, which leads to
contradictions. Thus the first statement is true. ∀𝑣 ∈ 𝑉(𝒫), assume that 𝑃𝑇[𝑣] has a cycle. Then we have the
following representation,

𝑃𝑇[𝑣] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣̄, 𝑣′1, ⋯ , 𝑣′𝑙′ , 𝑣̄, ⋯ , 𝑣), 1 ≤ 𝑙′.
In terms of the first statement, we have 𝑃𝑇[𝑣̄] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣̄) and 𝑃𝑇[𝑣̄] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣̄, 𝑣′1, ⋯ , 𝑣′𝑙′ , 𝑣̄),

which means 𝑃𝑇[𝑣] is not unique, and contradicts the claim (a). So, 𝑃𝑇[𝑣] has no cycle, and the third statement is
also true. Hence (b) holds.

Prove (c). According to the relation between 𝑇 and𝒯, one of the following facts (1) and (2) holds if 𝑇 has cycles.
(1) There is a path of 𝒯 such that it has cycles. (2) There are two paths 𝑃𝑇[𝑣], 𝑃𝑇[𝑣′] ∈ 𝒯 such that

𝑃𝑇[𝑣] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣(𝑙+1), ⋯ , 𝑣(𝑙+𝑘), ⋯ , 𝑣), 2 ≤ 𝑘;

𝑃𝑇[𝑣′] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣′1, ⋯ , 𝑣′𝑘′ , ⋯ , 𝑣′), 1 ≤ 𝑘′;

𝑣(𝑙+𝑘) = 𝑣′𝑘′ = 𝑣̄, {𝑣′1, ⋯ , 𝑣′𝑘′−1} ∩ {𝑣(𝑙+1), ⋯ , 𝑣(𝑙+𝑘−1)} = ∅.
That is, the two paths intersect again after their separating. The fact (1) contradicts the second statement of

claim (b). By the first statement of claim (b), the fact (2) results in 𝑃𝑇[𝑣̄] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣(𝑙+1), ⋯ , 𝑣(𝑙+𝑘)) and
𝑃𝑇[𝑣̄] = (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣′1, ⋯ , 𝑣′𝑘′), which means that 𝑃𝑇[𝑣̄] is not unique for

(𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣(𝑙+1), ⋯ , 𝑣(𝑙+𝑘)) ≠ (𝑣0, 𝑣1, ⋯ , 𝑣𝑙 , 𝑣′1, ⋯ , 𝑣′𝑘′),
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and contradicts the claim (a). Thus 𝑇 has no cycle. Assume 𝑇 is not directed graph. Then there must be 𝑢, 𝑣 ∈ 𝑉(𝑇)
such that (𝑢, 𝑣), (𝑣, 𝑢) ∈ 𝑅(𝑇). From the approach that graph 𝑇 is created by path system 𝒯, there must be 𝑢′, 𝑣′ ∈
𝑉(𝒯) such that (𝑢, 𝑣) ∈ 𝑃𝑇[𝑢′], (𝑣, 𝑢) ∈ 𝑃𝑇[𝑣′], namely, 𝑃𝑇[𝑢′] = (𝑠,⋯ , 𝑢, 𝑣,⋯ , 𝑢′), 𝑃𝑇[𝑣′] = (𝑠,⋯ , 𝑣, 𝑢,⋯ , 𝑣′). In
terms of 𝑃𝑇[𝑢′] = (𝑠,⋯ , 𝑢, 𝑣,⋯ , 𝑢′) and (b), 𝑃𝑇[𝑢] = (𝑠,⋯ , 𝑢) and 𝑣 ∉ 𝑉(𝑃𝑇[𝑢]) for 𝑃𝑇[𝑢′] has no cycle. In terms
of 𝑃𝑇[𝑣′] = (𝑠,⋯ , 𝑣, 𝑢,⋯ , 𝑣′) and (b), 𝑃𝑇[𝑢] = (𝑠,⋯ , 𝑣, 𝑢) and 𝑣 ∈ 𝑉(𝑃𝑇[𝑢]). For 𝑣 ∉ 𝑉(𝑃𝑇[𝑢]) contradicts 𝑣 ∈
𝑉(𝑃𝑇[𝑢]), the assumption is not true. That is, 𝑇 is directed graph. For, in the beginning, 𝑃𝑇[𝑠] = (𝑠, 𝑠), 𝑓(𝑃𝑇[𝑠]) =
𝑚𝑓(𝑠), which remains unchanged in the after process, it is obvious that |𝛿−(𝑠)| = 0. ∀𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}], we have
clearly |𝛿−(𝑣)| ≥ 1. On the other hand, for all the paths of 𝑇 have the same source point 𝑠 and 𝑇 has no cycle, we
have |𝛿−(𝑣)| ≤ 1. So, |𝛿−(𝑣)| = 1. To sum up, (c) holds.

Finally, we show that (ii), (iii) and (iv) hold basing on the above claims.
In terms of (a), 𝑉(𝒫) ⊆ 𝑉(𝒯). On the other hand, 𝑉(𝒯) ⊆ 𝑉(𝒫) is obvious. So, 𝑉(𝒫) = 𝑉(𝒯). Also, in terms of

(a), 𝑇 is connected. And, in terms of (c), 𝑇 has no cycles. Hence, (ii) holds.
In terms of (ii) and (c), (iii) holds.
Note that the path system 𝒯 is the complete path system on [𝑇, 𝑠]. In terms of (iii) and (a), we can easily know

that (iv) holds.

6. Applications
This section shows the application of algorithm EDA and algorithm EMBFA by providing few instances.

Example 1. Given a connected networkwith nonnegativeweight (𝐺, 𝑤) and source point 𝑠 ∈ 𝑉. Let𝒫 be the complete

path system on [𝐺, 𝑠]. Define 𝑑(𝑃) =
𝑘
∑
𝑖=1

𝑤((𝑣𝑖−1, 𝑣𝑖)), ∀𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫, 𝑣0 = 𝑠, which is called the

total weight path function of networks. It is obvious that 𝑑 is a path functional on 𝒫. The problem of finding a path
𝑃∗ ∈ 𝒫(𝑣) such that 𝑑(𝑃∗) = 𝑚𝑑(𝑣), ∀𝑣 ∈ [𝑉 ∖ {𝑠}], is called as the classical single‑source shortest path problem
with nonnegative weight (CSSSP‑NW). See section 7.1 of the monograph [1]. Note that 𝑤 is nonnegative. Then 𝑑 is
nondecreasing and OP. So, by Theorems 2 and 3, the problem CSSSP‑NW can be effectively solved by the algorithm EDA
and algorithm EMBFA, respectively.

Remark 6. From Example 1, we can know the following facts clearly. (i) EDA and EMBFA respectively reduces to DA
and MBFA in the situation of the example. (ii) Let 𝑃, 𝑃′ ∈ 𝒫 and 𝑆(𝑃) = 𝑃 + (𝑢, 𝑣), 𝑆(𝑃′) = 𝑃′ + (𝑢, 𝑣) ∈ 𝒫. Then
𝑑(𝑆(𝑃)) − 𝑑(𝑃) = 𝑑(𝑆(𝑃′)) − 𝑑(𝑃′) = 𝑤((𝑢, 𝑣)) for the function 𝑑. However, 𝑓(𝑆(𝑃)) − 𝑓(𝑃) = 𝑓(𝑆(𝑃′)) − 𝑓(𝑃′)
may not hold for a general path function 𝑓. That is, we may not find an edge weight of graph 𝐺 such that 𝑓(𝑃) =
𝑘
∑
𝑖=1

𝑤((𝑣𝑖−1, 𝑣𝑖)), ∀𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫 for a general path functional 𝑓. The two facts (i) and (ii) fully

illustrate that EDA and EMBFA respectively extended DA and MBFA.

Example 2. For Example 1, change the nonnegative weight 𝑤 as a conservative weight, e.g., see Definition 7.1 of the
monograph [1]. Then the problem to find a path 𝑃∗ ∈ 𝒫(𝑣) such that 𝑑(𝑃∗) = 𝑚𝑑(𝑣), ∀𝑣 ∈ [𝑉 ∖ {𝑠}], is called as the
classical single‑source shortest path problem with conservative weight (CSSSP‑CW). Clearly, 𝑑 is conservative and OP.
So, by Theorem 3, the problem CSSSP‑CW can be effectively solved by Algorithm EMBFA.

Example 3. For Example 1, define also 𝑑(𝑢, 𝑣) = min{𝑑(𝑃)|𝑠(𝑃) = 𝑢, 𝑡(𝑃) = 𝑣, 𝑃 ∈ 𝒫𝑛𝑐}, ∀𝑢, 𝑣 ∈ 𝑉, which is called
as the distance from 𝑢 to 𝑣 on graph 𝐺. For given (𝑢′, 𝑣′) ∈ 𝑅(𝒫𝑛𝑐), define 𝑑𝐺\(𝑢′ ,𝑣′)(𝑢, 𝑣) as the distance from 𝑢 to 𝑣
on graph (𝑉, [𝑅 ∖ {(𝑢′, 𝑣′)}]), ∀𝑢, 𝑣 ∈ 𝑉, which is called as the detour distance from 𝑢 to 𝑣 on the case that the road
(𝑢′, 𝑣′) is blocked. Here 𝐺\(𝑢′, 𝑣′) denotes the graph (𝑉, [𝑅 ∖ {(𝑢′, 𝑣′)}]). In addition, ∀(𝑢′, 𝑣′) ∈ 𝑅(𝒫𝑛𝑐), assume that
𝐺\(𝑢′, 𝑣′) is connected, namely 𝑑𝐺\(𝑢′ ,𝑣′)(𝑢, 𝑣) < +∞ for each (𝑢, 𝑣) ∈ [𝑅 ∖ {(𝑢′, 𝑣′)}].

Define

𝑟(𝑃) = 0, 𝑃 = (𝑠, 𝑠);
𝑟(𝑃) = max{𝑑(𝑃), 𝑑𝐺\(𝑣𝑖−1 ,𝑣𝑖)(𝑠, 𝑣𝑖) + 𝑑(𝑃𝑖), 𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑠, 𝑣𝑘)|

𝑃𝑖 = (𝑣𝑖 , ⋯ , 𝑣𝑘−1, 𝑣𝑘), 1 ≤ 𝑖 ≤ 𝑘 − 1},
∀𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫𝑛𝑐 , 𝑘 ≥ 1;

𝑟(𝑃) = max{𝑑(𝑃)|𝑃 ∈ 𝒫𝑛𝑐} + 1, ∀𝑃 ∈ [𝒫 ∖ 𝒫𝑛𝑐].
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We call 𝑟(𝑃) as the risk of 𝑃. It is obvious that 𝑟 is a path functional on 𝒫. The problem to find a path 𝑃 ∈ 𝒫(𝑣)
such that 𝑟(𝑃) = 𝑚𝑟(𝑣) for any 𝑣 ∈ [𝑉(𝒫) ∖ {𝑠}] is called the anti‑risk path (ARP) problem, the purpose of which is to
find a path such that it has minimum risk [10].

Let 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫𝑛𝑐 and 𝑆(𝑃) = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘 , 𝑣𝑘+1) = 𝑃 + (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝒫𝑛𝑐 , 𝑘 ≥ 1. Then
we have

𝑟(𝑆(𝑃))
= max{𝑑(𝑆(𝑃)), 𝑑𝐺\(𝑣𝑖−1 ,𝑣𝑖)(𝑠, 𝑣𝑖) + 𝑑(𝑃𝑖), 𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1)|

𝑃𝑖 = (𝑣𝑖 , ⋯ , 𝑣𝑘 , 𝑣𝑘+1), 1 ≤ 𝑖 ≤ 𝑘}
= max{𝑑(𝑃) + 𝑤((𝑣𝑘 , 𝑣𝑘+1)), 𝑑𝐺\(𝑣𝑖−1 ,𝑣𝑖)(𝑠, 𝑣𝑖) + 𝑑(𝑃𝑖)

+𝑤((𝑣𝑘 , 𝑣𝑘+1)), 𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑠, 𝑣𝑘) + 𝑤((𝑣𝑘 , 𝑣𝑘+1)),
𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1)|𝑃𝑖 = (𝑣𝑖 , ⋯ , 𝑣𝑘−1, 𝑣𝑘), 1 ≤ 𝑖 ≤ 𝑘 − 1}

= max{𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1), 𝑤((𝑣𝑘 , 𝑣𝑘+1)) +max{𝑑(𝑃),
𝑑(𝑃𝑖) + 𝑑𝐺\(𝑣𝑖−1 ,𝑣𝑖)(𝑠, 𝑣𝑖), 𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑠, 𝑣𝑘)
|𝑃𝑖 = (𝑣𝑖 , ⋯ , 𝑣𝑘−1, 𝑣𝑘), 1 ≤ 𝑖 ≤ 𝑘 − 1}}

= max{𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1), 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑟(𝑃)} ≥ 𝑟(𝑃).

(1)

This shows 𝑟 is nondecreasing on 𝒫𝑛𝑐 .
Let also 𝑃′ ∈ 𝒫𝑛𝑐(𝑣𝑘), 𝑆(𝑃′) = 𝑃′ + (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝒫𝑛𝑐(𝑣𝑘+1). Assume 𝑟(𝑃) ≥ 𝑟(𝑃′). Then, from Equation (6), we

have

𝑟(𝑆(𝑃)) = max{𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1), 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑟(𝑃)}
≥ max{𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑠, 𝑣𝑘+1), 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑟(𝑃′)} = 𝑟(𝑆(𝑃′)).

This shows 𝑟 is SOP on 𝒫𝑛𝑐 .
Further, basing on the above two conclusions, 𝑟 is nondecreasing and SOPon𝒫. So, by Theorem2, theARPproblem

can be effectively solved by algorithm EDA.

Remark 7. (i) Xiao et al. [10] introduce the definition of the risk of a path, and the anti‑risk path (ARP) problem, to
finding a path such that it has minimum risk. Suppose that at most one edge may be blocked, they also show that the
ARP problem can be solved in 𝑂(𝑚𝑛 + 𝑛2𝑙𝑜𝑔𝑛) time. Mahadeokar and Saxena [11] propose a faster algorithm to solve
the ARP problem, by which the ARP problem can be solved in 𝑂(𝑛2) time. (ii) In example 3, for some technical reason,
the risk is defined in a slightly different manner from that of Xiao et al. [10]. Due to the cause of symmetry, in order to
conveniently understand the Example 3 and the next Example 4, the path 𝑃 = (𝑠, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘 , 𝑣) can be interpreted
as the path from 𝑣 to 𝑠. The ARP problem of Example 3, which is essentially similar to that of Xiao et al. [10], can be
effectively solved by algorithm EDA. (iii) For 𝑟 is not proved to be OR, the ARP problem of example 3 may not necessarily
be solved by EMBFA. However, due that 𝑟 is SOP, it can be solved by EDA. This fact fully demonstrates the advantages of
SOP and EDA.

Example 4. For Example 1, assume

𝑑𝐺\(𝑢′ ,𝑣′)(𝑢, 𝑣) < +∞, ∀(𝑢′, 𝑣′) ∈ 𝑅(𝒫𝑛𝑐), ∀𝑢, 𝑣 ∈ 𝑉,
where 𝑑𝐺\(𝑢′ ,𝑣′)(𝑢, 𝑣) is the detour distance in Example 3; assume also 𝑝 ∈ (0, 1).

Define first 𝑐((𝑠, 𝑠)) = 0. Then,∀𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘) ∈ 𝒫𝑛𝑐 , 𝑘 ≥ 1, provided that 𝑐(𝐹(𝑃))has been defined, define
𝑐(𝑃) = 𝑝𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑣0, 𝑣𝑘) + 𝑤((𝑣𝑘−1, 𝑣𝑘)) + 𝑐(𝐹(𝑃)); ∀𝑃 ∈ [𝒫 ∖ 𝒫𝑛𝑐], define 𝑐(𝑃) = max{𝑑(𝑃)|𝑃 ∈ 𝒫𝑛𝑐} + 1.
Then 𝑐 is a path functional on 𝒫.

Let 𝑃 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣𝑘) ∈ 𝒫𝑛𝑐 , and 𝑆(𝑃) = (𝑣0, ⋯ , 𝑣𝑘 , 𝑣𝑘+1) = 𝑃 + (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝒫𝑛𝑐 . Then we have

𝑐(𝑆(𝑃)) = 𝑝𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑣𝑘 , 𝑣𝑘+1) + 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑐(𝑃)
≥ 𝑐(𝑃).

This shows 𝑐 is nondecreasing on 𝒫𝑛𝑐 .
Let also 𝑃′ ∈ 𝒫𝑛𝑐(𝑣𝑘), 𝑆(𝑃′) = 𝑃′ + (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝒫𝑛𝑐(𝑣𝑘+1). Assume 𝑐(𝑃) ≥ 𝑐(𝑃′). Then, we have
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𝑐(𝑆(𝑃)) = 𝑝𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑣𝑘 , 𝑣𝑘+1) + 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑐(𝑃)
≥ 𝑝𝑑𝐺\(𝑣𝑘 ,𝑣𝑘+1)(𝑣𝑘 , 𝑣𝑘+1) + 𝑤((𝑣𝑘 , 𝑣𝑘+1)) + 𝑐(𝑃′)
= 𝑐(𝑆(𝑃′)).

This shows 𝑐 is SOP on 𝒫𝑛𝑐 .
Further, we can easily show that 𝑐 is nondecreasing and SOP. So, by Theorem 2, the problem GSSSP with path

functional 𝑐 can be effectively solved by algorithm EDA.

Remark 8. (i) The path functional 𝑐 can be interpret as follows. Suppose that at most one edge may be blocked. ∀𝑃 ∈
𝒫𝑛𝑐 , 𝑐(𝑃) = 𝑝𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑣𝑘−1, 𝑣𝑘) + 𝑤((𝑣𝑘−1, 𝑣𝑘)) + 𝑐(𝐹(𝑃)) denotes the cost that one goes to the point 𝑠 from
the point 𝑣𝑘 by train (or ship, or plane), among which, the term 𝑤((𝑣𝑘−1, 𝑣𝑘)) + 𝑐(𝐹(𝑃)) is the normal cost, while
the term 𝑝𝑑𝐺\(𝑣𝑘−1 ,𝑣𝑘)(𝑣𝑘−1, 𝑣𝑘) is the additional cost, which is paid out due that one needs to change route when the
road (𝑣𝑘−1, 𝑣𝑘) is blocked. To some extent, 𝑝 is the probability that the road (𝑣𝑘−1, 𝑣𝑘)may be blocked. (ii) It is shown
by Examples 3 and 4 that path functionals is very useful in practice. Especially, because the path functional is rich in
content, it may find applications in various fields in the future, for example, in Alzheimer’s Disease, see Razavi et al. [32];
in resource allocation, see Saghezchi et al. [33]; in uncertain environments; in dynamic networks; so on.

Remark 9. The Examples 3 and 4 fully demonstrate potential applications of either EDA or EMBFA. With the devel‑
opment of science and technology, new networks continue to appear, such as the internet networks, social networks,
biological networks, so the problems that need EDA and EMBFA to solve will be more and more. That is, the two al‑
gorithms have broad application prospects. On the other hand, the two algorithms have significant limitations. For
example, EDA requires the path functional to satisfy non‑decreasing and SOP. It is a promising direction to develope
algorithms with weaker requirements for solving GSSSP.

Remark 10. Finally, we hope the following points will draw the attention of scholars. (i) The present work expands
and deepens our understanding of the network and spatial structure, which may be valuable to recent studies, such as
the research of Alzheimer’s Disease [32], and the research of resource allocation [33]. (ii) The present work promotes
and enhances the level of digitization with the relevant content, which may be valuable to the future development of
artificial intelligences. (iii) The ideas that are mined from the process of the present work could improve and advance
the development of artificial intelligence for the Human Mind is the foundation of artificial intelligence.

7. Concluding Remarks
Due to the quick and extensive development in the research field of graph theories, and due to the quick and

extensive development in the research fields of networks and functionals, especiallywith the emergence of the Anti‑
risk Path Problem and the related research, the need to extend the total weight path function of networks and the
shortest path problems is gradually increasing. Motivated by this trend, in the present article, we havemainly done
the following three aspects of work.
(1) We proposed the definition of the path functional and several definitions regarding the characteristics of the

defined path functional, especially the characteristic in orders, such as increasing, order‑preserving, so on;
see Definitions 1–3. Further, based on the proposed definitions, we made some related discussions on the
properties of the path functional, see Propositions 1–6.

(2) We introduced a kind of general single‑source shortest path problem (GSSSP) and designed two algorithms
EDA and EMBFA to solve it under certain conditions. Further, based on the discussions on the properties of the
path functional, we studied respectively the attributes of EDA and EMBFA; see Theorems 2 and 3.

(3) We further explained the significance of the defined path functional and the twodesigned algorithmsby several
examples.
What we have done not only extends the Dijkstra algorithm and the Moore‑Bellman‑Ford algorithm, but also

more profoundly reveals their mechanism, which will greatly promote our understanding and applying of the two
algorithms. The discussions on the properties of the path functional, not only support our designing and studying
the two extended algorithms, but also more profoundly reveals that the contents of path functionals, in particular
the content about the order, are quite rich, depth and interest, which further shows that there are many other
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research problems about path functionals. Whatwe have done can also promote the development of the researches
and the applications of other combinatorial optimization problems, promote the development of the algorithm
theory and promote the development of the functional analysis.

In addition, what we have done can effectively promote the development of intelligent technology for algo‑
rithms are the important foundation of technologies of AI, big Data, machine Learning, etc.

It is an interesting topic for further research in the future to explore other efficient algorithms and the applica‑
tions of the problem GSSSP. Moreover, to study other questions about path functionals is also an interesting topic
for further research in the future. Finally, cordially hope that the present work can improve the development of the
researches and applications of shortest path problems as well as other problems of combinatorial optimization.
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