
Digital Technologies Research and Applications | Volume 04 | Issue 02

Digital Technologies Research and Applications
http://ojs.ukscip.com/index.php/dtra

Article

An Application for Portfolio Optimization, Risk Sensitivity and Efϐi‑
cient Frontier Visualization in Mathematica
Charalampos M. Pelekoudas * , Eleni P. Tsopouridou and Ioannis Papadopoulos

School of Economics and Business, Department of Economics, University of Thessaly, 38333 Volos, Greece
* Correspondence: charrispelek@gmail.com; Tel.: +30‑690‑6996‑350

Received: 27 June 2025; Revised: 15 July 2025; Accepted: 31 July 2025; Published: 20 August 2025

Abstract: The present study develops a flexible and interactive decision‑support application for portfolio optimiza‑
tion, grounded in Modern Portfolio Theory and implemented within the Mathematica computational environment.
The tool enables users to construct, analyze, and evaluate investment portfolios dynamically, incorporating real‑
time sensitivity analysis. In accordance with contemporary portfolio theory, it integrates two principal optimiza‑
tion strategies: (a) the Minimum Variance Portfolio and (b) the Maximum Sharpe Ratio Portfolio. The computa‑
tional framework ingests real stock market data (Yahoo Finance), from which returns and covariance matrices are
calculated. The resulting data serves as inputs for solving the corresponding optimization problems under user‑
deϐined constraints. A key feature of the tool is the ability to perform real‑time sensitivity analysis with respect
to expected returns, as well as to interactively adjust the risk‑aversion coefϐicient, providing users with immedi‑
ate visual and numerical feedback. Interpretability is enhanced through graphical representations of the Efϐicient
Frontier, overlaid with the optimal portfolios and the Capital Market Line on a uniϐied plot. These visualizations
support both educational and practical ϐinancial decision‑making. Overall, the tool offers a novel contribution by
offering a hands‑on, visually rich, and analytically rigorous environment for understanding and applying portfolio
optimization methods using real‑world data.
Keywords: Modern Portfolio Theory; Efϐicient Frontier; SharpeRatio; Risk Aversion; CAPM;Mathematica Software

1. Introduction
The management of investment portfolios remains one of the principal pillars of ϐinancial science, with direct

implications for both theoretical research and practical application. Since the seminal development ofModern Port‑
folio Theory byMarkowitz (1952) [1], and extending tomodernmethodologies involving algorithmic optimization,
machine learning, and integrated risk analytics, there remains a persistent and evolving need for frameworks that
support the rational selection and allocation of investment capital.

In recent years, heightenedmarket volatility—exacerbatedby geopolitical instability,macroeconomic shocks,
and unpredictable monetary policy shifts—has signiϐicantly intensiϐied the importance of robust portfolio opti‑
mization techniques. These fluctuations underscore the necessity for dynamic, transparent, and mathematically
sound decision‑making tools capable of adapting to structural uncertainty and behavioral irregularities in capital
markets [2].

The classical Markowitz framework centers on achieving an optimal trade‑off between expected return and
portfolio risk, with risk typically expressed as the variance of returns. The Efϐicient Frontier and the principle of
diversiϐication constitute foundational tools for decision‑making under uncertainty. Moreover, the Sharpe Ratio
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(1966) [3] expands this evaluative structure by incorporating excess return relative to the risk‑free rate, thereby
linking portfolio optimization with market equilibrium theory, as articulated in the Capital Market Line.

The practical and educational need to explore these concepts has led to the development of computational
tools that not only provide numerical results but also enable interactive modeling and parametric sensitivity test‑
ing. The present study proposes a dedicated application for portfolio optimization in the Wolfram Mathematica
programming environment, employing core functions such as Minimize, Manipulate, and ListLinePlot to construct
an interactive simulation model. This approach combines theoretical rigor with educational usability, making it
effective for both instructional settings and empirical research.

The aim of this article is to present the structure and functionality of this application, analyze the behavior
of the two core strategies—the Minimum Variance Portfolio and the Maximum Sharpe Ratio—and assess their ro‑
bustness under varying assumptions via sensitivity analysis. The study concludes with graphical representations
of the Efϐicient Frontier, the Capital Market Line, and the dynamic evolution of returns, offering a comprehensive
visualization of the proposed optimization framework.

Keys contributions of the study:

• Application of portfolio theory in an interactive computational environment: The study implements the the‑
oretical models of Markowitz and Sharpe within the Wolfram Mathematica environment, offering a tool that
effectively bridges theory andpractice, basedonuser input (timeframes, parameters) and real‑world data from
Yahoo Finance.

• Analysis of two core optimization strategies: It presents and compares the Minimum Variance Portfolio and
the Maximum Sharpe Ratio strategies, highlighting their practical differences and implications for investment
decision‑making.

• Integration of sensitivity analysis: The model enables evaluation of the robustness of the optimization results
with respect to small variations in expected returns, providing insights into the model’s stability.

• Use of parametric control via the Manipulate function: The interactive interface allows real‑time exploration
of the effects of the risk aversion coefϐicient (λ) and sensitivity levels, enhancing user understanding of their
influence on portfolio allocation.

• Educational and research applicability: The developed framework is suitable for use in both academic teaching
and ϐinancial research due to its theoretical rigor and computational versatility. It also generates highly infor‑
mative graphical outputs that visualize return trajectories, the Capital Market Line (CML), and the Efϐicient
Frontier, offering strong interpretative support.

• Demonstration of Mathematica as a powerful tool for ϐinancial modeling: The study showcasesWolframMath‑
ematica as a viable alternative to more widely used platforms (such as Python, R, or Excel) for conducting
ϐinancial simulations and portfolio optimization.

The structure of the rest of this paper is as follows: Section 2, provides the theoretical and mathematical back‑
ground of Markowitz’s Portfolio Theory and CAPM. Section 3 presents offers a comprehensive look of our frame‑
work, showcasing the code, user interaction, and an evaluation of our results. Section 4 discusses potential use
cases and propose future work. Section 5 offers a comparison with existing portfolio optimization applications,
while Section 6 examines the limitations of the current portfolio management model. Finally, Section 7 concludes
the paper by summarizing the key ϐindings. We provide our Mathematica code as Supplementary Materials.

2. Materials and Methods
2.1. Markowitz’s Portfolio Theory

Markowitz’s Portfolio Theory (Modern Portfolio Theory — MPT) constitutes a groundbreaking framework
for constructing investment portfolios, aiming either to maximize expected return for a given level of risk or, al‑
ternatively, to minimize risk for a given level of expected return [1]. The core principle of the theory is “efϐicient
diversiϐication”, achieved through the strategic selection of assets that are not perfectly correlatedwith one another.
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2.1.1. Historical Framework

Modern Portfolio Theory (MPT)was introduced by HarryMarkowitz in 1952 through his seminal article “Port‑
folio Selection” [4] and further developed with in his 1959 book “Portfolio Selection: Efϐicient Diversiϐication of
Investments” [5]. The discussion of rational behavior under uncertainty in Part IV of the book (1959) begins with
a variation of L. J. Savage’s axioms [6]. From these axioms, it follows that an investment strategy should be cho‑
sen to maximize expected utility over a multi‑period investment horizon [6]. In recognition of his contributions to
investment theory, Markowitz was awarded the Nobel Prize in Economic Sciences in 1990 [7]. His work laid the
foundation for subsequent developments, such as the Capital Asset Pricing Model (CAPM) introduced by Sharpe,
Lintner [8], and Mossin [9].

2.1.2. Theoretical Framework

Modern Portfolio Theory (MPT) is built upon the following assumptions: (1) investors behave rationally and
make decisions based on logical reasoning; (2) investors arewilling to accept higher levels of risk provided that they
are adequately compensated with higher expected returns; (3) markets are efϐicient, meaning that information is
fully and promptly disseminated to all market participants; (4) investors can borrow or lend unlimited amounts
of capital at a risk‑free interest rate; (5) markets are free from transaction costs and taxes; and (6) it is possible to
select assets whose returns are independent of other investments within the portfolio.

According to Markowitz, investors should not only consider the expected return of a single asset but also take
into account its variance and its correlation with other assets in the portfolio [7,10].

2.1.3. Mathematical Modeling of Portfolio Optimization

Return of Individual Assets
The ϐirst step in conducting a Markowitz portfolio analysis is the calculation of the returns of the i individual

assets based on their closing prices (with the computation beginning from the second observation day), for each
time point t considered in the analysis [11].

The return is calculated using the following formula:

ri =
Pi,t‑1 − Pi,t

Pi,t
(1)

where:

• ri,t: the return of asset i at time t,
• Pi,t: the closing price of asset i at time t,
• Pi,t‑1: the closing price of asset i at time t−1.

Calculation of Average Return
Afterwards, the average return for each asset i is determined by calculating the arithmetic mean of its percent‑

age changes over the observation period [11]. This can be expressed mathematically as follows:

E (ri) =
1
n ෍

n

t = 1
ri,t (2)

where:

• E(ri): the average (expected) return of asset i,
• ∑n

t = 1 ri,t: the sum of the returns of asset i over all time periods t,
• n: the number of observations

Construction of the Covariance Matrix
In this stage of the analysis, the covariance between each pair of assets is calculated in order to assess the

degree to which their returns co‑vary over time. The covariance serves as a critical measure for understanding the
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interactions among assets within a portfolio and is essential for the construction of the variance‑covariancematrix,
which underpins the Markowitz portfolio optimization model [11].

The covariance between the returns of assets iii and j is computed using the following formula:

Cov(i, j) = 1
n− 1

n

෍
t=1

(ri,t − E(ri))(rj,t − E(rj)) (3)

where:

• Cov(i,j): denotes the covariance between asset iii and asset j.
• ri,t, rj,t: represent the returns of assets i and j at time t, respectively,
• E(ri), E(rj): the average (expected) returns of assets i and j, respectively,
• n: denotes the number of observations.

The full covariance matrix is constructed by systematically calculating all pairwise covariances for the set of
assets under consideration. This matrix is symmetric and positive semi‑deϐinite and plays a central role in the
estimation of portfolio variance and the identiϐication of the efϐicient frontier.
Expected Portfolio Return and Total Portfolio Risk

For each asset included in the portfolio, a corresponding investment weight is assigned and denoted by wi.
These weights reflect the proportion of the total capital allocated to each asset. The expected return of the over‑
all portfolio is then computed as the weighted sum of the individual expected returns of the constituent assets,
according to the following formula [11]:

E(rp) =
n

෍
i = 1

(wi × E (ri)) (4)

where:

• E(rp): denotes the expected return of the portfolio,
• wi: represents the weight of asset i in the portfolio,
• E(ri): is the expected return of asset
• n: is the number of assets in the portfolio.

Subsequently, the total risk (variance) of the portfolio, denoted as σ2p , is estimated using the matrix formula‑
tion [11]:

σ2p = wT × Cov ×w (5)
where:

• wT: is the transposed vector of portfolio weights,
• Cov: is the covariance matrix of asset returns,
• w: is the vector of weights.

2.1.4. Critical Evaluation of Modern Portfolio Theory: Strengths andWeaknesses

Markowitz’s portfolio theory provides a comprehensive and mathematically rigorous framework for evaluat‑
ing the trade‑off between risk and return, aiming to achieve diversiϐication within a portfolio. Through effective
diversiϐication, it is possible to enhance expected returns without a proportional increase in expected risk [7]. The
model is fully compatible with modern computational tools and can be implemented and analyzed using platforms
such as the Excel Solver or symbolic computation environments like WolframMathematica, which is utilized in the
application presented in this article [12].
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However, despite its widespread theoretical acceptance, several key assumptions underlying Markowitz’s
framework are often violated in real‑world conditions, potentially leading to outcomes that deviate from actual
market behavior. Speciϐically:

(a) The assumption of fully rational investors, who are presumed to believe that higher risk always translates into
higher expected returns, is not consistently supported by empirical evidence;

(b) The notion of perfect and complete information fails to reflect the presence of information asymmetries that
characterize real markets; and

(c) The assumption of zero transaction costs and tax implications overlooks critical factors that can signiϐicantly
influence optimal portfolio selection [6].

Furthermore, the Markowitz model relies heavily on historical return data to forecast future performance, in‑
troducing a level of uncertainty into the optimization process [7]. This reliance may result in unreliable or subop‑
timal outcomes, particularly during periods of ϐinancial crisis or under extreme economic conditions, when past
trends fail to predict future dynamics accurately [6].

2.2. Capital Asset Pricing Model — CAPM
The Capital Asset Pricing Model (CAPM) is one of the most fundamental theories in the ϐield of ϐinancial eco‑

nomics. The model describes the relationship between risk and the expected return of a security, positing that the
expected return of an asset is linearly related to its systematic risk, as captured by the beta coefϐicient [13].

2.2.1. Historical Framework

Roy (1952) [14] was the ϐirst to propose a risk–reward ratio as a means of evaluating the performance of an
investment strategy. Building on Roy’s ideas, William Sharpe, between 1964 and 1966 [3,15], applied this concept
within the mean–variance framework introduced by Markowitz, leading to the development of one of the most
widely recognized performance evaluation metrics [16]. Simultaneously and independently, Lintner (1965) [8]
and Mossin (1966) [9] expanded upon Markowitz’s (1952) [4] foundational work on portfolio theory, jointly con‑
tributing to the formulation of the Capital Asset Pricing Model (CAPM).

Their contributions included the introduction of two key assumptions to the original framework:

(a) Homogeneous expectations: Given the asset prices that clear the market at time t = 1, all investors agree on
the joint distribution of asset returns from t = 1 to some future time t. Moreover, this distribution is assumed
to be the true one—i.e., it is the actual distribution fromwhich observed returns are drawn and against which
the model is empirically tested.

(b) Risk‑free borrowing and lending: Investors have equal access to borrowing and lending at a risk‑free rate,
which is constant and independent of the amount borrowed or lent.

William Sharpe, who also introduced the well‑known Sharpe Ratio [17], was awarded the Nobel Prize in Eco‑
nomic Sciences in 1990 for his pioneering contributions to asset pricing theory. The CAPM quickly became the
dominant tool for estimating the cost of capital and evaluating investment performance [18].

2.2.2. Theoretical Framework

The Capital Asset Pricing Model (CAPM) is founded on the assumption that investors are rational and seek to
maximize their utility by selecting portfolios based on expected return and risk. In its standard form, the model
assumes that all investors share homogeneous expectations regarding asset returns and have unrestricted access
to borrowing and lending at a common risk‑free interest rate. As noted by Fama and French (2004) [14], the CAPM
relies on the existence of a single, mean–variance efϐicient “market portfolio” that serves as the benchmark for all
investors.

Additionally, themodel employs the SharpeRatio as a fundamental tool for comparing portfolios based on their
return per unit of risk—a concept that is also embedded in the interpretation of the Capital Market Line (CML). The
Sharpe Ratio is speciϐically designed to measure the expected excess return per unit of risk for a zero‑investment
strategy [17].
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The CAPM also draws on Tobin’s Separation Theorem, which asserts that all investors, regardless of their in‑
dividual risk preferences, will choose to invest in a common optimal combination of risky assets—the so‑called
market portfolio—combined with the risk‑free asset. Under these assumptions, differences in expected returns
across individual securities are explained solely by their beta coefϐicients, which quantify the sensitivity of each as‑
set’s returns tomovements in the overall market, measured as the covariance of the asset with themarket portfolio
divided by the variance of the market [14].

2.2.3. Mathematical Modeling of Portfolio Optimization

Maximizing the Sharpe Ratio
In addition to portfolio optimization based on a given level of risk aversion, the analysis also considers the case

of Sharpe Ratio maximization, i.e., the optimization of the return‑to‑risk trade‑off:

Sharpe Ratio =
E ൫rp൯ − rf

σp
(6)

where:

• E(rp): the expected return of the portfolio,
• rf : the risk‑free rate,
• σp : the standard deviation of the portfolio returns.

The optimization is performed under the following constraints:

• ∑n
i = 1wi = 1

• 0 ≤ wi ≤ 1

The resulting portfolio is referred to as the market portfolio, as it forms the basis for the Capital Market Line
(CML). This portfolio represents the optimal risky portfolio, which, when combined with the risk‑free asset, yields
the highest possible Sharpe Ratio.
Capital Market Line (CML)

The Capital Market Line (CML) illustrates all feasible combinations of the risk‑free asset and the market port‑
folio. It is graphically represented as a straight line in mean–standard deviation space, and its equation is given
by:

E(r) = rf +
E (rm) − rf

σm
× σ (7)

where:

• E(rm): the expected return of the market portfolio,
• σm : the standard deviation of the market portfolio,
• σ: the total risk (standard deviation) of the combined portfolio.

Equation of CAPM
The corresponding Capital Asset Pricing Model (CAPM) equation is deϐined as [4]:

E(Ri) = Rf + βi[E(Rm) − Rf] (8)
where:

• E(Ri): expected return of asset i,
• Rf: risk‑free rate,
• E(Rm): expected return of the market portfolio,
• βi: beta coefϐicient of asset i, calculated as:
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βi =
Cov(Ri,Rm)
Var(Rm)

(9)

This equation reflects the fundamental CAPMprinciple that investors are compensated only for systematic risk.
Unsystematic (idiosyncratic) risk is assumed to be fully diversiϐiable and, therefore, not priced in equilibrium [19].

2.2.4. CAPM: Strengths andWeaknesses

The Capital Asset Pricing Model (CAPM) is distinguished by its simplicity and the linear relationship it estab‑
lishes between risk andexpected return,which facilitates the valuationof investment opportunities [16]. Themodel
is widely used in estimating the cost of equity capital and has proven particularly useful in analyses of capital efϐi‑
ciency. Moreover, it offers strong theoretical predictions regarding the quantiϐication of risk and the relationship
between expected return and systematic risk [14,20].

However, CAPM does not account for correlations among individual assets and relies on a set of highly restric‑
tive and often unrealistic assumptions. These include the existence of a homogeneous investment horizon, perfect
information, and unrestricted borrowing or lending at the risk‑free rate—all ofwhich are rarelymet in practice [14].
Additionally, the model’s foundational assumption of a linear relationship between an asset’s beta and its expected
return has shown weak empirical support, as several other factors have been found to influence asset returns [14].
Another important limitation lies in the assumption that returns are normally distributed, a condition that does not
hold in many practical scenarios, particularly in the context of hedge funds or complex investment strategies. This
makes the CAPM potentially unreliable in environments characterized by high volatility or non‑Gaussian return
distributions.

3. Results
This section presents the results derived from the implementation of the two portfolio optimization models—

namely the Minimum Variance model based on Markowitz’s theory and the Maximum Sharpe Ratio model—under
varying values of key input parameters.

3.1. Minimum Variance Portfolio (Markowitz)
The results obtained from the code execution conϐirm that the minimum variance portfolio model favors low‑

risk allocations when the risk‑aversion coefϐicient (λ) takes low values. In such cases, the model prioritizes assets
exhibiting low volatility. Conversely, as the investor’s aversion to risk increases (i.e., higher λ values), the model
tends to include assets with higher expected returns, even at the cost of increased portfolio risk and higher Sharpe
Ratio values. The Sharpe Ratio serves here as a performance metric, quantifying the return generated per unit
of risk undertaken. These ϐindings reafϐirm the theoretical premise that Markowitz’s model adjusts the portfolio
composition according to the investor’s individual risk tolerance.

This dynamic is visually evident in the shape of the Efϐicient Frontier, which transitions clearly from conserva‑
tive to more aggressive portfolios as the parameter λ increases.

3.2. Maximum Sharpe Ratio Portfolio
The maximum Sharpe portfolio is identiϐied as the tangency point between the Capital Market Line (CML)

and the Efϐicient Frontier. It represents the optimal trade‑off between return and total risk for a rational investor
who can borrow or lend at the risk‑free rate. As theoretically expected, the optimal weight distribution in this
model remains invariantwith respect to the investor’s risk‑aversion coefϐicient λ, thereby indicating that the Sharpe‑
optimal portfolio is independent of individual preferences and is determined solely by the characteristics of the
investment universe and the selected risk‑free rate. Thus, for a given asset universe and timeframe, the Maximum
Sharpe portfolio is uniquely deϐined and identical for all investors.

A typical behavior observed in this model is the concentration of weights on a small subset of available assets.
This occurs because the optimization focuses on the individual return‑to‑risk ratio of each asset rather than solely
on their expected returns. As a result, assets with high expected returns but also high volatility may be excluded,
while others with modest returns and low variance may receive signiϐicant allocation.
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Despite its theoretical validity, this concentration introduces practical risks related to sensitivity and lack of
diversiϐication. In simple terms, when a portfolio relies heavily on a few assets, a forecasting error in their expected
returns or variance can signiϐicantly deteriorate overall portfolio performance, increasing its fragility to systemic
risk or adverse correlations. This implies that while theoretically optimal, the Sharpe‑maximizing strategy may
pose challenges regarding portfolio robustness.

3.3. Sensitivity Analysis
The model also investigates the sensitivity of results to perturbations in the expected return vector μ. After

applying a± x% variation to the mean returns, the following observations were made:

(a) The Markowitz minimum variance portfolios displayed relatively stable behavior, with only minor deviations
in output performance. This suggests that the model retains its reliability under mild uncertainty, making it
useful for investors relying on statistical forecasts or econometric models.

(b) Portfolios derived from the Sharpe optimization approach appeared more sensitive to these return shocks,
leading to greater fluctuations in the overall risk‑return proϐile. This sensitivity underscores the higher respon‑
siveness—and potentially higher fragility—of such portfolios in volatile or misspeciϐied environments.

3.4. Graphical Visualization
The implementation includes fully interactive graphical representations of the two optimization models. The

user may explore:

(a) Efϐicient Frontier: A curve plotting optimal risk–return combinations for different values of λ, clearly visualiz‑
ing the investor’s trade‑off decisions.

(b) Capital Market Line (CML): A straight line tangent to the Efϐicient Frontier, originating from the risk‑free rate
and identifying the Sharpe‑optimal portfolio.

(c) Key Portfolios (Markowitz and Max Sharpe): Both portfolios are marked distinctly on the graph using appro‑
priate symbols, tooltips, and legends, enabling intuitive comparison and educational insight.

In addition, the cumulative return plots for each portfolio allow for direct performance comparison based on a
hypothetical €1 investment over time. These dynamic visualizations signiϐicantly enhance the educational value of
the tool, offering a comprehensive decision‑support framework that integrates ϐinancial theory, numerical results,
and immediate interpretability.

3.5. Portfolio Optimization and Risk Analysis in WolframMathematica V(14.1)
The model makes extensive use of core built‑in commands such as FinancialData, which enables the auto‑

matic retrieval of historical asset prices, and Minimize, which solves the constrained optimization problems cen‑
tral to both the Minimum Variance and Maximum Sharpe Ratio strategies. Interactive parameter exploration is
achieved through the use ofManipulate, while ListLinePlot serves for the graphical depiction of cumulative portfo‑
lio returns. Data preprocessing and matrix operations are handled using functions such as Transpose, Table, and
Mean, supporting the construction of return series and the covariance matrix. This section presents the imple‑
mentation of a portfolio optimization model in Wolfram Mathematica V(14.1), including a detailed explanation
of its structure, user interactions, and computational outcomes based on a hypothetical portfolio. The code is
divided into several functional blocks, guiding the user from data input to advanced visualizations and ϐinancial
interpretations [14,21–23].

To ensure transparency and reproducibility, a detailed description of the user’s interactionwith the application
is provided. The portfolio optimization model implemented inWolframMathematica follows a structured, step‑by‑
step workflow, allowing the user to engage directly with both the data inputs and the optimization outputs. Upon
initiating the program, the user is guided through a series of input prompts generated via the Input function. These
include: (i) the number of ϐinancial assets to be included in the portfolio, (ii) the investment period deϐined by a
start and end date, (iii) the maximum value of the risk aversion coefϐicient λ for the Minimum Variance model, and
(iv) the risk‑free rate 𝑟𝑓 , which is critical for Sharpe ratio‑based optimization.
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Following the initial parameter deϐinition, the user is asked to input the ticker symbols of the desired assets.
These are stored in a list structure and used to fetch historical price data via FinancialData. Once retrieved, the data
are processed into amatrix of daily returns. Statistical properties such as themean return vector and the covariance
matrix, are computed using core Mathematica commands (Mean, Transpose, and Table).

The optimization phase utilizes the Minimize function under standard constraints (i.e., full investment and no
short‑selling). Two models are computed in parallel: the Minimum Variance Portfolio and the Maximum Sharpe
Ratio Portfolio. Through the Manipulate interface, users are given interactive control over the λ parameter and a
sensitivity factor, enabling real‑time updates of all associated computations and visualizations.

Output metrics include the optimal portfolio weights, expected return, portfolio variance, Sharpe ratio, and
cumulative return series. Visual results are presented via ListLinePlot, which illustrates the time evolution of port‑
folio performance. This user‑centric, interactive architecture enhances both the educational value and the practical
relevance of the application, bridging theoretical principles with empirical decision‑making.

3.5.1. User Interaction and Input Parameters

The ϐirst stage of the program involves dynamic interaction with the user, who is prompted to input essential
parameters related to the portfolio under investigation (Figure 1) [24,25].

Figure 1. Mathematica code that asks for user input (start/end dates, λ, rf).

Speciϐically, the user must:
(a) Specify the number of assets in the portfolio (≥ 1) (Figure 2).

Figure 2. User input window for deϐining the number of portfolio assets.

(b) Deϐine the timeframe for the analysis by entering the start and end dates as showcased in Figure 3.
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Figure 3. Sequential input windows for deϐining start and end dates of the investment period.

(c) Set the upper limit for the risk aversion coefϐicient (λ), reflecting the investor’s tolerance to risk (lower
values for risk‑averse investors and higher for risk‑seeking ones) (Figure 4).

Figure 4. User‑deϐined control for specifying investment risk tolerance.

(d) Provide the risk‑free rate, determined by the market in which the investment is made (Figure 5).

Figure 5. Prompt for setting the risk‑free rate used in Sharpe optimization.

(e) Input the asset tickers, as listed on Yahoo Finance, which will be used to retrieve historical data (Figure 6).
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Figure 6. Input window for entering stock ticker symbols as listed on Yahoo Finance.

3.5.2. Data Retrieval

Following the data input, the systemproceedswith retrieving historical stock data usingMathematica’s built‑in
FinancialData function, which directly interfaces with Yahoo Finance (Figure 7).

Figure 7. Code block executing real‑time data acquisition from Yahoo Finance.

3.5.3. Covariance Matrix Construction

Subsequently, the variance‑covariance matrix of the portfolio is constructed (Figure 8). This matrix includes:

(a) The variances of individual assets along the main diagonal.
(b) The covariances between asset pairs in the off‑diagonal elements.

Figure 8. Code segment for constructing the variance–covariance matrix from asset returns.
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3.5.4. Portfolio Models and Calculations

The fourth section of the code (Figure 9) performs a series of key portfolio optimization calculations, struc‑
tured into two main models:

(a) Minimum Variance Portfolio (MVP) Model:
i Total portfolio risk (standard deviation).
ii Return per unit of risk (Sharpe ratio).
iii Optimal investment weights for each asset.
iv Percentage change in average portfolio return for a hypothetical percentage variation (x%) in asset re‑

turns.
v Time series plot of cumulative return over the selected analysis period.

(b) Maximum Sharpe Ratio Portfolio Model:
i Maximum achievable return.
ii Corresponding risk level.
iii Optimal asset allocation for maximizing the Sharpe ratio.

Figure 9. Mathematica code segment executing the portfolio optimization models and sensitivity analysis proce‑
dures.

3.5.5. Visualization and Interactive Analysis

The ϐifth section focuses on dynamic visualizations of the above computations (Figure 10). Users can interact
with sliders and control panels to adjust parameters such as the risk aversion coefϐicient (λ) and the portfolio’s
sensitivity, observing in real‑time how the asset allocations and keymetrics evolve in response to their preferences.

Figure 10. Code section responsible for generating interactive visualizations of portfolio metrics in Mathematica.
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A separate section of the code constructs the Capital Market Line (CML) and the Efϐicient Frontier, providing a
visual summary of all efϐicient portfolios across varying levels of risk aversion (Figure 11). On the graph:

i The minimum variance portfolio is marked with a green dot.
ii The tangency portfolio (maximum Sharpe ratio) is marked with a red dot, indicating the optimal intersection

of the CML with the Efϐicient Frontier.
iii A legend is provided showing the corresponding capital weights for each of the two optimal portfolios.

Figure 11. Code implementation for plotting the Efϐicient Frontier and Capital Market Line.

3.5.6. Example Application

An illustrative example is provided for a hypothetical portfolio comprising four stocks: Apple (AAPL), Google
(GOOG), Tesla (TSLA), andMicrosoft (MSFT). The analysis spans the period from 01/09/2024 to 20/02/2025, with
a maximum risk aversion coefϐicient of λ = 2 and a risk‑free rate set to zero.
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Figure 12 includes:

â The left part of the image, shows the initial portfolio results with risk aversion coefϐicient λ = 0.
â The right part, illustrates how adjustments to the λ, now with λ = 0.5, signiϐicantly alter the portfolio compo‑

sition and capital allocation strategy, yielding us higher returns.

Figure 12. Side‑by‑side comparison of portfolio composition for λ = 0 and λ = 0.5.

Finally, a comparative graph is presented (Figure13), combining both the CapitalMarket Line and the Efϐicient
Frontier, highlighting the optimal portfolio conϐigurations under both theMinimumVariance andMaximum Sharpe
Ratio frameworks.

Figure 13. Final summary plot combining Efϐicient Frontier and Capital Market Line.

The results of the analysis indicate that when the risk aversion coefϐicient λ ranges between 0 and 2, the vari‑
ance of the riskminimizationmodel can take on both positive values (e.g., for λ = 0, σ2 = 0.00012585) and negative
values (e.g., for λ = 0.5, σ2 = 0.000838349). For the same model, as the risk aversion coefϐicient λ increases, the
Sharpe ratio also increases.
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Furthermore, it is observed that the model may yield zero weights for one or more of the selected stocks. For
instance, when λ = 0, the weight assigned to Tesla is zero, and when λ = 0.5, the weight assigned to Microsoft is
zero.

Regarding portfolio sensitivity, a decline is observed—sometimes reaching even negative values—with po‑
tential asymmetry between the magnitudes of positive and negative sensitivities (e.g., for λ = 0, sensitivity =
±0.00012585, and for λ = 0.5, +sensitivity= −0.00114551, and ‑sensitivity= −0.000956733).

Lastly, the Cumulative Return diagram for the examined period shows a sharp increase after approximately the
ϐirst 40–50 days, followed by gradual stabilization beyond day 80.

In contrast, the Maximum Sharpe model maintains a single strategy (as expected, since it is unaffected by the
risk aversion coefϐicient λ). In the examined case, the model yielded a return of 0.134 with relatively low risk (σ2 =
0.00037974). The asset weights for Apple, Google, and Tesla were nearly equal, at approximately 30% of the total
investment capital each, while Microsoft stock received a zero weight.

The “Efϐicient Frontier with Capital Line” diagram identiϐies the minimum variance portfolio at the point cor‑
responding to λ = 0, where the Microsoft stock is assigned a weight of zero, while the remaining portfolio stocks
range between 29% and 37%. In conclusion, the two curves intersect at a risk level of 0.00037974 (indicated by
the red dot on the graph), with the stock weights reflecting those of the Maximum Sharpe model.

3.6. Economic Interpretation and Limitations of MPT Optimization
Assigning a zero weight to speciϐic assets is a frequent outcome in constrained optimization problems, partic‑

ularly under “long‑only” assumptions where short‑selling is not allowed. The optimization algorithm prioritizes
assets that offer the most favorable risk‑return trade‑off or provide effective diversiϐication beneϐits. If an asset
has a low expected return or high volatility without contributing to overall portfolio efϐiciency, it is excluded from
the optimal allocation. This exclusion does not imply that the asset is “bad” per se; rather, it means that, under
the current input parameters and investor proϐile, it does not enhance portfolio performance. From a practical per‑
spective, such exclusionsmayhelp streamlineportfolio construction, reduce transaction costs, and simplify ongoing
management.

The risk aversion coefϐicient (λ) plays a central role in determining portfolio composition. As λ increases, the
model increasingly prioritizes risk minimization over return maximization, resulting in allocations dominated by
lower‑volatility assets. Conversely, a lower λ encourages more aggressive strategies, favoring assets with higher
expected returns regardless of their volatility. In effect, varying λ allows the tool to simulate a spectrum of investor
proϐiles, ranging from highly conservative to strongly risk‑tolerant. However, in practice, extreme values of λ can
produce unstable or unrealistic allocations, underscoring the need for careful calibration. Thus, while λ is valuable
for customizing portfolio strategies to different preferences, its use must be balanced to maintain both economic
meaning and operational feasibility [26].

The inherent limitations of Modern Portfolio Theory (MPT) and the Capital Asset Pricing Model (CAPM) di‑
rectly affect the realism and reliability of the tool’s outcomes. The assumption of normally distributed returns
may lead to risk underestimation, especially during extreme market events. The absence of transaction costs in
the model renders the proposed strategies impractical in real markets, where portfolio rebalancing incurs tangible
costs. Assuming constant statistical parameters, such as expected returns and covariances, undermines themodel’s
predictive validity and increases the likelihood of overϐitting to historical data. Finally, the embedded homogeneity
of investor preferences limits the tool’s adaptability to diverse investment proϐiles [27].

4. Discussion
Markowitz’s Portfolio Theory remains one of the most fundamental frameworks in modern ϐinancial theory.

Despite being subject to substantial theoretical and practical criticism, it continues to provide an indispensable
structure for understanding the risk–return trade‑off and guiding portfolio optimization. Its effective application,
however, requires a solid grasp of its underlying assumptions and appropriate adaptation to real‑world market
conditions.

Similarly, the Capital Asset Pricing Model (CAPM) represents a cornerstone of modern investment theory.
While it exhibits both theoretical and empirical limitations, its primary contribution lies in the conceptual founda‑
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tion it offers for the relationship between risk and expected return, as well as in the development of methodologies
for evaluating investment performance. Nevertheless, these limitations underscore the necessity of complementing
the CAPMwith multifactor models and empirical analysis tailored to actual market data.

The proposed model is well‑suited for educational purposes, introductory exploration of efϐiciency theories,
and research‑oriented analysis of tailored investment strategies. However, it can also be further extended. Potential
future directions include: (a) integration of real‑time data to assess strategies under live market conditions, (b)
incorporation of alternative risk metrics (e.g., Conditional Value at Risk (CVaR), downside risk, etc.), (c) estimation
of parameter forecasting errors (returns, covariances) usingMonte Carlo or Bayesian approaches, and the inclusion
of machine learning techniques, such as neural networks, to improve portfolio robustness under risk constraints
[28], and (d) adaptation to speciϐic portfolio types (e.g., Environmental, Social, and Governance (ESG) [29,30], and
cryptocurrencies) through the application of investment screening ϐilters.

Furthermore, the ongoing integration of Artiϐicial Intelligence (AI) and digital technologies into ϐinancial ser‑
vices has been reshaping decision‑support systems, portfolio automation, and risk forecasting, highlighting the
need for adaptable optimization frameworks [31]. One future direction would be the enhancement of our tool via
AI‑powered return forecasting and anomaly detection, as already emphasized by recent literature on the transfor‑
mative effects of AI in portfolio management [32].

Moreover, beyond technological advances, structural shifts in capital markets‑such as the recent reforms in
China’s Equities Exchange and Quotation System‑have been found to signiϐicantly shape innovation strategies and
cross‑border investment behavior among technology‑driven enterprises [33]. These institutional developments
are further ampliϐied by the increasingly complex interactions between sustainable ϐinance and digital sectors, as
reflected in the dynamic linkages between carbon trading markets and smart technology indices [34]. Accordingly,
future extensions of the proposed tool could integrate suchmulti‑layered relationships and environmental‑ϐinancial
interdependencies, enhancing its applicability to resilience‑focused and sustainability‑oriented investment strate‑
gies.

5. Comparison with Existing Portfolio Optimization Applications
The ϐield of portfolio optimization has seen extensive development across both academic and applied settings,

resulting in a wide array of tools and platforms. These range from spreadsheet‑based solutions to fully program‑
matic and dynamic systems built in Excel, R, Python, andMathematica. In this section, we compare the functionality,
accessibility, and computational depth of commonly used environments with the framework developed in the cur‑
rent work.

 Mathematica offers a uniϐied, mathematically coherent environment for portfolio analysis that signiϐicantly
surpasses the capabilities of Excel. While Excel is widely used for ϐinancial applications due to its interactivity
and tabular simplicity, it faces notable limitations in solving complex mathematical optimization problems, such as
the Markowitz model, or in conducting sensitivity analysis. In contrast, Mathematica leverages powerful optimiza‑
tion algorithms (e.g., Minimize, symbolic constraints) without requiring external plugins or tools. The Manipulate
 function enables dynamic parameter exploration in real‑time‑something that in Excel would require VBA script‑
ing or third‑party add‑ons. Furthermore, Mathematica automatically handles missing data (Missing[]), while Excel
requires manual validation or complex formulas for data cleansing. Statistical visualization (e.g., ListLinePlot) is
seamlessly integrated with high mathematical accuracy. While Excel may sufϐice for basic ϐinancial analysis tasks,
Mathematica provides amore robust, accurate, and adaptive framework for advanced quantitative ϐinance. Overall,
for researchers or analysts needing symbolic computation, interactive modeling, and flexible optimization, Mathe‑
matica offers clear advantages over spreadsheet‑based approaches.

Mathematica and R are both powerful platforms for ϐinancial analysis, yet they differ in design philosophy
and in the integration of interactivity and symbolic computation. R provides an extensive ecosystem of statisti‑
cal tools (e.g., quantmod, PortfolioAnalytics, PerformanceAnalytics) and excels in risk modeling, simulations, and
publication‑ready graphics via ggplot2. However, for analysts exploring parameter variation‑such as changing the
risk aversion coefϐicient (λ)‑Mathematica’s Manipulate function offers amore intuitive and self‑containedGUI,with‑
out requiring additional frameworks like R’s shiny. Mathematica also provides superior symbolic computation ca‑
pabilities, making optimization objectives and constraints easier to deϐine and interpret. Although R often outper‑
forms Mathematica in handling large datasets and computation speed (via data.table or parallel processing), Math‑
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ematica is ideal for theoretical modeling, symbolic algebra, and interactive simulation [35]. The ability to switch be‑
tween symbolic and numeric analysis without changing syntax further enhances its value in academic and research
settings. Thus, while R is better suited for high‑volume data manipulation and statistical depth, Mathematica is
preferable for conceptual clarity, visualization, and user‑controlled sensitivity experimentation.

Mathematica and Python are both versatile platforms for portfolio optimization and ϐinancial modeling. Math‑
ematica integrates mathematical modeling, interactivity (Manipulate), and visualization within a uniϐied environ‑
ment, eliminating the need for external libraries. On the other hand, Python‑using libraries such as pandas, numpy,
 matplotlib, cvxpy, and scipy.optimize‑ offers a modular and programmable approach with greater flexibility and
control. Python excels in automation, data pipelines, and API integration, making it ideal for production environ‑
ments. However, Mathematica supports native symbolic optimization, bringing the code closer to formal mathe‑
matical notation andmaking it more intuitive for academic users. Python requires more effort to create interactive
applications (e.g., with Dash or Jupyter Widgets), while Mathematica provides built‑in visual exploration tools. Al‑
though Python’s open‑source nature and scalability make it appealing for large‑scale systems, Mathematica is un‑
matched in rapid prototyping, theoretical modeling, and clarity of expression. In conclusion, Mathematica is best
suited for educational, research, and exploratory scenarios, whereas Python is preferred for industrial applications,
data engineering, and large‑scale ϐinancial infrastructure [36].

In contrast, theportfolio optimization frameworkdeveloped in this studywithin the Mathematica environment
offers a transparent, modular, and interactive structure. It enables users to control every step of the optimization
process – from data import and return calculation to constraint deϐinition and visualization of the Efϐicient Frontier
and Capital Market Line. Moreover, the inclusion of real‑time parametermanipulation (e.g., for the risk aversion co‑
efϐicient or risk‑free rate) and sensitivity analysis provides a more dynamic and educationally valuable experience,
particularly suited for academic research and teaching.

In summary, while existing tools provide valuable functionality, the proposed Mathematica‑based approach
strikes a balance between analytical precision, flexibility, and pedagogical clarity, making it especially suitable for
environments where explainability and theoretical grounding are essential [24].

6. Limitations of the Current Portfolio Management Model
This paper presents a dynamic portfolio management model implemented within the computational frame‑

work of Mathematica V (14.1). However, as with most code implementations, certain limitations exist. In this case,
the current version of the model requires that all selected assets originate from the same ϐinancial market (e.g.,
NASDAQ or NYSE) to ensure consistency in data retrieval and comparability of returns. While the code supports
ticker symbols containing special characters such as periods (“.”) or hyphens (“‑”), accurate performance depends
onuniϐiedmarket conditions and synchronized trading calendars. This constraint restricts themodel’s applicability
across a broader range of ϐinancial instruments that utilize non‑standard naming conventions in their ticker sym‑
bols. Moreover, the increasing presence of AI‑driven market behavior introduces a distinction between authentic
ϐinancial signals and speculative trends‑factors not accounted for in classical models [37].

7. Conclusions
The present study developed an interactive portfolio optimization tool within the computational and program‑

ming environment of Wolfram Mathematica V (14.1), we provide our code as Supplementary Materials. The tool
is based on two portfolio management methodologies: (a) Markowitz’s Portfolio Theory, whose primary objective
is the minimization of risk, and (b) the Maximum Sharpe Ratio model, which focuses on identifying an efϐicient
portfolio that offers the optimal trade‑off between return and risk. Through this application, users can examine
investment weight allocations, explore the risk‑return relationship, and investigate the behavior of the aforemen‑
tioned strategies via sensitivity analysis and parameter variation – such as risk aversion (λ or l) and the risk‑free
rate (Rf).

The ϐindings of the study indicate that the minimum variance portfolio demonstrates greater robustness to
changes in input parameters, whereas the maximum Sharpe ratio portfolio, although it maximizes efϐiciency per
unit of risk, exhibits higher sensitivity to fluctuations in expected returns [38]. The graphical representation of the
Efϐicient Frontier, the Capital Market Line, and cumulative daily returns contributed to a deeper and more mean‑
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ingful theoretical understanding of the risk‑return relationship. Furthermore, it highlighted the importance of se‑
lecting an investment strategy that aligns with the individual investor’s proϐile.

Supplementary Materials
The following supporting information can be downloaded at:  https://mycloud.econ.uth.gr/s/XLHop4Tmx

M27re6. The Mathematica codes. Mathematica 14.1 or later version is needed.
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