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Abstract: Wireless Sensor Networks (WSNs) are characterized by severe energy constraints, dynamic topology,
and limited computational resources, making routing design a critical challenge. Traditional single‑path and static
routing protocols often lead to uneven energy consumption and premature node failures, thereby reducing network
lifetime. To address these limitations, this paper proposes an energy‑aware multipath routing protocol that inte‑
grates AntNet with a lightweight Multilayer Perceptron (MLP) model. Unlike existing artificial neural network‑ant
colony optimization (ANN‑ACO) or deep learning based routing approaches, the proposedmethod does not embed
complex learningmechanisms into the routing core. Instead, theMLPmodel is used as an auxiliarydecision‑support
component to assist AntNet in selecting energy‑efficient and reliable paths while preserving low computational
overhead. The routing decision process considers residual energy, end‑to‑end delay, packet delivery ratio, and
routing overhead, enabling a balanced trade‑off between energy efficiency and communication performance. The
proposed protocol is evaluated using the NS2.35 simulator under different network densities and traffic conditions.
Simulation results demonstrate that the proposed approach reduces energy consumption by up to 32%and routing
overhead by 28%, while improving packet delivery ratio by 40% and network lifetime by 22% compared to conven‑
tional Ad hoc On‑Demand Distance Vector (AODV) and AntNet‑based routing protocols. These results confirm that
combining AntNet with a lightweight MLP yields an effective and scalable solution for energy‑efficient multipath
routing in WSNs, without the complexity of deep learning‑based schemes.
Keywords: Wireless Sensor Networks; Energy Consumption; Multilayer Perceptron; Ant Colony Optimization; In‑
telligent Multi‑Path Routing Protocol

1. Introduction
Wireless Sensor Networks (WSNs) have become a fundamental component of many modern applications, like

environmental monitoring, industrial automation, and smart infrastructure [1,2]. Despite their wide applicability,
WSNs are inherently constrained by limited battery capacity, restricted computational resources, and dynamicwire‑
less conditions. As a result, routing protocols must be carefully designed to minimize energy consumption while
maintaining reliable data delivery and network stability.

Traditional routing protocols such as the Ad hoc On‑Demand Distance Vector (AODV) protocol were originally
developed for mobile ad hoc networks and do not explicitly consider the energy constraints of sensor nodes. Con‑
sequently, their direct application in WSN environments often leads to premature node depletion, frequent route
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failures, and reduced network lifetime. To overcome these limitations, numerous energy‑aware and adaptive rout‑
ing strategies have been proposed [3].

Swarm intelligence‑based routing, particularly Ant Colony Optimization (ACO), has garnered significant atten‑
tion due to its distributed nature and ability to discover dynamicallymultiple paths [4]. Ant‑based routing protocols
can effectively balance traffic and adapt to topology changes [5]; however, they often suffer from slow convergence
and increased control overheadwhen deployed in dense or large‑scaleWSNs. Tomitigate these issues, several stud‑
ies have incorporated heuristic metrics such as residual energy, hop count, and link quality into the pheromone
update process.

In parallel, machine learning techniques have been increasingly explored for intelligent routing in WSNs. Arti‑
ficial Neural Networks (ANNs), reinforcement learning, and deep learning models have been employed to predict
link quality, node failures, or optimal next‑hop selection. While these approaches demonstrate improved adaptabil‑
ity and prediction accuracy, many of them rely on complexmodels and extensive training processes, whichmay not
be well‑suited for resource‑constrained sensor nodes.

More recently, hybrid routing schemes combining swarm intelligence and machine learning have been pro‑
posed to leverage the strengths of both paradigms. Existing ANN‑ACO and deep‑learning‑assisted routing protocols
generally focus on improving routing decisions by embedding learningmechanisms into the path‑discovery process.
However, many of these solutions introduce significant computational and communication overhead, limiting their
practical applicability in large‑scale or energy‑constrained WSNs.

Motivated by these limitations, this work designs an energy‑aware multipath routing protocol that improves
routing efficiency and network lifetime while maintaining low computational and communication overhead.

This paper proposes a hybrid routing protocol that combines AntNet with a lightweight MLP model in a com‑
plementary manner rather than embedding learning into the routing core. Unlike existing hybrid approaches that
employ complex neural architectures, the proposed method uses a simple MLP structure to predict path quality
based on a limited set of features, namely residual energy and link reliability. In the proposed approach, AntNet is
responsible for multipath exploration and pheromone‑based route reinforcement, while the MLP model acts as an
auxiliary decision‑support component to evaluate candidate paths based on residual energy and performance met‑
rics. This separation allows the protocol to benefit from learning‑assisted decision making without compromising
scalability or increasing routing complexity.

The proposed protocol is evaluated through extensive simulations using the NS2 network simulator. Perfor‑
mance is assessed in terms of energy consumption, end‑to‑end delay, routing overhead, and network lifetime, and
compared against the conventional AODV protocol. The results demonstrate that the proposed hybrid routing strat‑
egy achieves notable performance improvements while maintaining a lightweight design suitable forWSN environ‑
ments.

The main contributions of this work can be summarized as follows:
• A lightweight hybrid routing protocol that combines AntNet‑based multipath exploration with MLP‑assisted

route selection.
• An energy‑aware path prediction mechanism that improves routing efficiency without relying on complex

learning models.
• A comprehensive simulation‑based evaluation demonstrating improvements in energy consumption, delay,

routing overhead, and network lifetime.
The remainder of this paper is organized as follows. Section 2 reviews related work on energy‑aware and

intelligent routing inWSNs. Sections 3 and 4 describe the proposed routing protocol and its underlying algorithms.
Section 5 presents the simulation setup and performance evaluation. Finally, Section 6 concludes the paper and
outlines directions for future research.

2. RelatedWorks
2.1. Literature

Routing in Wireless Sensor Networks (WSNs) has been extensively studied due to the stringent energy con‑
straints that affect network longevity and reliability. Classical routing protocols such as AODV and DSR laid the foun‑
dation for dynamic routing but lack mechanisms to cope with energy depletion and congestion in large‑scale WSNs.
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To address these limitations, several energy‑aware and intelligent routing approaches have been proposed in recent
years. Among them, bio‑inspired and learning‑based routing approaches have beenwidely investigated [6,7] and give
remarkable results in WSNs.

Ant Colony Optimization (ACO)‑based routing has attracted attention for its distributed nature and adaptabil‑
ity. Early ACO routing algorithms improved path discovery. In the research by Baran and Sosa [8], the authors
develop the AntNet algorithm, which implements ACO to find the optimal path for WSNs. It is based on traveling
ants called forward ants (FANT) that collect features of running networks, and backward ants (BANT) that analyze
the database and update the routing parameters. However, the nature of WSNs leads to low convergence of such
routing protocols. In addition, ARA (Ant Routing Algorithm) [9] is a multi‑hop routing protocol composed of three
steps. Firstly, route discovery where forward and backward ants cooperate to establish the path from the source
node to the destination node and vice versa. Secondly, routingmaintenance is where the transmission of data pack‑
ets is relayed. Finally, a routing failure is generated by the mobility of nodes in the network. AntHocNet [10] is
another version of the ACO algorithms that is implemented for wireless networks. Multiple routing protocols were
presented to address energy issues in theWSNs. The algorithm uses balanced loading to limit energy consumption
during the routing process and dynamically selects the path that efficiently increases network lifetime. In addition,
the optimization of load balance with ACO improves the performance of the AODV [11] routing protocol. However,
they suffered from excessive control overhead and slow convergence under dense deployments [12,13]. Newmech‑
anisms were proposed for maximizing the network lifetime andminimizing the usage of the power [14–19], which
constitutes the main issue in WSNs, and the ACOmethod were the best to find the shortest paths in WSNs and lead
to different constraints related to the dynamic, the resource, the convergence, and more studies have focused on
hybrid ACO mechanisms that integrate heuristic metrics such as residual energy, link reliability, and queue length
to guide ant movement more efficiently. These approaches demonstrated improvements in energy balancing and
route stability [20,21]. However, these approaches often rely solely on heuristic‑based decision processes, which
limit their adaptability under rapidly changing network conditions.

Furthermore, machine learning techniques have been increasingly applied to WSN routing. Artificial Neural
Networks (ANNs) and Deep Learning predictors have been used to estimate link quality, detect node failures, and
assist in intelligent next‑hop selection.

Several recent works [22–26] explored Multilayer Perceptron (MLP) models to predict high‑quality routes us‑
ing features such as residual energy and RSSI, resulting in more stable and energy‑efficient paths [27].

Hybrid schemes that combine swarm intelligence with machine learning have also emerged. For example,
some studies integrated ACO with ANN‑based predictors to reduce the number of route repairs and improve en‑
ergy distribution. These works demonstrated significant improvements in lifetime extension, delay reduction, and
packet delivery reliability. However, many of these hybrid solutions rely on complex training processes or require
extensive real‑time feedback, limiting their applicability in resource‑constrained sensor nodes [28].

More recently, energy‑aware multipath routing has been a major research direction. Approaches that incorpo‑
rate dynamic multipath selection, energy heterogeneity, and reinforcement learning have shown strong potential
for improving resilience and adaptability in highly mobile or harsh environments [29].

Recently, artificial intelligence has been incorporated intomany IoT‑based applications. Moreover, with the rapid
progress of WSNs based on IoT applications, many works are interested in analysis issues revealed, and despite the
advancements, existing methods still suffer from limitations such as high control overhead, insufficient prediction
accuracy, or a lack of integration between learning‑based prediction and swarm‑based exploration. Therefore, there
remains a strong need for an efficient hybrid routing strategy that combines the rapid exploration capability of ACO
with the predictive intelligence of MLPmodels to achieve energy‑balanced and stable routing in WSNs [30,31].

2.2. Motivation
The sensor capabilities are limited in the wireless network. Moreover, it affects the routing process [32,33].

Discovering an optimal route in WSN is one of the designed solutions to deal with those issues. In this paper, we
propose an intelligent routing protocol based on theMLPmodel that extracts input values from artificial ants. In ad‑
dition, wemodified the traditional Ant Colony Optimization algorithm in order to combine it withMLP to overcome
path discovery and energy efficiency issues. Unlike existing ANN–ACO and deep learning–based routing schemes,
the approach proposed in this paper adopts a lightweight MLP model as an auxiliary decision‑support mechanism
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rather than embedding learning into the routing core. TheMLP assists AntNet by evaluating candidate paths based
on energy and performancemetrics, while AntNet maintains routing exploration and path reinforcement. This sep‑
aration reduces computational overhead, preserves protocol scalability, and enhances energy efficiency, making
the proposed method more suitable for large‑scale and resource‑constrained WSNs.

3. Theoretical Background
3.1. ACO
3.1.1. Real Ant Mechanism

The idea behind the ACO technique is inspired by an ant society in the natural environment. Initially, worker
ants randomly wander around the nest searching for food to feed their queen. During their discovery process of
the route, they deposited a trail of a chemical substance named pheromone. When the food is reached, they take it
back to the colony and leave more pheromones on the route. Other ants can sense the pheromone intensities and
prefer to follow directions with higher pheromone concentration. Since shorter paths can be traversed faster, they
will eventually outweigh the less optimal routes in terms of pheromone density. Pheromones evaporate over time,
so ants are less likely to follow an older path, which makes them search for newer paths simultaneously. In a case
where an obstacle appears in their path, ants initiate the route discovery operation by randomly selecting the next
hop until the ants converge on the paths with a relatively higher density of pheromones.

3.1.2. Artificial Ant Mechanism

Generally, ACO algorithms have mainly three procedures. Firstly, the ants find the solution to the construction
of the graph. Secondly, ants update their pheromone levels, and finally, ants can execute additional actions. In a
computer implementation, the pheromone is extracted from the routing tables. Artificial ants were used to mimic
real ants to calculate and adjust the probabilities. There exist forward and backward artificial ants with the struc‑
ture. The agents jump every time one hop to the adjacent node through the current links. The communication is
indirect between them by reading and writing simultaneously on the routing table while they move on their route.

3.1.3. Notation

Table 1 below illustrates the useful ACO parameters used in this manuscript.

Table 1. ACO parameters.

Notation Description

𝑃𝑖,𝑗 Probability to take the route 𝑖 to 𝑗
𝑘 Current ant
𝑑 Final destination
𝑡 Over time
𝜏𝑖,𝑗 Pheromone value of the route 𝑖 ‑> 𝑗
𝛼 intensity
𝜂 link between 2 nodes
𝛽 Constant of control visibility
𝑁𝑖 Set of candidate neighbor of node 𝑖

3.1.4. AntNet

It is a variation of ACO, and it is closer to the real behavior of the ant that inspired the development of the
ACO meta‑heuristic algorithms. AntNet is widely used as an adaptation of ACO for WSN [34,35]. AntNet is appro‑
priately defined in terms of forward and backward ants (FANT/BANT). In spite of their similar structure, they are
divided disparately in the network. In addition, they sense various input data and provide autonomous outputs.
The communication between ants is indirect and belongs to the stigmergy factor, through the information received
concurrently from the nodes they visit. In the AntNet algorithm, each node s initiates a forward ant that searches
an optimal path to a destination node d. Moreover, they have identical queues, and they experience the same traffic
load. The steps of a path construction are as follows:
1. Every forward ant selects through its neighbors, either visited or not. Probability 𝑃𝑖,𝑗 depends on the function

of 𝜏𝑖,𝑗 and always follows the higher pheromone concentration finding.
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𝑃𝑖,𝑗(𝑡) = 𝑓(𝜏𝑖,𝑗(𝑡)) (1)
The expression of the probability of selecting the next hop could be presented as:

𝑃𝑑𝑘,𝑛 =
𝜏𝑑𝑘,𝑛 + 𝜔 ∗ 𝜂𝑘,𝑛

𝐶 (2)

with

𝜂𝑘,𝑛 = 1 − 𝑞𝑛
∑𝑁𝑘
𝑖=1 𝑞𝑖

, 𝜔 ∈ [0, 1] (3)

where 𝑃𝑑𝑘,𝑛 is the probability that node k chooses node n as the next hop for destination d for each neighbor
node (𝑁𝑘).
Anothermultiplicative function is used to select the neighbor j with a probability 𝑃𝑖,𝑗 computed as the normal‑
ized sum of the pheromone 𝜏𝑖,𝑗 with a heuristic value 𝜂𝑖,𝑗 taking into account the state (the length) of the 𝑗𝑡ℎ
rank link queue of the current node 𝑖:

𝑃𝑖,𝑗(𝑡) =
⎧⎪
⎨⎪⎩

𝜏𝛼𝑖,𝑗(𝑡)∗𝜂
𝛽
𝑖,𝑗(𝑡)

∑𝑁𝑖𝑙 𝜏𝛼𝑖,𝑙(𝑡)∗𝜂
𝛽
𝑖,𝑙(𝑡)

if 𝑗 ∈ 𝑁𝑖at time 𝑡,

𝛼, 𝛽 ∈ 𝑅+
0 otherwise

(4)

The heuristic value 𝜂𝑖,𝑗 is a [0, 1] normalized value function of the length 𝑞𝑖,𝑗 (in bits waiting to be sent) of
the queue on the link connecting the node 𝑖 with its neighbor 𝑗. The value of 𝛼 weighs the importance of the
heuristic value concerning the pheromone values stored in the pheromonematrix T. 𝛽 is a heuristic algorithm
in formation and could seriously affect the quality of the link between ants. The value 𝜏𝑖,𝑗 reflects the instan‑
taneous state of the node’s queues and, assuming that the queue’s consuming process is almost stationary or
slowly varying, 𝜏𝑖,𝑗 gives a quantitative measure associated with the queue waiting time.

2. Bant, a backward ant, is created after achieving the destination d, and the FANT is deleted.
3. The backward ant follows the inverse route of the forward ant. Furthermore, they use higher‑priority queues

to rapidly send the data received from Fant. In this paper, the transition states between ants can also be
represented by a transition matrix based on their power level. After the routing process and the next‑hop
selection, ants update their pheromone routing table by using the following equations.

𝜏𝑖,𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖,𝑗(𝑡) + 𝜌Δ𝜏𝑖,𝑗(𝑡) (5)
and

Δ𝜏𝑖,𝑗 = ൝𝑟(1 + 𝜏𝑖,𝑗), if link 𝑖 → 𝑗 is on the selected path
0, otherwise

(6)

where 𝜏𝑖,𝑗(𝑡) is the pheromone concentration that ants deposit during their navigation at t on the link support
among ants (𝑖 and 𝑗). 𝜌 defines the probability of the evaporation of pheromone during the time. Its value is
between [0, 1]. The residual pheromone value is given by 1− 𝜌. Δ𝜏𝑖,𝑗 is the reinforcement.

4. The pheromone routing table is updated after the ant link visits. The parameter 𝑟 is computed by dividing
the time that an ant took to travel toward a node 𝑖 by the time taken by all ants to that node 𝑖, where 𝑟 is
higher than 0 and lower than 1. It is predetermined in the algorithm, and the pheromone entries change in
the routing table according to the normalization or the evaporation heuristic parameters, as shown in the
previous equations.
The Antnet process is described in Figure 1. At a constant interval, each node launches a forward ant to a

random destination and stores its routes in a table. This table stores forward‑ant and neighboring information to
take the next hop. If the node in the neighboring list was not initially visited, the forward ants select the next hop
among these neighbors. Alternatively, if all nearest nodes were visited earlier, the next hop is preferred with lower
probabilities compared to other neighbors. The selection process generates a cycle in which the ants can return
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to a neighbor already visited. At the destination, the node creates a backward ant that takes the same path as the
equivalent forward ant, but in the reverse direction, and updates the routing table used for all entries.

Figure 1. Antnet process.

3.2. Multilayer Perceptron Description
An MLP is a subset of neural network learning algorithms that has demonstrated its effectiveness in different

fields like pattern recognition, fault detection, intrusion detection, image processing, etc. In Figure 2, themain idea
behind this type of model is detailed. It is an iterative algorithm that gets the relationship between the input values
and their output values and minimizes the error by updating the parameters in each iteration until the condition is
reached.

Figure 2. Multilayer Perceptron Process.

In our case, MLP, giving remarkable results in sub‑mention domains, is adjusted to implement a new intelligent
routing protocol. To the best of our knowledge, this is the first time MLP combined with ACO has been used in
routing techniques. Themain idea is to obtain the assumption of the paths by exploiting the classificationMultilayer
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Perceptron algorithm. This method allows learning from running WSN features, less computational power, and
predicting the optimal path to send data.

In the next section, we present the proposed methodology. The flowchart of the model and the proposed im‑
plementation are explained.

4. Methodology and Material
The research paper aims to increase the lifetime of the network. In this paper, we propose an intelligent learning‑

based approach integrated with an MLP to enhance the availability period of the network. MLPyields remarkable
results in various disciplines, including prediction, clustering, pattern recognition, and classification [36–40]. The
proposed algorithm enhances the selection of the shortest path by incorporating AntNet algorithms and neural arti‑
ficial intelligence behavior based on energy levelsy level.

An overviewof thewhole system is illustrated in Figure 3. The process starts by discovering the paths by using
the AntNet algorithm, which permits us to compute the cost of each path‑based energy criterion and then forward
the result to the MLPmodel, which predicts the best path with efficient energy and gets an optimal routing process.

Figure 3. Topology of Proposed MLP.

The multilayer perceptron model proposed in that work implements the empirical MLP version by combining
FeedForward and Backpropagation algorithms. All of the proposed processes are presented in detail in the follow‑
ing sections.

4.1. MLP Prediction Model
In our work, network training is performed by the backpropagation algorithm [41,42]. It is the most powerful

algorithm of Neural Networks (NNs), which involves a backward pass for adjusting the weights to minimize the
error. The algorithm is repeated until some specific conditions are satisfied: the minimal error obtained, the end of
the dataset, or both. In the scope of this paper, the training is concluded when the error RMSE reaches 103, where
the system can make predictions for each new input Figure 4.

Figure 4. MLP Prediction Algorithm.

The whole process is delineated in Figure 4. The labeled data are transmitted to achieve the output through
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the hidden layer. After all necessary calculations, themodel can decide if the result is satisfactory or use a backward
propagation for another training phase.

4.2. MLP Prediction Algorithm
The entire operation of the proposed model and the computations of the factors in each node of the different

layers, including the error and weights, is illustrated in Algorithm 1.

Algorithm 1 Prediction Model
Require: Initialization:
1: Randomweight initialization𝑤(𝑖, 𝑗) ∈ [−0.5, 0.5]
2: Learning rate 𝛼 = 0.01
3: Training epochs = 500
4: Threshold = 10−3
5: Dataset size = number of discovered paths
Ensure: Model Trained
6: Repeat
7: for each example (𝑥, 𝑑) in Dataset do
8: forward propagation(𝑥)
9: for each node 𝑖 in input layer do

10: 𝑝(𝑖) ← 𝑥(𝑖)
11: end for
12: for 𝑙 = 2 to𝑁 do
13: for each node 𝑗 in layer 𝑙 do
14: ℎ(𝑗) ← ∑𝑖 𝑤𝑖,𝑗 ⋅ 𝑝(𝑖)
15: 𝑝(𝑗) ← 𝑓(ℎ(𝑗))
16: end for
17: end for
18: backward propagation 𝑝(𝑗)
19: for each node 𝑗 in output layer do
20: 𝑅𝑀𝑆𝐸(𝑗) ← ට∑(𝑝𝑗−𝑑𝑗)2

datasize
21: end for
22: for 𝑙 = 𝑁 − 1 down to 1 do
23: for each node 𝑖 in layer 𝑙 do
24: 𝑅𝑀𝑆𝐸(𝑖) ← 𝑓(ℎ(𝑖)) (1 − 𝑓(ℎ(𝑖)))∑𝑗 𝑤(𝑖, 𝑗) ⋅ 𝑅𝑀𝑆𝐸(𝑗)
25: end for
26: end for
27: update every weight in the network using 𝑅𝑀𝑆𝐸
28: for each weight𝑤(𝑖, 𝑗) in network do
29: 𝑤(𝑖, 𝑗) ← 𝑤(𝑖, 𝑗) + 𝛼 ⋅ 𝑝(𝑖) ⋅ 𝑅𝑀𝑆𝐸(𝑗)
30: end for
31: end for
32: until 𝑅𝑀𝑆𝐸 < Threshold

where: 𝑝(𝑖) present the input layer activation of neuron 𝑖, ℎ(𝑗)is the weighted sum at neuron 𝑗 and 𝑅𝑀𝑆𝐸 refer to
the root mean square error.

4.3. Flowchart Overview
The proposed routing protocol combines AntNet‑based multipath exploration with a Multilayer Perceptron

(MLP) model to enhance energy‑aware route selection in Wireless Sensor Networks.
Unlike classical AntNet routing, where pheromone updates alone determine path preference, the proposed

approach separates the exploration and decision phases. AntNet is responsible for discovering and maintaining
multiple candidate paths, while the MLPmodel assists in selecting the most energy‑efficient path based on current
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network conditions.
This separation allows the routing process to benefit from swarm‑based adaptability while avoiding the inte‑

gration of complex learning mechanisms directly into the routing core, thereby reducing computational overhead.
The flowchart concerns the representationof the entireprocess and its executionby theproposed shortest path

selection algorithm. It illustrates the overall workflow of the proposed routing protocol. The flowchart explicitly
distinguishes between the AntNet exploration phase, MLP based evaluation phase, and the final routing decision
phase. Directional arrows indicate the sequence of operations and data flow between modules.

Our proposed flowchart inFigure5 clarifieswhen ants are generated, how routingmetrics are collected, and at
which stage theMLPmodel is invoked. It describes thewhole process of selecting the best route by the combination
of AntNet and MLP. The paths are discovered in the first block using the AntNet algorithm. Then, the features of
MLP are processed tomake assumptions about the different paths given. Finally, the best path selectedwill be used
to forward the information through it.

Figure 5. Overview system of the shortest path selection based on MLP and AntNet.

The primary objective of our proposed algorithm is to enhance the performance of selecting the shortest path
by combining a Multilayer Perceptron and AntNet to determine the optimal route based on the remaining energy
of each node. Our proposed algorithm optimizes the choice of the route with the highest energy level, which al‑
lows nodes’ availability to be saved along the routing operation and increases the lifetime of the network. In that
approach, the algorithm of feedforward networks for the multilayer perceptron is trained in two phases. Firstly,
the process starts with a random initialization process of the weights and the biases, and then forwards input data
from the data preposition to compute the predicted output. Secondly, the model computes the gradient between
the calculated and the desired output. If the obtained result is minimal, the training step is finished. At the end of
the training, the model could make decisions about new values. In that work, the new input data belonging to the
current energy of the node in the running stepwas exploited. The route selection starts by assuming each data point
to predict the output related to the energy. This value helps to evaluate the probability of choosing the optimal path
in terms of energy to forward data through it.

4.3.1. AntNet‑Based Multipath Discovery

In the proposedprotocol, forward ants (FANTs) are periodically generated at source nodes and traverse the net‑
work toward destination nodes using probabilistic next‑hop selection based on pheromone intensity and heuristic
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information. Upon reaching the destination, backward ants (BANTs) retrace the discovered path to update routing
tables and pheromone values.

Each ant maintains a record of the traversed path, hop count, and cumulative energy metrics, which are later
used as input features for the MLP‑assisted decision process.

The pheromone update mechanism follows a reinforcement strategy that favors paths with higher residual
energy and stable links, while evaporation is applied to prevent premature convergence. The pheromone value 𝜏𝑖,𝑗
associatedwith the link(i,j) is updated according to Equation (5), where 𝜌 denotes the pheromone evaporation rate
(0< 𝜌 <1), and Δ𝜏𝑖,𝑗 represents the pheromone reinforcement proportional to path quality.

The pheromone evaporation rate is set to 𝜌 = 0.1 to ensure a balance between exploration and exploitation.
This value is widely adopted in AntNet‑based routing literature andwas empirically found to provide stable routing
behavior in dynamicWSN environments by preventing premature convergence while preserving historical routing
information.

4.3.2. Path Selection Probability

The probability 𝑃𝑖,𝑗 of selecting the next hop 𝑗 from node 𝑖 is computed using Equation (4), where: 𝜏𝑖,𝑗 is the
pheromone intensity on link (𝑖,𝑗) 𝜂𝑖,𝑗 is the heuristic value associated with link quality and residual energy, 𝛼 and 𝛽
areweightingparameters controlling the influenceof pheromoneandheuristic information, respectively𝑁𝑖 denotes
the set of neighboring nodes of node 𝑖.

All parameters are kept constant during simulation to ensure fair comparison with baseline routing protocols.

4.3.3. MLP‑Assisted Path Quality Prediction

TheMLPmodel is employed to predict the quality of candidate paths discoveredbyAntNet. The input layer con‑
sists of features derived from the ant exploration phase, including residual energy and link reliability. The hidden
layer contains four neurons, and the output layer produces a scalar value representing the predicted path quality.

The choice of a lightweight MLP architecture is motivated by the limited computational capabilities of sensor
nodes and aims to achieve a balance between prediction accuracy and processing overhead.

The MLP is trained offline using representative routing data and is used online only for inference, thereby
minimizing runtime computational cost.

4.3.4. Integration of AntNet and MLP Decision Process

After AntNet identifies a set of candidate paths between a source and destination, the corresponding path
features are provided to the MLP model. The MLP evaluates each path and assigns a quality score, which is then
used to rank the available routes.

The path with the highest predicted quality is selected for data transmission, while alternative paths are re‑
tained for fault tolerance and load balancing.

This integration enables intelligent path selection without altering the fundamental operation of the AntNet
routing mechanism.

4.4. Proposed Algorithm
A step‑by‑step procedure is presented in the pseudo‑code as shown in Algorithm 2. The algorithm shows the

whole process of the shortest path discovery with the dynamic routing algorithm based on the MLP‑AntNet model.
Before execution, the following parameters are initialized:
— 𝛼 (pheromone influence) = 1
— 𝛽 (visibility influence) = 2
— Evaporation rate 𝜌 = 0.1
— Maximum ant population = 20
— MLP weights initialized as in Algorithm 1

𝐺 = (𝑉, 𝐸) is the network graph; 𝐾 is the number of candidate paths discovered by AntNet; 𝑊(𝑖, 𝑗) is the MLP
weight matrix.
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Algorithm 2 Proposed Routing Model Decision
Require: 𝐺 = (𝑉, 𝐸)
Ensure: Find K‑shortest paths based on AntNet‑MLP
1: Compute consumed energy for each path
2: Compute the cost for each path‑based pheromone
3: Set up initial parameters𝑊(𝑖, 𝑗)
4: Present input datasets
5: Forward‑Backward algorithm
6: if system reached Threshold then
7: Prediction Routing Decision
8: else
9: Back‑propagation

10: Repeat Forward‑Backward algorithm
11: end if

5. Simulations and Analysis
We have simulated our model and compared it with the results of the classical AODV version. For a fair com‑

parison, the performance of all algorithms was compared in the same environmental conditions.

5.1. Simulation Setup
The proposed routing protocol is evaluated using the NS‑2 network simulator (version 2.35). A set of sensor

nodes is randomly deployed in a two‑dimensional area, and data packets are generated periodically from source
nodes toward a sink node. NS‑2.35 was selected due to its widespread adoption in WSN routing research, stable
support for energy models, availability of Ant‑based and AODV routing implementations, which facilitate fair com‑
parison with existing protocols, and suitability for packet‑level analysis. Compared to more complex simulators,
NS‑2 enables controlled evaluation of routing behavior and energy consumption under reproducible conditions,
making it appropriate for comparative performance studies inWSN environments. All simulations were conducted
on an Ubuntu 14.04 platform to ensure compatibility with the selected NS‑2 version. The main simulation param‑
eters are summarized in Table 2. The number of sensor nodes, transmission range, packet size, and simulation
duration are selected to reflect typical WSN deployment scenarios. The packet size and transmission interval were
chosen to balance traffic load and energy consumption, avoiding congestion while ensuring sufficient data gener‑
ation for performance evaluation. Each simulation scenario was executed multiple times with different random
seeds, and the reported results correspond to the average values to reduce statistical bias.

Table 2. Simulation Parameters.

Parameter Value

Network size 250 m × 250 m
Transmission range 50 m
Number of nodes 100

Initial energy per node 40 J
Packet length 6400 bits
MAC type 802.11

Simulation time 600 s
Routing protocols compared AODV, ANT‑AODV

The energy consumption model used in this work follows the first‑order radio energy model, which is com‑
monly adopted in WSN studies.

𝐸𝑡𝑥(𝑘, 𝑑) = 𝑘𝐸𝑒𝑙𝑒𝑐 + ൝𝑘𝐸𝑓𝑠𝑑
2, 𝑑 < 𝑑0

𝑘𝐸𝑚𝑝𝑑4, 𝑑 ≥ 𝑑0
(7)
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𝐸𝑟𝑥(𝑘) = 𝑘𝐸𝑒𝑙𝑒𝑐 (8)
where

𝑑0 = ට𝐸𝑓𝑠/𝐸𝑚𝑝 (9)

The energy consumed for transmitting and receiving a packet depends on the packet size and the communica‑
tion distance.

Although this model does not explicitly account for idle listening, sleep scheduling, or CPU processing energy,
it provides a widely accepted abstraction for evaluating routing‑level energy efficiency.

In this manuscript, the training dataset consists of two input entries, four nodes in the hidden layer, and one
output entry. Moreover, Tanh is used as the Transfer function. The model is trained for 500 epochs with a learning
rate of 0.01, and the stopping criterion is defined by a threshold of RMSE < 10−3. The MLP model employed in the
proposed protocol uses a learning rate of 0.01 (a higher learning rate was avoided to prevent unstable convergence,
while a lower learning rate significantly increased training time without noticeable performance gains), a hidden
layer with four neurons, and a maximum of 500 training epochs. The training process is terminated when the root
mean square error (RMSE) reaches a predefined threshold.

These parameters were selected to achieve a trade‑off between training convergence and computational
simplicity, ensuring that the model remains lightweight and suitable for resource‑constrained WSN environ‑
ments.

To ensure result reliability, each simulation scenario was executedmultiple timeswith different random seeds,
and the reported results represent averaged values. Variations observed across runswere limited, indicating stable
routing behavior. Although detailed confidence intervals are not explicitly reported, the consistent performance
trends across scenarios validate the robustness of the proposed routing protocol.

Although comparisons with other energy‑aware or intelligent routing protocols could further strengthen the
evaluation, the current comparison focuses on AODV to establish a clear baseline and highlight the improvements
introduced by the proposed hybrid approach. Additional benchmarks are considered as future work. The perfor‑
mances are analyzed in terms of Energy, Delay, and Normalized Overhead to discuss the experimentation results of
our proposed algorithm. Network lifetime is assessed in terms of the time until the first node depletes its energy,
which provides insight into the protocol’s ability to balance energy consumption across the network.

5.2. Comparison Results
The variation of the overall power usage during simulation time is illustrated in Figure 6. Consumed energy

is lower in the proposed routing protocol compared to the ad hoc routing protocol AODV. Moreover, the average
energy consumption of the entire network during simulation is depicted in Figure 7. On average, the proposed
protocol reduces total energy consumption by approximately 32% compared to AODV. This improvement is pri‑
marily attributed to the MLP‑assisted path selection, which avoids routing through nodes with low residual energy
and unstable links. The final result of the system demonstrates that energy is used efficiently and significantly
reduced. Moreover, Figure 8 illustrates the evaluation of the delay during the simulation time. ANT‑AODV takes
less time compared to AODV. The proposed method selects the path that minimizes the time required to send and
receive packets between nodes during the routing process. The reduction in delay, measured at approximately
28%, is due to the availability of multiple candidate paths and the intelligent selection of routes with higher pre‑
dicted quality, which reduces route discovery latency and packet retransmissions. Figure 9 shows the evolution of
routing overhead during simulation time and the number of nodes. The routing overhead is the ratio of the total
number of packets sent divided by the total number of packets delivered. The routing overhead is reduced by about
40% relative to AODV because the proposed protocolminimizes frequent route rediscoveries bymaintaining stable
multipath routes and leveraging MLP predictions to select reliable paths. The results of the comparison between
ANT‑AODV and AODV show that ANT‑AODV has the best performance.
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Figure 6. Total Energy Consumption Comparison.

Figure 7. Average Energy Consumption vs time.

Figure 8. Delay Comparison.

Figure 9. Routing Overhead comparison.
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5.3. Discussion
This paper evaluates a new intelligent routing model based on a combined AntNet and MLP algorithm. Thus,

permit the use of power resources in the network effectively. The results were promising, and the system uses less
energy since the selection of the shortest paths is based on the energy factor in the calculation of the pheromone
used in the AntNet multipath routing algorithm. Also, the MLP model gives an assumption of the best route by
optimizing the results that consider the energy cost of the path. At the beginning, energy consumption is higher
due to the high probability of choosing a route with more nodes. After adjustment of the power resource using the
proposed system, the energy is decreased and optimized, which increases the network lifespan and saves energy
consumption, as shown clearly in the results. As delineated in Figures 6 and 7, the remaining power after the sim‑
ulation is greater up to 32% for our proposed routing protocol compared to AODV. As a consequence, the lifespan
of the network is increased due to the consideration of the remaining energy level in the shortest path selection,
which focuses on the energy node side, extending the network’s availability and improving its scalability. As men‑
tioned in Figures 8 and 9, which present the delay and the routing overhead results, our proposed routing protocol
outperforms the classical AODV. The overhead was 28% lower, and the delay was improved by approximately 40%
compared to AODV. In the proposed system, a route with a higher energy level is selected for data transmission,
which increases the proportion of transmission and reception packets during execution time and enhances the net‑
work’s reliability. The reduction in delay is achieved because theMLP prediction guides AntNet toward routes with
higher residual energy and lower congestion probability. This reduces path breakages, queue buildup, and retrans‑
missions. Similarly, the reduction in routing overhead results from fewer route repairs, since energy‑aware path
selection stabilizes the topology.

The results demonstrate that combining AntNet‑based multipath exploration with a lightweight MLP model
yields significant performance gains without introducing excessive computational overhead. To assess scalability,
simulations were conducted under different node densities. Although the number of control packets increases
with network size, the routing overhead remains comparatively lower than baseline protocols due to adaptive path
reinforcement. These results indicate that the proposed protocol scales effectively to larger WSN deployments
without incurring excessive computational or communication overhead. While the proposed protocol shows clear
advantages, the evaluation is limited to simulation‑based analysis and comparisonwith AODV. Factors such as node
mobility, heterogeneous energymodels, and real‑time training overhead are not explicitly considered and represent
directions for future research.

6. Conclusion
Wireless Sensor Networks face persistent challenges related to limited energy resources, routing instability,

and scalability. In this paper, an energy‑aware multipath routing protocol integrating AntNet with a lightweight
Multilayer Perceptron (MLP) model has been proposed to address these challenges.

Unlike conventional ANN–ACO or deep learning‑based routing approaches, the proposed protocol adopts a
lightweight MLP architecture that assists AntNet in selecting energy‑efficient routes without introducing signifi‑
cant computational or communication overhead. This design choice makes the approach suitable for resource‑
constrained WSN environments.

Simulation results demonstrate that the proposedprotocol achieves a reduction in total energy consumption of
approximately 32%, decreases end‑to‑end delay by 28%, and lowers routing overhead by 40% compared to AODV.
In addition, the network lifetime is extended by about 22%, indicating improved energy balancing across sensor
nodes.

Furthermore, scalability analysis indicates that the proposed protocol maintains stable performance under
increasing node density, and statistical observations across multiple simulation runs demonstrate robust and con‑
sistent behavior. These findings suggest that the proposed AntNet–MLP routing protocol is suitable for large‑scale
WSN deployments.

The integration of swarm intelligence for multipath exploration and machine learning for path quality predic‑
tion enables more stable routing decisions and reduces the frequency of route failures and rediscoveries.

Although the proposed protocol shows promising performance, the evaluation is limited to simulation‑based
analysis and a simplified energy consumption model. Factors such as idle listening, sleep scheduling, node hetero‑
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geneity, and real‑world deployment constraints were not explicitly considered.
Future work will focus on extending the proposed approach to heterogeneous and dynamic WSN scenarios,

incorporating additional benchmark routing protocols, and validating the model under more realistic energy and
traffic conditions.
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