
Digital Technologies Research and Applications | Volume 04 | Issue 02

Digital Technologies Research and Applications
http://ojs.ukscip.com/index.php/dtra

Article

Breast CancerDataset fromCoimbra: Pre‑Ratings of Its Value toMa‑
chine Learning and Diagnosis
Gennady Chuiko * and Denis Honcharov

Department of Computer Engineering, Petro Mohyla Black Sea National University, 54003 Mykolaiv, Ukraine
* Correspondence: henadiy.chuyko@chmnu.edu.ua

Received: 25 June 2025; Revised: 22 July 2025; Accepted: 30 July 2025; Published: 19 August 2025

Abstract: This study aimed to evaluate a relatively new dataset developed to facilitate the primary diagnosis of
breast cancer, collected by the University Hospital Centre of Coimbra in Portugal. Based on these assessments,
the authors sought to develop a clear visual classiϐier to assist medical professionals in prediction and monitoring.
This classiϐier utilizes routine blood test results along with physical data, offering a more straightforward and cost‑
effective alternative to traditional mammographic studies. The Coimbra Breast Cancer Dataset (CBCD) includes
the following attributes: Age, Body Mass Index (BMI), Glucose, Insulin, Homeostatic Model Assessment for Insulin
Resistance (HOMA‑IR), Leptin, Adiponectin, Resistin, and Monocyte Chemoattractant Protein‑1 (MCP1). The vi‑
sual classiϐier was designed using Java‑based machine learning algorithms within the Java‑based WEKA software
(version 3.9.6). Its well‑designed interface enables clinicians, even those without expertise in machine learning, to
use these algorithms effectively. The nine attributes of the CBCD were statistically categorized into three subsets
based on their relevance to the overall model. This organizationmay help reduce the dimensionality of the diagnos‑
tic dataset while allowing speciϐic classiϐiers to exhibit their unique preferences. A properly tuned JRip classiϐier
demonstrated acceptable performance with the entire dataset andwas effective in reducing it to six or even four at‑
tributes. The primary advantage of this classiϐier lies in its decision rules, which are easy for medical professionals
to interpret and apply.
Keywords: Breast Cancer; Machine Learning; Biomarkers; Visual Classifying; Diagnostics

1. Introduction
Breast cancer (BC) is the most prevalent cancer among Ukrainian women [1] and one of the most widespread

and fearsome types of cancer worldwide [2]. As Women are the bearers of the national genetic pool, the diagnosis
and monitoring of breast cancer remain a signiϐicant challenge for healthcare providers. The authors advocate for
the use of Machine Learning (ML) techniques and modern software to analyze unique datasets dedicated to BC
monitoring. Simultaneously, the results of such data mining must be presented in a highly visualized from to be
accessible to clinicians.

A few widely known datasets related to BC are recognized among Machine Learning experts. For example,
many still use the breast cancer dataset from the Institute of Oncology, University Medical Center, Ljubljana (1988)
[3,4], which includes ten attributes and286 instances. The binary class is nominal, with “no‑recurrence‑events” and
“recurrence‑events” cases (201 and 85 instances, respectively). This dataset is quite noisy, and the best classiϐier
achieves only a precision of 0.713 using 10‑fold cross‑validation.

The newer (1995) Wisconsin Breast Cancer Dataset contains 31 attributes and 569 instances [5]. It includes
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two classes: malignant (212) and benign (357). The newer BreakHis database, versions [6,7], may be a source of
extension for the previous dataset, providing additional information about biopsy, tumor class, tumor type, patient
ID, andmagniϐication factor. Both datasets and databases are based onmammography and share the same courses.

The three datasets introduced above focus on what may be termed the task of “secondary diagnostics”: breast
tumors already exist, and the goal is to classify them as benign or malignant, or as able/unable to recur. In contrast,
the Coimbra BC dataset [8] addresses the primary diagnostic task. This relatively new (2018) and compact dataset
comprises 116 cases, with 52 instances classiϐied as “healthy” and 64 instances classiϐied as “patient”. Speciϐically,
this dataset is the focus of our study.

The dataset comprises ten attributes, nine of which are numeric and one nominal. The numeric attributes rep‑
resent anthropometric data and indicators obtained from routine blood analysis. These include Age, Body Mass In‑
dex (BMI), Glucose, Insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA‑IR), Leptin, Adiponectin,
Resistin, and Monocyte chemoattractant protein‑1(MCP1). Despite being a new dataset, CBCD has garnered the
attention of ML experts, as evidenced by papers [2,9–14] that have explored this dataset.

Themain aims of the papers cited studies dedicated to the CBCDwere as follows: identifying high‑performance
classiϐiers [2,12,13]; conducting attribute relevance tests and developing selectionmethods [11,12,14]; comparing
the efϐicacy of various ML algorithms’ efϐicacies [9]; performing deep statistical analyses of the dataset [10]; and
studying of trends in BC prognosis using ML [13]. These goals are generally regarded as legitimate among ML
experts. Still, they appear to be far beyond the competence of clinicians, who are the primary decision‑makers in
breast cancer cases.

The CBCD has the potential to be a valuable resource for clinical decision‑making, focusing on “primeval” di‑
agnosis and monitoring using a concise set of available biomarkers. However, there are still aspects that require
further study. After careful analysis, we have identiϐied some unclear elements that need to be addressed, including:

• Clinicians need evaluations of data diagnostic validity, as well as constructive criticisms.
• The absence of a grounded attribute selection pathwould order the dataset, allowing the reduction of the num‑

ber of attributes and grouping themby rank, understanding howdataset reduction or classiϐication options can
impact its performance.

• Classiϐiers with acceptable performance and an easy‑to‑understand visual presentation are needed, as many
clinicians may be unfamiliar with machine learning and its associated mathematics.

• The cluster structure of the CBCD is unclear, as is the extent to which these clusters correspond to preassigned
classes.

The above list outlines the tasks and structure of the paper. First, we will describe the dataset and the tech‑
niques used for handling it (Section 2). Next, we will present the results of relevancy evaluations related to the
dataset’s attributes (Section 3.1) and further discuss our ϐindings on outlier detection and noise estimations (Sec‑
tion 3.2). Following that, we will showcase the results of classifying both the complete dataset and its reduced
versions (Section 3.3), alongwith some straightforward rules in plain text for clinicians whoworkwith this dataset.
Finally, the discussion and conclusions are presented in Sections 4 and 5.

There is much potential for the CBCD to be a more effective tool for clinical decisions. However, it requires a
deeper understanding of its peculiarities and potential enhancements. First of all, the relevance of its attributes
is unclear. The possibilities of dataset reduction remain unexplored. The evaluation of noise and outliers has not
been performed. These aspects highlight the research gap, a lacuna that should be addressed. Additionally, the
availability of visual ML tools for clinical decision‑making is greatly appreciated. The paper presented here is an
effort to move in this direction.

2. Materials and Methods
Data of various forms serve as “material” within machine learning. Table 1 provides a brief description of

the attributes, units, and ranges of CBCD data collected by the University Hospital Centre of Coimbra (Portugal).
The UCI Machine Learning Repository offers free access to this dataset [8]. It is customary in machine learning to
normalize numerical featureswithin suchdatasets. However, the authors chosenot to normalize thedata in order to
make it easier for clinicians to deal with familiar and understandable units of measurement. Excellent and detailed
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descriptions of the study participants (64 women with breast cancer and 52 healthy volunteers) and details of the
blood tests from the direct authors of the CBCD can be found in [14]. It is hardly worth repeating the same thing
here a second time.

Table 1. Coimbra Breast Cancer dataset description.

# Attributes Type Units Range

1 Age numeric years 24–89
2 BMI (Body Mass Index) numeric kg/m2 18.37–38.58
3 Glucose numeric mg/dL 60–201
4 Insulin numeric μU/mL 2.43–58.46
5 HOMA (Homeostatic Model Assessment for Insulin Resistance) numeric – 0.467–25.05
6 Leptin numeric ng/mL 4.31–90.28
7 Adiponectin numeric μg/mL 1.656–38.04
8 Resistin numeric ng/mL 3.21–82.1
9 MCP1 (Monocyte chemoattractant protein‑1) numeric ng/mL 45.84–1698.44
10 Classes nominal – {healthy, patients}

Note: The ordering of attributes is arbitrary.

WEKA [15,16] has become an excellent choice over the past two decades for clinicians who want to utilize
machine learning to analyze biomedical signals and datasets. This powerful ML tool is convenient for data visu‑
alization, making it easier for clinicians to access important information and helping them make more informed
decisions. WEKA is Java‑based software designed to be helpful for those with no expertise in Machine Learning.
WEKA achieves this effect due to its well‑designed and ubiquitous graphical user interface. An example of WEKA
applied to the Wisconsin Breast Cancer dataset can be found in [17]. The latest version of WEKA (3‑9‑6) was used
in our paper.

Figure 1 is an example of “visuality” inWEKA. An experienced clinician or data scientist may note that healthy
individuals predominate only in the two bins with the lowest Glucose Levels. The relation reverses to the opposite
opposite starting from the third bin. The histogram states that the higher the glucose level, the higher the risk of
breast cancer.

Figure1. WEKAhistogram for glucose concentrationwith nine bins (containers); red indicates patientswith breast
cancer, and blue indicates healthy people; the labels show the number of individuals covered by each bin.

Only thehistogramofGlucose is presentedhere, aswewill subsequently prove thatGlucose is themost relevant
(primary) attribute in the CBCD, ranking ϐirst. This conclusion contradicts the results of [9] and [12], where Glucose
ranked secondor third, butmatches the latter outcome in [11]. However, similar histogramsare generatedbyWEKA
automatically for all numerical features. This is helpful for preliminary visual analysis of the dataset.

3. Results
3.1. Feature Selection and Ranking Concerning CBCD

Feature selection and ranking enhance performance in data mining [12,15]. One of the most signiϐicant advan‑
tages is the ability to eliminate irrelevant attributes. Fewer features in the dataset lead to a reduced workload and
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quicker diagnostics. WEKA provides a variety of algorithms for attribute selection, ordering, and ranking based on
relevance.

Table 2 presents eight of these algorithms applied to the CBCD. We can form rank vectors for each attribute,
resulting in nine vectors, each with eight integer components ranging from 1 to 9. For instance, the vector for the
Glucose attribute is (1, 2, 1, 1, 2, 1, 1, 1). Each vector contains eight components that correspond to the rows in
Table 2. By determining the median rank of each attribute, we can arrange the set of units in ascending order:
Glucose, Age, HOMA, Resistin, BMI, Insulin, Leptin, Adiponectin, and MCP1.

Table 2. CBCD attributes ranking (ordering) evaluations.

# WEKA Evaluator Attribute Ranking (Best First)

1 Correlation Ranking Filter Glucose, HOMA, Insulin, Resistin, BMI, MCP1, Age, Adiponectin, Leptin
2 Gain Ratio feature evaluator Age, Glucose, HOMA, Leptin, Resistin, BMI, Adiponectin, Insulin, MCP1
3 Information Gain Ranking Filter Glucose, HOMA, Age, Leptin, Resistin, BMI, Adiponectin, Insulin, MCP1
4 OneR feature evaluator Glucose, Age, Resistin, HOMA, Insulin, BMI, Adiponectin, Leptin, MCP1
5 RELIEF Ranking Filter Age, Glucose, Resistin, Insulin, HOMA, BMI, Adiponectin, Leptin, MCP1
6 SVM feature evaluator Glucose, BMI, Resistin, Insulin, HOMA, Age, Leptin, Adiponectin, MCP1
7 Symmetrical Uncertainty Ranking Filter Glucose, Age, HOMA, Leptin, Resistin, BMI, Adiponectin, Insulin, MCP1
8 J48 feature evaluator Glucose, Age, Resistin, HOMA, MCP1, BMI, Adiponectin, Leptin, Insulin

Next, we can calculate theManhattan distancematrix for the rank vectors of the nine attributes in the speciϐied
order. The Manhattan metric (LI) is utilized because the vector components are integers. This distance matrix is
symmetrical and has a size of 9 × 9, with zeroes on the diagonal. Figure 2 illustrates the heat maps of this matrix
using a white‑blue color scale, where white indicates a zero distance.

Figure 2. Heat maps of the distance matrix: “as is” (a) and with contrasting by distances averaging within matrix
blocks (b); the white‑blue scale implies that white represents zero distances.

The visual representation of the heatmaps in Figure 2 suggests the presence of three subsets within the CBCD
attribute set. The ϐirst subset comprises four attributes, ranked from 1 to 4: Glucose, Age, HOMA, and Resistin. The
second subset, sharing ranks 5 and 6, includes BMI and Insulin. The third subset, with ranks ranging from 7 to 9,
consists of Leptin, Adiponectin, and MCP1. Someone may combine the second and third subsets, resulting in two
subsets for such a reader.

We utilized the Two‑Sample Paired T‑test function to compute the paired T‑test on the set of rank vector pairs
[18]. This test allows for determining the signiϐicance of the difference between two means when the population
standard deviation is unknown. Statistical analysis conϐirms the preliminary outcomes of visual insight. In sum‑
mary, our results can be presented as follows:

– The differences in ranks among the pairs of attributes are generally insigniϐicant within each subset, except for
a few rare cases, at a 95% conϐidence level;

– However, the differences among the three subsets are statistically signiϐicant at the same conϐidence level;
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– In the ϐirst subset, Glucose is likely to hold the highest rank (1), while MCP1 holds the lowest rank (9) in the
third subset.

Figure 3 displays the statistical Box Plot (John Tukey chart) for the three CBCD subsets mentioned earlier. It
shows some split‑up among the subsets, although it would be desirable for it to be more conclusive.

Figure 3. Box Plot (box‑and‑whisker plot) for CBCD subsets; ranges of subsets (whiskers), sample median (hori‑
zontal line on the “waist”), sample mean (the point), interquartile ranges (heights of boxes).

It is interesting to compare the subsets ranked by relevance that are proposed here with those from the cited
articles (Table 3). As the statistical analysis mentioned above suggests, one could choose to disregard the speciϐic
order inside these subsets and instead focus on their content.

Table 3. Comparison of the contents and capacities of subsets with the highest rank.

Reference Top‑Ranked Subsets

[11] {Resistin, Glucose, Age, BMI}
[12] 1. {Age, Glucose, Insulin, Leptin, Adiponectin}

2. {Age, BMI, Glucose, HOMA, Leptin, Adiponectin}
[14] {Age, HOMA, Leptin, Adiponectin}

Our results {Glucose, Age, HOMA, Resistin}

Although the results in Table 3 are not overwhelmingly conclusive, some common traits can be identiϐied,
and overall compliance seems to be moderate. The grouping errors that we aimed to avoid may become more
pronounced when relying solely on intuitive selection [14], utilizing a single rater [11], or following the recom‑
mendations of casual evaluators [12]. The ϐindings suggest that the Coimbra Breast Cancer Dataset (CBCD) could
potentially be streamlined by focusing on a less relevant subset that includes three attributes: leptin, adiponectin,
and MCP1. Any further reduction should be approached with caution and requires additional justiϐication.

Now, one can transform the above‑mentioned rank matrix, augmented with the entries indicating to which of
the three classes (subsets) each of the nine rank vectors belongs. Glucose, Age, Resistin, and HOMA belong to the
ϐirst (higher ranking) class. BMI and Insulin to the middle class, Leptin, Adiponectin, and MCP1 to the last (low)
class. We can consider it as a small dataset with nine attributes, including the nominal class attribute, comprising
nine instances.

Theauthorsprocessed thedataset using theKohonenself‑organizingmap (weka.clusterers.SelfOrganizingMap)
with the following parameters: ‑L 1.0, ‑O 2000, ‑C 1000, ‑H 2, and ‑W2. ThisWEKA algorithmwas used for unsuper‑
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vised clustering with a neural network. We then analyzed the correspondence matrix that links the clusters to the
three predeϐined classes. In this matrix, the classes are represented by the rows, while the columns represent the
identiϐied clusters. A diagonal matrix indicates a perfect match between the clusters and the classes. In our analy‑
sis, we achieved exactly that—a diagonal matrix with the values 4, 2, and 3 on the main diagonal. These numbers
represent the number of attributes in each class (cluster, subset) and are consistent with the previously obtained
results.

The Kohonen map, while useful, does not provide information about the ordering of attributes within each
cluster (class or subset). However, it conϐirms the existence of three clusters and the appropriate quantities of
characteristics within them. Interestingly, the algorithm indicated four clusters instead of three, but one of these
clusters was empty and contained no attributes.

3.2. Outliers and Noisy Data in CBCD
ThreeWEKA ϐilters were employed to identify outliers, or “noisy data,” within the CBCD dataset. The ϐirst ϐilter

uses interquartile ranges and established statistical methods to detect extreme values. This outlier detection ϐilter
identiϐied a total of 12 instances—three from healthy individuals and nine from patients—out of 116 cases. As a
result, the outliers account for approximately 10%of the dataset on average. The level of noisewithin the “patients”
class is even higher, at about 14%.

The second ϐilter used is CAIRAD (Co‑appearance‑based Analysis for Incorrect Records and Attribute‑value
Detection) [19]. This ϐilter allows the labeling of “noisy data” as missing. Importantly, it identiϐies four instances
(three from the healthy class and one from the patient’s class) that aremisclassiϐied. Misclassiϐication is particularly
problematic for small datasets, such as CBCD, as it directly contributes to off‑diagonal elements of the confusion
matrix.

Additionally, CAIRAD enables the deϐinition of a “noisy values percentage” for each attribute. Table 4 presents
these results. The results inTable 4 conϐirm the existence of signiϐicant noise in the dataset. While the percentages
of “missing” data might seem concerning, they are less critical than the aforementioned misclassiϐication errors.

Table 4. Percentage of “noisy values” for attributes in accord with the CAIRAD ϐilter [19].

Attrib. Cluc. Age HOMA Resist. BMI Insul. Leptin Adip. MCP1

Noise % 6 14 6 6 9 12 8 16 0

The Local Outlier Factor (LOF) is a well‑known local anomaly detection algorithm introduced in 2000, and it
is widely used in various applications, including implementations within the WEKA framework. This algorithm
combines the concepts of nearest neighbors and local density to compute the Local Outlier Factor (LOF) score. An
LOF score of approximately 1 indicates that an instance is part of the “core” of the dataset. Instances with LOF
scores greater than one are typically considered outliers.

However, the boundary between what constitutes the “core” and what should be classiϐied as outliers is uncer‑
tain. Consequently, it can be somewhat blurred because it relies on the “thumb rule” forecast, which is a recognized
drawback of the method. Nonetheless, the LOF algorithm has a long history of success in anomaly detection and is
deserving of application to CBCD.

An array of LOF estimates for all 116 instances served as the population for proper statistical analysis. The
histogram (Figure 4) illustrates an asymmetrical distribution with a “long tail” of outliers that merges with the
“core” at approximately LOF = 1.3. Therefore, this point could be used as the threshold to distinguish between the
“core” and outliers for CBCD. Additionally, a cumulative distribution function (CDF) can be derived for the LOF array,
assuming an empirical statistical distribution for this one‑dimensional array, which behaves as a random variable.

The chosen threshold of LOF = 1.3, along with the derived CDF, enables us to predict that the “core” of the
dataset comprises 95 instances, while the “tail” contains 21 outliers. One can assume that the “core” instances
form the diagonal elements of the confusion matrix, while the outliers occupy the off‑diagonal elements. Then, the
accuracy of the prognosis must be approximately 82%. Such a level might be sufϐicient for preliminary screening,
but it is hardly enough for serious decision‑making.
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Figure 4. Histogram of Local Outlier Factors (LOF) for the Coimbra Breast Cancer Dataset. The curve represents
the Cumulative Distribution Function (0 ≤ CDF ≤ 1) derived from the LOF array by numeric methods. The threshold
was chosen at LOF 1.3.

3.3. Classifying and Reducing the CBCD Dataset
Some of the machine learning experts working with CBCD try to ϐind the “best” classiϐier with the highest

performance empirically. However, the issue is that there are many performance indicators for classiϐiers. Medics,
for instance, traditionally prefer sensitivity (accuracy) and speciϐicity (accuracy in remembering, recall). At the
same time, ML practitioners often refer to the F1measure, Matthew’s Correlation Coefϐicient (MCC), Cohen’s kappa
statistic, or AUC‑ROC when discussing a single index or evaluating a confusion matrix for overall performance. The
“best” classiϐier problem is essentially a multi‑criteria optimization problem but is often treated as a single‑criteria
one. While this approach is known and legitimate, supplementary criteria to themain onemust be set at acceptable
levels or incorporated into the problem’s constraints. These aspects are often omitted or unclear inworks dedicated
to CBCD.

The optimization of classiϐiers using a single‑criterion approach can be automated [20]. Experience indicates
that a classiϐier’s performance on the same dataset can vary signiϐicantly depending on the chosen optimization
criteria and the tuning of its hyperparameters. In our study, we utilized the algorithm [20] with three different
optimization criteria for the dataset: (1) the number of correctly classiϐied instances, (2) the error rate, and (3) the
Kappa Statistics (also known as Cohen’s Kappa). Among these, the Kappa statistic is widely recognized bymachine
learning experts. Kappa values over 0.75 are considered excellent, values between 0.40 and 0.75 are seen as fair to
good, and values below 0.40 indicate poor agreement between the pre‑assigned and classiϐied classes. The highest
achieved Kappa value achieved in our analysis was approximately 0.65.

Figure 5 illustrates the results of these beneϐicial exercises. Figure 5a indicates that metrics such as accuracy,
the number of correctly classiϐied instances, and the number of incorrectly classiϐied ones are relatively the same
across different criteria. Furthermore, these metrics align closely with the estimates provided in the previous sec‑
tion. In contrast, Figure 5b highlights the signiϐicant impact of criterion selection on the distribution of incorrectly
classiϐied instances among the classes, speciϐically regarding False Negatives and False Positives.

It is important to note that the confusion matrices, and consequently all performance metrics, are signiϐi‑
cantly influenced by the testing methods used. Let’s compare the confusion matrix obtained by using the dataset
as the training set (Matrix Cm0) with the matrix resulting from the 6‑fold cross‑validation test method (Matrix
Cm6). Both matrices were obtained for CBCD using the same classiϐier, with parameters that remained constant
(weka.classiϐiers.rules.JRip ‑F 3 ‑N 4.435982504230809 ‑O 2 ‑S 1 ‑P). One can see a marked increase in False Posi‑
tives (FP, from 0 to 12), which refers to the most critical errors, where a healthy individual is misclassiϐied as sick.
Cross‑validation leads to a deterioration in all metrics related to both classes.

Cm0 =ቆ40 12
0 64ቇ , Cm6 =ቆ32 20

12 52ቇ (1)
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The confusion matrix Cm0 likely indicates an overϐitted model, a common issue that arises with small and noisy
datasetswhen the entire dataset is used for training [21]. Aside from that, while cross‑validation is generally effective
for large datasets, its accuracy may drop when applied to smaller datasets. Thus, these matrices roughly deϐine the
upper and lower boundaries of the classiϐication performance for CBCD in its current form (see Table 5).

Figure 5. Some classiϐication performancemetrics: (a)—accuracy (in%), the numbers of correctly and incorrectly
classiϐied instances according to our prior estimation (Section 3.2) and three different optimization criteria; (b)—
the numbers of incorrectly classiϐied instances, including False Positives (FP) and False Negatives (FN). The typical
standard deviations were (8.5–9.5) % at a conϐidence level of 0.95.

Table 5. Estimated upper and lower boundaries for some performance metrics of CBCD.

Metrics Accuracy (%) FP Ratio Kappa F1‑Measure ROC Area

Range 72–90 0.00–0.20 0.43–0.79 0.72–0.89 0.72–0.86

Filtering outliers or misclassiϐied instances is advisable for noisy data. However, it’s important to proceed
with caution to avoid removing essential components or entire minority classes, especially in smaller datasets. We
utilized one of the WEKA ϐilters (weka.ϐilters.unsupervised.instance.RemoveMisclassiϐied) with the following con‑
ϐiguration: ‑W “weka.classiϐiers.rules.PART ‑C 0.25 ‑M 2” ‑C‑1 ‑F 0 ‑T 0.1 ‑I 0. This process removed 16 instances
out of a total of 116, primarily affecting the classes of healthy individuals (14 instances) and patients (2 instances).
This result aligns with the estimates presented in Section 3.2, which indicated a range of 12 to 21 instances.

Let us deϐine some notation:
“ds0”: This is the initial dataset containing nine numeric attributes (excluding class labels) and 116 instances.
“ds1”: This is the ϐiltered dataset, which contains nine numeric attributes and 100 instances after removing

outliers.
“ds2”: This is the reduced dataset, consisting of six attributes and 100 instances, which was achieved by elimi‑

nating the attributes Leptin, Adiponectin, and MCP1.
“ds3”: This is an additional reduced dataset with four attributes and 100 instances, created by excluding BMI

and Insulin as attributes.
Note that bothways to attribute reduction are consistentwith the conclusions of Section 3.1, while the ϐiltering

of outliers (denoising) is based on the results of Section 3.2.
We performed 1,000 tests for each dataset using the classiϐier mentioned above, employing 5‑fold cross‑

validationmode. This approach allowedusnot only to calculate the averaged values of performancemetrics but also
their standard deviations and the statistical signiϐicance of differences in each performancemetric among datasets.

The results show an increase in all metrics from ds0 to ds1, then to ds2, and ϐinally to ds3. Suppose one takes
the accuracy (in percentages) as an example. Then the row of indexes displays this growth: 70.2 (8.7) < 79.7 (9.1)
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< 81.1(8.6) < 81.6(8.6). However, the standard deviations (values in brackets) indicate why such an apparent rise
remains statistically insigniϐicant. This experiment does not conϐirm the beneϐits of outlier cleaning and attribute
reduction. However, it also does not rule out the possibility of improvements, as the results from these methods
are at least comparable to those from the original dataset. Therefore, even a very compact dataset, such as ds3,
which contains not only four attributes and 100 instances, can be effectivewhen performancemetrics are not overly
demanding.

The JRip algorithm implements the propositional rule learner known as Repeated Incremental Pruning to Pro‑
duce Error Reduction (RIPPER). William W. Cohen proposed this algorithm as an optimized version of IREP [22].
Based on the dataset, JRip generates simple “IF‑THEN” rules, making it beneϐicial and transparent for clinicians.

1. IF Glucose <= 90 AND Resistin <= 12.9361 AND HOMA >= 0.827271 THEN Classiϐication is healthy (1) (lever‑
ages 17 cases, probability 100%))

2. IF Age <= 36 AND Glucose <= 90 THEN Classiϐication is healthy (1) (leverage 7 cases, probability 100%)
3. IF Age >= 66 AND Glucose <= 102 AND Resistin <= 12.766 THEN Classiϐication= healthy 1 (leverages 9, prob‑

ability 100%)
4. ELSE Classiϐication is patient (2) (leverages 67, probability 93 %)

The listed ruleswereobtained from the shortest data set, ds3. This set of rules is easily programmable, allowing
for the automatic processing of results from analyses of only four (and in practice, even three) indicators. If the aim
is to conduct preliminary screening, such an automatic system would save time, labor, and costs.

4. Discussion
The Coimbra Breast Cancer Data Set, a relatively recent development, was the focus of this study. It includes

various biomarkers and anthropometric indices as attributes and is divided into two classes: healthy individuals
and patients. The primary purpose of this dataset is to aid in the preliminary diagnosis of breast cancer. Its at‑
tributes, which can be derived from routine blood analyses, make the Coimbra Breast Cancer Data Set promising
for quick assessments. However, its clinical value remains under discussion and requires further exploration.

Firstly, both ML experts and clinicians should recognize the importance of attribute rankings (in terms of rele‑
vance and value) to identify opportunities for dataset reduction. By minimizing the number of features, diagnostic
processes can be completed more quickly and with reduced effort.

Using statistical analysis and machine learning methods, the authors categorized CBCD attributes into three
subgroups: highly relevant attributes (Glucose, Age, Resistin, HOMA),moderately relevant attributes (BMI, Insulin),
and low‑relevance attributes (Leptin, Adiponectin, MCP1). The differences between these subsets are statistically
signiϐicant at a 95% conϐidence level; however, the speciϐic ordering of attributes within each subset remains un‑
certain. Therefore, reducing the CBCD by removing the low‑relevant subgroup (and perhaps the mid‑relevant sub‑
group as well) is a reasonable approach. The reduction of attribute quantity depends on the used classiϐier and its
tuning parameters, therefore requiring careful consideration. The experience from this study—particularly with
classiϐiers like JRip and J48— supports the cautious approach.

Clinical diagnosis is considered a classiϐication problem inML [15]. Any classiϐicationmodelmaps an attribute
set to a binary (nominal) class attribute. The JRip classiϐier [22] was chosen for its creation of easily interpretable
“Decision Rules” (see Section 3.3) that can be directly used in clinical decision‑making and its relatively high per‑
formance regarding CBCD. Some “tuning” of JRip, including the selection of its optimal hyperparameters, allows
acceptable performance for both complete and reduced datasets.

The Coimbra Breast Cancer Dataset comprises 116 instances, approximately evenly distributed between the
two classes: 52 healthy individuals and 64 patients. The dataset’s small size and the presence of a considerable
amount of noise limit its overall utility. However, the attribute structure shows promise if the dataset is expanded
and cleaned.

Secondly, clinicians and machine learning experts need to understand the reliability of the Coimbra dataset.
Our study tested four ϐilters for outliers, revealing that the dataset contains a signiϐicant amount of noise, with
12 to 21 instances identiϐied as outliers. This represents a relatively high level of noise, especially given that the
dataset contains only 116 cases. Therefore, high‑performance metrics from any machine learning classiϐier cannot
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be expected unless the noise is addressed.
Simply removing outliers is not the most effective approach to improvement, since the dataset is small. In‑

stead, noise reduction should be accompanied by the necessary expansion of the dataset in terms of the number
of instances. Our experience suggests that reducing outliers, as well as reducing attribute subsets, does not lead to
signiϐicant improvements in performancemetrics. Fortunately, these procedures do not degrade the metrics either.

5. Conclusions
The main conclusions of this study can be summarized as follows:

1. WEKA software is excellent for analyzing medical datasets such as CBCD. Its advanced visualization tools are
particularly helpful for clinicians who rely primarily on visual aids.

2. Nine attributes of CBCD are statistically signiϐicantly divided into three subsets by relevance. This separa‑
tion may guide diagnostic dataset reduction, although speciϐic classiϐiers may exhibit their own “preference
nuances”.

3. On average, approximately 15% (±5%) of the data in CBCD is questionable, indicating that it is a relatively
“noisy” dataset. While denoising is desirable, it should be balanced with a signiϐicant expansion of the dataset
in terms of the number of instances.

4. The duly “tuned” JRip classiϐier could be clinically helpful, offering acceptable performance and generating
“Decision Rules” that are easy to interpret.

5. The Coimbra Breast Cancer Dataset is promising for preliminary diagnostics because it relies on a small set of
relatively inexpensive and accessible markers. Its limitations include small dataset size and a relatively high
level of noise from outliers.

Future research could bemore effective if the dataset sizewere expanded and the class balancewere improved
[23]. This suggestion is particularly relevant to the authors of this promising dataset.
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