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Abstract: Vector Space Models (VSM) and neural word embeddings are core components in recent Machine Learn‑
ing (ML) and Natural Language Processing (NLP) pipelines. By encoding words, sentences and documents as high‑
dimensional vectors via distributional semantics, they enable Information Retrieval (IR) systems to capture seman‑
tic relatedness between queries and answers. This paper compares different semantic representation strategies
for query‑statement matching, evaluating paraphrase identification within an IR framework using partial and syn‑
tactically varied queries of different lengths. Motivated by the Word Mover’s Distance (WMD) model, similarity
is evaluated using the distance between individual words of queries and statements, as opposed to the common
similarity measure of centroids of neural word embeddings. Results from ranked query and response statements
demonstrate significant gains in accuracy using the combined approachof similarity ranking throughWMDwith the
word embedding techniques. Our top‑performingWMD + GloVe system consistently outperformed Doc2Vec and an
LSA baseline across three return‑rate thresholds, achieving 100% correct matches within the top‑3 ranked results
and 89.83% top‑1 accuracy. Beyond the substantial gains from WMD‑based similarity ranking, our results indi‑
cate that large, pre‑trained word embeddings, trained on vast amounts of data, result in portable, domain‑agnostic
language processing solutions suitable for diverse business use cases.
Keywords: Semantic Information Retrieval; Word Embeddings; Document Similarity; Query‑Statement Matching;
GloVe; WMD

1. Introduction
Information retrieval (IR) can be considered from various levels of processing, including single words or sen‑

tences to paragraphs and full document retrieval. The most significant challenge is retrieving documents that are
relevant to user queries. The ability to rank results by query relevance is a key aspect of Information Retrieval,
and it is this function that differentiates IR from other types of database queries, which are sorted by one or more
table columns. IR systems, such as search engines, return results sorted in descending order based on a score that
designates the strength of the match between the query and the returned document [1]. If we consider business
scenarios where potentially millions of documents need to be searched and processed, ranked retrieval has sig‑
nificant implications for efficiency, as it prevents users from being overloaded with results that are impossible to
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navigate and consume [2]. The concept of synonyms or semantic heterogeneity in language is one in which the
same real‑world entity can be represented using different linguistic terms. For example, the concept of the word
‘beautiful’ can also be conveyed with the words ‘attractive,’ ‘pretty,’ ‘lovely,’ and ‘stunning.’ The ability to manage
synonymy has important implications for querying data frommultiple sources, as well as the cleansing andmining
of data [3–5]. Polysemy is the capacity of a word or phrase to havemultiple meanings. For example, the word ‘glass’
has two different meanings when we compare its use in the sentence: ‘I emptied the glass (container)’ to its use in
the sentence ‘I drank the glass (the contents of the container)’ [6].

Many traditional keyword‑based information retrieval systems rely on statistical term overlap. This direct
mapping of a query with indexed terms or statements suffers from lexical gaps when considering Paraphrase Iden‑
tification (PI), where conceptually identical or similar statements can be expressed in various ways [7]. Conversely,
it is alsoworth noting that completely unrelated concepts can be textually quite similar. As a result, these traditional
information retrieval systems oftenmiss relevant documents or return irrelevant ones that contain different terms
than the query, even with the use of query expansion [8]. The ability to identify related terms outside of the key‑
word range is also important for handling partial queries or scenarios where users conduct exploratory searches
based on minimal or imprecise details [9]. These complexities have driven the development of Natural Language
Processing (NLP) beyond pure text‑based search solutions, enabling the interpretation of language in a more com‑
plex and meaningful way [10,11]. Semantic analysis extends beyond word‑to‑object associations to uncover the
links between the broader set of words that can be attributed to each object.  

Severalmachine learning (ML) and statistical strategies can be employed to estimate and uncover the underlying
latent structure of meaning. These algorithms work to organize text into a semantic structure that can be leveraged
to maximize the representation and retrieval of information, thus facilitating information navigation [12]. Semantic
similarity matching has been shown to improve recall and precision and has a wide range of applications within NLP,
including plagiarism detection [13], text summarization [14,15], evaluation of text coherence [16,17], word sense
disambiguation [18], text categorization, relevance feedback [19,20], and sentiment analysis [21]. Semantic learning
is also considered one of the most effective techniques for improving the effectiveness of information retrieval [22].
Word and paragraph embedding algorithms such asWord2Vec [23], Doc2Vec [24], GloVe [25], and FastText [26], have
emerged as leading approaches to modelling the semantic relations between terms in various NLP pipelines. The
semantic‑based IR process can be considered an implementation of two phases. The first stage involves processing
text into a semantic vector space. The second stage involves ranking of candidates through amechanism of similarity
comparison. The similarity technique used in this paper is theWordMover’s distance (WMD), whichmeasures query‑
statement similarity basedon an evaluation of the distance between individualwords [27], as opposed to the common
similarity measure that uses query‑statement centroids of word embeddings.

This paper evaluates existing and newly proposed models that integrate these pre‑trained neural word vector
embeddings into thematching and rankingphases of the information retrieval pipeline. Themain researchquestion
addressed in this paper is how to perform information retrieval by considering the semantics of query‑statement
matching using neural word embeddings. In addressing this, the research makes the following important contribu‑
tions.
Contributions

1. The systematic evaluation of WMD combined with Word2Vec, FastText, and GloVe embeddings for semantic
information retrieval, compared with LSA and Doc2Vec baselines.

2. Demonstrated robust retrieval performance on paraphrased and partial query matches, showing the ability
to capture semantic variation.

3. Investigated retrieval robustness across query lengths, from short statements to multi‑sentence paragraphs.
4. EstablishedWMD + GloVe as the most effective approach, achieving superior ranking accuracy, particularly in

top‑ranked positions.

The remainder of this paper is organized as follows: Section 2 discusses related work and reviews existing
embedding‑based approaches for conceptual search strategies before highlighting the research objective of this
study. Section 3 details the methodology and experimental setup that was implemented to evaluate the different
word embedding models on a practical information retrieval task. Section 4 discusses results and evaluation of the
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query‑statement matching trials before concluding with a detailed discussion of findings in Section 5 and conclud‑
ing remarks in Section 6. Section 7 discusses the limitations of the system and future work of the study.

2. Background and RelatedWork
The challenge of matching documents or statements based on their textual descriptions remains an active

area of research in Information Retrieval. Moving away from the traditional approach of counting query term oc‑
currences in the target search text, many latent semantic and more recent neural embedding methods have been
proposed to bridge the gap caused by linguistic and vocabulary‑related mismatches and differences. Algorithmic
relevance is at the computational core of Information Retrieval and concerns the relationship between information
objects and user queries based on somemeasure of similarity between them. The ‘gold standard’ of algorithmic rel‑
evance performance is that the search engine query should retrieve specified sets of information objects, measured
as recall with a minimum number of false positives, measured as precision [22].

2.1. Background
2.1.1. Traditional Vector‑Based Algorithms

Traditional vector‑based algorithms such as Okapi BM25 and TF‑IDF (Term Frequency – Inverse Document
Frequency) count term occurrences and utilize bag‑of‑words representations reweighted by inverse document fre‑
quency [28]. In the bag‑of‑words approach, text documents are represented by isolated keyword terms that have no
syntactic or semantic context or relation to other terms in the model. While these approaches are strong baselines,
they fail to adequately represent complex text objects such as sentences and paragraphs because all relationships
and term dependencies are lost.

The use of latent semantic structures to facilitate Information Retrieval is well established [29]. Semantic
analysis models [30], such as Latent Semantic Analysis (LSA) or Latent Semantic Indexing (LSI) map dense vector
representations onto a low‑dimensional subspace for corpus‑based similarity comparisons [31]. Since LSA calcu‑
lates similarity based on context, it does not require queries, target statements, or documents to contain common
words; therefore, it outperforms traditional vector space models in measures of synonymy. However, as a global
bag‑of‑words approach, it fails to efficiently leverage lower‑level syntactic and statistical information that exposes
the links between component vectors. As a consequence, LSA tends to be more appropriate for similarity matching
of longer texts as opposed to keyword matching [32].

2.1.2. Embeddings

Themove tobridge the lexical gap causedby linguistic differences and to adequately respond to the challengeof
representing documents semantically has prompted the development of advanced representation techniques, such
as Distributional SemanticModels (DSMs), that signify amove away from simple syntacticmatchingmechanisms to
more complex combinations of syntactic and semantic parsing that enhance search recall and expressiveness [33].
Computational linguistics has consistently demonstrated that contextual information provides a reliable approxi‑
mation of word meaning, as semantically related words tend to occur in similar contextual distributions [34,35].
DSMs employ vectors to track these contexts in which target terms appear and store them as meaning representa‑
tions. Geometric techniques are then applied to these vectors tomeasure the similarity inmeaning between search
and target phrases [35].

From the statistical neural net, language models evolved word embeddings learned by neural networks [36].
These word embeddings learn semantic word vectors to predict context words, thus capturing both the syntactic
and semantic relations between the collections of words that constitute a sentence or paragraph [25,37].

Word2Vec: Mikolov et al. [23] proposedWord2Vec, an unsupervised, shallowneural network‑based skip‑gram
model inwhichword vector representations are learned by reconstructing eachword’s context through an efficient
training algorithm that does not utilize densematrixmanipulation (Figure 1). Recall is significantly enhanced over
keywordmatching techniques asWord2Vecworks to bring semantically synonymous vectors closer together in the
embedded space. The original implementation ofWord2Vec uses centroids of word vectors and cosine similarity to
evaluate document relatedness.
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Figure 1. TheWord2Vec neural network architecture.

Doc2Vec: Taking the concept of context beyond single words, Le and Mikolov [24] further extended the
Word2Vec framework with a semantic enriching strategy that learns fixed‑length feature representations from
variable‑length segments of text, such as sentences, paragraphs, and entire documents. Doc2Vec (or paragraph
vectors) represents a combined approach where each word and each paragraph are mapped to unique vectors
(known asword embeddings and paragraph embeddings, respectively) (Figure 2). Their experiments found that
theDoc2Vec framework, with its enhanced decision‑making capability, proved successful in information retrieval
and sentiment analysis tasks, reporting less retrieval and classification errors than comparable algorithms that
employed Word Centroid Distance similarity measures.

Figure 2. The Doc2Vec neural network architecture.

GloVe: The study by Pennington et al. [25] introduced the count‑based GloVe (Global Vectors) model, which
learns vectors through dimensionality reduction on a co‑occurrence countsmatrix. The large co‑occurrencematrix
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of words (rows) and context (columns) maps how frequently each word appears in a certain context in a large
corpus. The GloVe technique, which generates word vector spaces withmeaningful substructure, has been found to
achieve state‑of‑the‑art performance on several text processing experiments, such as word similarity tasks, word
analogy tasks, and Named Entity Recognition (NER).

FastText: FastText is a Facebook Artificial Intelligence Research (FAIR) open‑source library for NLP [26]. The
FastText approach combines several robust ML and NLP techniques, including a bag of words and a bag of n‑grams,
as well as using sub‑word information and sharing information across classes through a hidden representation to
achieve efficient text classification. FastText is on par with some deep learning frameworks in terms of accuracy in
learning word vector representations, but it is much faster to train, making it more scalable to larger datasets. Its
use of sub‑word n‑gram processing has been shown to increase FastText's accuracy overWord2Vecwhen handling
uncommon words or words that are out‑of‑vocabulary.

A few cross‑comparison studies evaluating the strengths and weaknesses of Word2Vec, FastText, and GloVe
have generally concluded that they are overall comparable to each other, although performance varies depending
on the task and the length of text in both queries and target documents [38,39]. A limitation ofWord2Vec, FastText,
and GloVe is that they only encode vector representations for single words, which do not capture the enriched data
provided throughmore complex,multiple‑word structures, such as sentences or paragraphs. In the literature, some
researchers have focused on the benefits of adapting traditional, single‑word embedding models to learn vectors
for multiword expressions [40]. In a few studies, researchers have explored new semantic search models based on
SentenceBERT.

SentenceBERT (SBERT): It employs Siamese and triplet architecture to learn semantically meaningful sen‑
tence embeddings. In a Siamese network, identical subnetworks process each input, ensuring that semantically
similar sentences are projected to nearby points in the embedding space [41].

2.1.3. Similarity Measures

Awell‑established approach to computing similarity between sentences or documents is to evaluate the cosine
similarity or inner product of the centroids of word embeddings (generated from techniques such asWord2Vec or
GloVe) [42]. Thesedocument similaritymeasureshavebeenuseful for general clustering and classificationof overall
topics at a document level. However, simple centroid approximation is regarded as insufficient for calculating the
distances between queries and target statements or documents [27]. As queries tend to be short compared to the
documents they are being compared against, a lossy centroid approach that calculates the averagedistance between
a query and a document will be less accurate than an approach that searches directly for the query words [43]. The
centroid approach also struggles with documents that consist of multiple different topics.

Word Mover’s Distance (WMD) [27] emerged from a statistical approach known as Earth Mover’s Distance
(EMD), which has been successfully applied to computer vision tasks such as image comparison. EMD measures
the distance between two probability distributions over a region, and, similarly, the constituent word‑vectors of
sentences or paragraphs can be considered as distributions or ‘piles of meaning’ around their individual vector
coordinates. WMD has been specifically developed to measure the similarity between two bodies of text (sen‑
tences/paragraphs) by calculating theminimum ‘travelling distance’ between text objects (sentences) as ameasure
of the sum‑of‑distances (cosine distance) or the effort it takes to move from one word vector pile configuration to
another.

2.1.4. RelatedWork

The successful application of word embeddings to ad‑hoc Information Retrieval (IR) tasks remains a key area
of research activity. Nalisnick et al. [42] provided a useful example of the benefits of word embeddings when
they described the scenario of querying a document with a high occurrence of the term ‘automobile’ with a query
term ‘car’. Techniques such as TF‑IDF scored the document relatively low since the term ‘car’ does not feature
prevalently in the document, whereas a word embedding approach scored the document higher because the vector
representation for ‘automobile’ and ‘car’ are close to each other in the embedding space. Such has been the success
and impact of neuralword embeddings in NLP tasks that they are now recognized as themain driver of the renewed
interest and breakout of NLP in the past few years [44]. These neural word embeddings have become the default
representations in many text processing pipelines and neural network architectures, serving as the first layer of

55



Digital Technologies Research and Applications | Volume 04 | Issue 03

pre‑processing that converts raw word tokens into more useful representations [35,44–46].
Bonetti [47] proposed a hybrid model using BM25 for keyword‑based search and SentenceBERT for semantic

search. It was observed that the proposed model outperformed the limitations of previous approaches. SBERT
was also used to encode queries into sentence vectors and measure similarity with cosine similarity against stored
queries [48]. In Walsh and Andrade [49], the authors fine‑tuned SBERT on the NASA Lessons Learned Informa‑
tion System (LLIS) and analyzed that it performed better than a pre‑trained baseline. The authors observed that
domain‑specific tuning enables accurate semantic search. Several recent studies take advantage of the dual process
of leveraging the benefits of word embeddings with WMD similarity ranking. For computing similarities between
documents, the WMD approach has been reported to yield lower classification errors when used in conjunction
with distance‑based classifiers [27]. Combining neural word embeddings with a WMD similarity mechanism was
also found to outperform a BM25 ranking system on the TREC 2006 and 2007 Genomics benchmark sets [50,51]
using solely semantic comparison as the ranking feature [43].

Recent advances in neural representation learning improve similarity search and showhow transformer‑based
embedding methods can generalize beyond the text IR to multimodal retrieval. Tutor‑augmented GANs enhance
the robustness and relevance of searchpipelines, thereby strengthening the similarity‑based retrieval of documents
and webpages [52]. Lo et al. [53] analyzed how natural language‑conditioned graph generation can improve simi‑
larity search over small graphs by producing embeddings aligned with structural properties. According to the liter‑
ature, it has been observed that dense representations and generative representations can improve the similarity
search.

2.2. Research Gaps and Research Objectives
Despite strong baselines like TF‑IDF/BM25, LSA advancements, and neural embeddings, current methods still

fail to capture fine‑grained syntactic or compositional cues, especially for short, partial, or paraphrastic queries.
While WMD addresses lexical mismatch, its integration with diverse embedding families, such as Word2Vec, Fast‑
Text, GloVe, and Doc2Vec, remains underexplored. There is a lack of systematic, head‑to‑head evaluations across
exact‑match and paraphrase‑oriented IR settings. Additionally, there is limited guidance on when global (LSA) vs.
local (skip‑gram) vs. transport‑based measures are preferable under varying query lengths and linguistic diver‑
gence. The following objectives have been framed to address these research gaps:

• Conduct a comparative analysis on different semantic representation strategies for query‑statementmatching.
• Evaluate IR performance on exact syntactic query‑statement matching and paraphrase identification under

partial or linguistically divergent content matching.
• Establishbaselines using theGlobalMatrix Factorization approach, LSAandLocal ContextWindow(skip‑gram)

algorithms, such as Doc2Vec,Word2Vec, FastText, and GloVe.
• Investigate Word Movers’ Distance (WMD) as an alternative similarity metric over neural word embeddings.
• Compute similarity via distances between individual words of queries and statements.
• Provide, to the best of our knowledge, one of the first evaluations combining WMDwith different neural word

embedding for semantic IR and similarity ranking.

3. Methodology
This section describes the experimental setup, evaluation dataset, pre‑processing, and evaluationmetrics imple‑

mented to assess the accuracy of each semantic‑based information retrieval system. The information retrieval per‑
formance of four state‑of‑the‑art semantic representation techniques―Word2Vec, Doc2Vec, FastText, and GloVe―is
compared with that of a traditional vector‑based LSA model. The word embeddings from Word2Vec, FastText, and
GloVewere processed using a Word Movers’ Distance (WMD) document similarity algorithm to assess the effects on
statement similarity rankings compared to three Doc2Vecmodels that vary in word order and contextual analysis.

3.1. Dataset
The evaluation dataset was prepared from a publicly available 2013 IPO Prospectus for Foxtons Estate Agents

of London [54]. The Prospectus consists of 223 pages of company and financial data, totaling 141,171 words over
8,127 individual statements or paragraphs. Twelve statements were taken from the Prospectus to be used in 12
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separate testing trials. For each of the 12 statements, a set of queries was developed that were syntactic varia‑
tions of the initial statement. Each search trial query began with the original statement taken from the prospectus.
The additional query statements are paraphrased variations of the original statement in that they are constructed
differently, but they convey similar meaning.

Each retrievalmodel’s sensitivity to statement lengthwas evaluated by including statements of varying lengths,
from a single sentence containing 10 words to multiple sentence statements composed of eight sentences and 215
words, for the retrieval tasks. Additionally, some search queries contained only a portion of the original statement
to test if themodels would return the paragraphwithin which the statement snippet occurs. Altogether, there were
59 separate search statements across the 12 trials. An example of the 12 statements and their corresponding query
variations is presented in Table 1.

Table 1. Target statement: Michael Brown is the Chief Executive Officer of the company.

Query Target Statement

Query 1 Michael Brown is the Chief Executive Officer of the Company
Query 2 The Chief Executive Officer of the Company is Michael Brown
Query 3 Chief Executive Officer of the Company
Query 4 Michael Brown
Query 5 Chief Executive Officer

Note: Query 1 is the original statement, and Query 2 swaps the name of the person with his job title. Query 3 searches for the last section of the statement only,
whereas Query 4 is restricted to the name of the CEO. Finally, Query 5 restricts the search to the actual job title.

3.2. Text Pre‑Processing
To ensure fair comparison, the same pre‑processing steps were applied to all information retrieval models.

Firstly, the raw text string was converted to lower‑case. The string was subsequently tokenized by splitting it into
the sub‑unit words, and paragraph returnswere treated as delimiters to specify the text boundaries. The final stage
of pre‑processing involved removing all common English stop words. As several of the models leverage the use of
sub‑words or sub‑grams, it was decided that stemming and lemmatization would not be applied to the text.

3.3. LSA Baseline Model
The document index for the LSAmodel was created using the IPO prospectus as the training material to gener‑

ate the word‑to‑paragraph matrices. The similarity of the query vectors to the vectors in the document space was
measured using cosine similarity.

3.4. Embedding Models
Based on experimental recommendations from Kusner et al. [27,55], it was decided to employ robust, pre‑

trained, general‑purpose word embedding models as opposed to corpus or domain‑specific frameworks. These
models are trained over vast amounts of data, thus providing a wide diversity of contexts for each word during
training. This ensured that the models were not oversensitive to the test dataset.

Word2Vec vectors were generated from the Google News dataset (300 dimensions trained on 100 x 109 tokens
with a vocabulary size of 3 × 106) [56].

GloVe vectors were generated from the Common Crawl dataset (300 dimensions trained on 840 x 109 tokens
with a vocabulary size of 2.2 × 106) [57].

FastText vectorswere generated from the CommonCrawl dataset (300 dimensions trained on 840 x 109 tokens
with a vocabulary size of 2.2 × 106) [58].

Doc2Vec: There are three variations in the Doc2Vec experimental setup:

• Paragraph Vectors− Distributed Memory Model (PV− DM)
• Paragraph Vectors− Distributed Bag of Words Model (PV− DBOW)
• Paragraph Vectors + Distributed Bag of Words Model (PV + DBOW)

Each algorithm variation processes text in a different way, placing different emphasis on word order and con‑
textual analysis. These three variations will each be evaluated for strengths and weaknesses.
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Paragraph Vectors Distributed Memory Model (PV − DM): These are the original Doc2Vec parameters
where the additional paragraph vector acts as a distributed memory store of what is missing from the current con‑
text or the topic of the paragraph, and functions as an additional pseudo‑word ranging over the entire text (sentence,
paragraph, or document) participating in all sliding window samples of Word Vectors. In the PV‑DMmodel, the or‑
der of words is important, andmany contributors believe this to be an advantage over the ‘bag‑of‑words’ approach
as it preserves more information about the paragraph [24].

Paragraph Vector− Distributed Bag of Words Model (PV‑DBOW): Unlike the PV‑DMmodel, the PV‑DBOW
model adopts a ‘bag of words’ approach where word order is irrelevant, and no Word Vectors are trained. Instead,
Paragraph Vectors are trained to predict words randomly sampled from the paragraph in the output without using
local neighboring words. This simplified approach is more efficient as it requires less data storage. It is also a
slightly more flexible approach than PV‑DM, as word order is not considered important. It is more likely that this
model will recognize semantically similar but syntactically different text [24].

Paragraph Vectors + Distributed Bag of Words Model (PV + DBOW): To produce more consistent results
across multiple tasks, Le and Mikolov [24] recommended generating paragraph vectors that are a combination of
two vectors: one learned by the standard PV‑DMmodel, and one learned by the PV‑DBOW approach. This combina‑
torial approach of the previous twomethods implements simultaneous training of both Paragraph Vectors over the
whole text and skip‑gramWord Vectors (bag‑of‑words) over each sliding context window. This approach is slower
as the additional training is computationally expensive; however, the benefits of placing both Word Vectors and
Paragraph Vectors into the same space enhance the expressiveness and interpretability of the Paragraph Vectors
due to their closeness to words of known meanings [24].

For theDoc2Vecmodels, theword embeddings and paragraph centroids are calculated for the prospectus train‑
ing set. The centroid is then computed for each query, and the statements or paragraphs with the top 20 nearest
centroids (in terms of cosine similarity) to the query are retrieved.

3.5. WMD and Similarity Ranking
As an alternative approach to measuring similarity with query‑statement centroids of word embeddings, this

research evaluatesWMD [27] as ameans of evaluating similarity through the distance between individual words of
queries and statements. WMD uses pre‑trained embeddings to compute distance. Let 𝑦𝑖 be the embedding of the
word i. WMD defines the distance between the word i and word j as 𝑑(𝑖, 𝑗) = ฮ𝑦𝑖 − 𝑦𝑗ฮ2, also known as transport
cost fromword i to word j. WMD also assigns a flow 𝑓𝑖 to each word iwhich can be defined as given in Equation (1).

𝑓𝑖 =
𝑛(𝑖)
|𝑓| , |𝑓| = ෍

𝑖
𝑛(𝑖) (1)

where |𝑓| is the total word count of a text sequence. Then, WMD measures the dissimilarity of two texts by
computing the minimum total cost to move all words mass from one text to another by using the following Equa‑
tion (2).

min
𝑃𝑖,𝑗≥0

෍
𝑖∈𝐼

෍
𝑗∈𝐽

𝑃𝑖,𝑗𝑑(𝑖, 𝑗) (2)

Subject to:
∑𝑗∈𝐽 𝑃𝑖,𝑗 = 𝑓𝑖 ∀𝑖 ∈ 𝐼, and ∑𝑖∈𝐼 𝑃𝑖,𝑗 = 𝑓′

𝑗 ∀𝑗 ∈ 𝐽,
where I and J are set of words in text sequences 𝑑1 and 𝑑2 respectively. 𝑃𝑖,𝑗 represents the amount of flow that

travels from word i to word j.
It was decided to test theWMDmodel across severalwell‑established pre‑trained vector libraries to determine

the best combination for effective semantic information retrieval. The three model combinations were as follows:

• WMD +Word2Vec
• WMD + FastText
• WMD + GloVe
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The text from the IPO Prospectus and the query text used to search the document were encoded as vectors
through the above word embedding techniques before applying query‑statement similarity comparisons with the
WMD architecture. Applying the different similarity comparisons across all techniques (LSA, Doc2Vec, and WMD
variations), a set of relevance scores is generated for each query‑statement pair. The relevancy scores are ranked,
and consideration is limited to the top 20 ranked statements.

4. Results and Evaluation
To evaluate the robustness and accuracy of each semantic retrieval method, three separate comparisons were

made regarding the ranking of correct statement matches (Table 2). The first comparison assessed the number of
correct matches that each model returned within the top 20 ranked positions when similarity ranking was applied.
The second comparison assesses the number of correct matches that rank within the top three positions when
similarity metrics are applied. Finally, the last evaluation assesses howmany target statements eachmodel returns
to the top‑ranked position when similarity ranking is applied.

Table 2. The number and percentage of correct statement matches (top 20 similarity ranked positions).

System # Correct Statement Matches % Correct Statement Matches

WMD‑GloVe 59 100%
WMD‑FastText 59 100%
WMD‑Word2Vec 59 100%
PV + DBOW 53 89.83%
PV‑DBOW 40 67.8%
PV‑DM 33 55.93%
LSA 11 18.64%

Note: The number and percentage of correct statement matches returned within the top 20 similarity ranked positions by each semantic retrieval model across 12
query‑statement trials totaling 59 comparison statements.

TheWMD‑GloVe, WMD‑FastText, andWMD‑Word2Vec systems outperform the other text comparison systems,
returning 100% correct matches within the top 20 ranked results, as shown in Table 1. The only system that
comes close to this performance is theDoc2VecPV+DBOWmethod,which returns 89.83%(53/59) correctmatches.
Upon further analysis, it was discovered that all three systems return 100% correct statement matches within the
top 10 results. Amongst the Doc2Vec models, the PV‑DBOW version of Doc2Vec outperforms the original PV_DM
model, returning 40/59 (67.8% return rate) statementmatches compared to 33/59 (55.93% return rate). However,
the PV + DBOW Doc2Vec model is the clear winner, with a return rate of 89.83%, returning 53 correct statement
matches out of a possible 59. This stronger performance of the PV + DBOW Doc2Vecmodel aligns with the findings
and recommendations of Le and Mikolov [24]. The combination of both low‑level skip‑gram Word Vectors with
higher‑level Paragraph Vectors harnesses greater semantic expressiveness when they work together in the same
distribution space.

The superior performance of the ‘bag‑of‑words’ Doc2Vec PV‑DBOW approach compared to the PV‑DM model
indicates that it is much more flexible to the change of word ordering that occurs in many of the trials compared
to the more rigid PV‑DM sliding paragraph windowmethod. In this case, the benefit of preserving additional infor‑
mation about the paragraph through the sliding window technique is outweighed by the ‘bag‑of‑word’ approach,
where word order is not important. This failure to generalize rephrased paragraphs indicates that PV‑DM may be
too restrictive when attempting to match statements that are semantically similar yet textually different.

The LSAmodel achieves a very poor return of 11 correct statement matches (18.64%) in the top 20 relevancy‑
rankedpositions. Comparing this baselinemodel to themoreadvancedwordandparagraphembedding approaches
canbe considered in broader terms as a comparisonbetween twomain approaches to learning and generatingword
vectors. LSA is a Global Matrix Factorization method that processes text at the higher document level compared to
the Local Context Window (skip‑gram) approaches, such as Doc2Vev variations and word embedding algorithms.
The poor performance of the LSA model reinforces evidence that global approaches fail to efficiently leverage the
lower‑level statistical information that exposes the links between component vectors. Global techniques tend to
work better at the document level processing, such as topic clustering or classification. Indeed, from informal qual‑
itative analysis of the top 20 results returned for each LSA query, there is no obvious semantic consistency or relat‑
edness in the content or themes of the returned statements. All WMD systems have a 100% record for returning
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top 20 ranked statement matches.
However, when analyzing performance in terms of the number of top three ranked returned statement hits,

a subtle difference in the accuracy performance of WMD‑GloVe and WMD‑FastText compared to WMD‑Word2Vec
emerges (Table 3). The WMD‑GloVe system outperforms all other systems in the top 3 ranking comparisons by
returning an impressive 100% (59/59) top 3 ranked search results for all possible search term combinations com‑
pared to 58/59 (98.31%) for the WMD‑FastText system and 56/59 (94.92%) for the WMD‑Word2Vec system. The
robust ranking performance of all threeWMD systems is contrasted against a significant drop in performance of the
Doc2Vec models when the percentage of top 3 ranking returned statements is considered. The poor performance
of the Doc2Vec architectures on shorter query‑statement combinations aligns with evidence from other research
indicating that paragraph embedding approaches are best suited to longer text segments [59]. The developers of
Doc2Vec [24] note that very short texts tend not to generate useful representations from thismodel. If performance
on shorter paragraphs or sentences is important, they suggest factoring in somemechanism to outweigh them. The
authors propose a method of repeating a paragraph that is 1/Nth the average size by N times randomly through‑
out the training set or implementing N times more steps during inference. The mediocre performance of the LSA
system is further compounded by the lowest return of 5 statement matches (8.47%) in the top 3 ranked returned
results. All WMD systems recorded strong performances with the top 30 and top three ranked comparisons.

Table 3. The number and percentage of correct statement matches (top 3 similarity ranking positions).

System # Correct Statement Matches % Correct Statement Matches

WMD‑GloVe 59 100%
WMD‑FastText 58 98.31%
WMD‑Word2Vec 56 94.92%
PV + DBOW 47 79.66%
PV‑DM 25 42.37%
PV‑DBOW 23 38.98%
LSA 5 8.47%

Note: The number and percentage of correct statement matches returned within the top 3 similarity ranking positions by each semantic retrieval model across 12
query‑statement trials totaling 59 comparison statements.

However,whenanalyzingperformance in termsof thenumber of top‑ranked (number one) returned statement
hits, a significant difference in the accuracy performance of WMD‑GloVe and WMD‑FastText compared to WMD‑
Word2Vec becomes apparent (Table 4). TheWMD‑GloVe system returns an impressive 53/59 (89.83%) top‑ranked
statement matches compared to a 50/59 (84.74%) return rate for the WMD‑FastText system and a significantly
lower 18/59 (58.98%) return rate for the WMD‑Word2Vec system. In fact, the WMD‑Word2Vec system is outper‑
formed in these trials by the Doc2Vec PV + DBOW system, which returns 39/59 (66.10%) top‑ranked statement
matches. On further analysis, the WMD‑GloVe system was also found to return all search matches (100%) in the
top 2 ranked positions compared to 56/59 (94.92%) top 2 ranked returns for WMD‑FastText, 51/59 (86.44%) top
2 ranked returns for WMD‑Google, and 44/59 (74.58%) top 2 ranked returns for the Doc2Vec PV + DBOW system.

Table 4. The number and percentage of correct statement matches (number one ranked similarity ranking posi‑
tions).

System # Correct Statement Matches % Correct Statement Matches

WMD‑GloVe 53 89.83%
WMD‑FastText 50 84.74%
PV + DBOW 39 66.10%
WMD‑Word2Vec 18 58.98%
PV‑DBOW 16 27.12%
PV‑DM 15 25.42%
LSA 2 0.03%

Note: The number and percentage of correct statement matches returned within the number one ranked similarity ranking positions by each semantic retrieval
model across 12 query‑statement trials totaling 59 comparison statements.

From the ranked similarity results as shown in Figure 3, it has been established that WMD‑GloVe achieves the
most robust accuracy performance for statement matching from re‑worded and partial queries. The real power of
this vector‑based approach, however, lies in its ability to achieve semantic matching of statements closely related
to the theme or content. The superior performance of WMD + GloVe can be attributed to a synergy between GloVe’s
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globally consistent embedding space and WMD’s reliance on stable geometric structure. Unlike Word2Vec, which
derives embeddings from local context windows and can produce higher variance representations [45,52], GloVe
constructs word vectors by factorizing a global co‑occurrence matrix across the entire corpus [25]. This global
statistical grounding yields a more consistent semantic space, which aligns well with WMD’s optimal transport
mechanism for measuring document distance [27]. As a result, GloVe + WMD benefits from both robust semantic
stability and precise word‑level alignment, enabling more accurate document comparisons. The key assumption is
that GloVe’s aggregated global context captures semantic regularities more reliably than locally predictivemethods,
thereby reducing noise and enhancing WMD’s effectiveness, particularly in top‑ranked retrieval scenarios.

Figure 3. Comparison of percentage of correct statement matches returned by each model.

Tohighlight this semantic processing ability, an informal qualitative analysis of the trial 2 resultswas conducted
to assess the relatedness of the top 20 statements returned based on the following query: “Michael Brown is the
Chief Executive Officer of the Company”. This query search was analyzed as theWMD‑based systems were the only
models that achieved 100% recall on it. Using the search phrase, 10 out of the top 20 ranked statements (including
the top 4 ranked statements) specificallymention “Michael Brown” as the CEO or executive director of the company.
While this indicates successful term matching at a syntactic level, the contents of the remaining 10 statements
demonstrate text matching at a semantic level by the combined WMD and GloVe word embeddings model. The
remaining 10 statements reference semantically similar topics or concepts, including management structure, key
management personnel, board of directors, and other details relating to company management. This ability to
cluster semantically related conceptswithin the distribution space has important implications for facilitating users’
search experiences through informed query expansion and providing relevant responses to partial or incomplete
query searches.

5. Discussion
Our results show that pre‑trained word embedding models can be effectively applied to different domains

with considerable success. However, there are certain use cases and business domains where the language used is
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particularly nuanced and specific. In these circumstances, being uncoupled from the domain ontologies would be
a disadvantage, leading to systems that fail to understand the information needs of the end‑users. It is therefore
necessary to adopt embedding schemes that are enriched by exploiting domain‑tailored knowledge. The benefit
of the unsupervised learning algorithms evaluated in this paper is that they can be trained on domain‑specific on‑
tology and lexical resources without the need for time‑consuming supervised learning prerequisites, such as term
extractors or manually labelled training data. The power of these algorithms is that their term x object matrices
can be automatically populated for any text collection where the underlying concepts can be identified by com‑
pletely automatic statistical processes. For example, in these experimental trials, pre‑trained GloVe vectors were
used. They proved successful in the accurate retrieval of both short and long query‑statement searches. If, however,
domain‑specific tuning was deemed necessary for specialized datasets, the GloVemodel is much more efficient to
train compared to the Doc2Vec variations. Scalability is facilitated as it is easier to parallelize the implementation,
enabling it to train overmore data, and populating the co‑occurrencematrix requires a single pass through an entire
corpus to collect the statistics.

The accuracy and robustness of these vector‑based semantic retrieval models have set the agenda for this
analysis paper. However, for practical applications, these mechanisms also need to be considered within a wider
context of a semantic search framework and a semantic support infrastructure where usability and the support of
the end‑user are the focus of industrial information retrieval and management solutions. Given that a substantial
performance gap remains between Information Retrieval systems and what users need and expect from them [9]
and considering the volume of time that users can spend on searching tasks as part of their everyday work duties,
it is necessary to consider an entire search ecosystem built around semantic search. Many large businesses have
complex information spaces that require additional support for the end user to facilitate their search strategies
for navigating these unfamiliar underlying knowledge structures. This is particularly necessary if they are seeking
information from a wide range of topics or have uncertainty about the nature of the search problem. This lack of
definition and certainty about the keywords to choose further highlights the need to factor semantic synonymy into
the equation. Semantic searchwill be at the core of this newbreedof techniques that are being developed to support
the browsing of information spaces. Apart from text‑based semantic search, which has been at the center of this
investigation, Information Retrieval accuracy can be further improved when we incorporate the semantic‑based
approaches into a hybrid framework of search strategies.

Other measures of algorithmic relevance can be included in the overall suite of search tools, including net‑
work statistics, click‑through data, and semantic‑driven query expansion [9]. Query expansion is an iterative and
exploratory process where the user actively engages with the search system to refine their queries in response to
the results that are returned. This can be seen on the interfaces ofmanyweb search engineswhere expanded query
suggestions appear in response to users’ input. The use of query expansion has been found to increase recall, and
this process can be enriched through semantic‑based query recommendations or auto‑suggest. Here, the query
expansion system would use the word embedding techniques to suggest potential query terms based on semantic
similarity or synonymous names for concepts [33,60,61].

6. Conclusions
This investigation demonstrates the ability of semantic or conceptual‑based search strategies to exploit the

latent underlying semantic structure of text and how this can be leveraged to improve the quality and relevancy of
the search experience. Semantic search enables the retrieval of documents based on how similar the concepts in
the query are to the concepts in the document. These concepts represent high‑level ideas in each domain. Semantic
representation strategies can be viewed as a means of narrowing the gap between the mismatch of words that are
contained in documents and the words expressed in queries, reflecting users’ intentions. For the modern user, this
intuitive behavior of semantic search has almost become expected, thanks to services such as Google, as searchers
expect search engines to ‘do as Imean – not as I say’ when they query. Semantic search enables users to get relevant
results even when they input shorthand, truncated, or misspelled queries containing only a few keywords. Over‑
coming lexical problems, such as misspellings and partial queries, facilitates data exploration and enables users to
find target text in large collections of data, allowing them to interact more fully with the data and enrich the infor‑
mation discovery process.
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Limitations and FutureWork

• This study is limited to a single domain‑specific dataset (the Foxtons IPO prospectus), and our findings, there‑
fore, can be interpreted as a focused case study in corporate finance documents. While this study provides
robust proof‑of‑concept, the methodology’s broader applicability requires validation on contrasting domains.
Future work will extend this evaluation to such heterogeneous datasets to assess the generalizability of our
approach.

• One of the limitations of this work is the absence of benchmarking against Transformer‑basedmodels, such as
SBERT and GAN‑VAE developments [49,52,53]. We frame this study as a focused case study on static embed‑
dings with WMD and identify SBERT and GAN‑VAE comparison as an important direction for future research.
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