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Abstract: The increasing adoption of cloud computing (CC) has introduced signiϐicant security and privacy con‑
cerns, demanding intelligent and adaptive solutions. This review explores the application ofmachine learning (ML)
algorithms—both supervised and unsupervised—in addressing these challenges within cloud environments. A to‑
tal of 87 peer‑reviewed studies published between 2014 and 2025 were analyzed to assess the effectiveness of
various ML techniques. SupervisedMachine Learning (SML) algorithms such as Artiϐicial Neural Networks (ANNs),
Support Vector Machines (SVM), K‑Nearest Neighbors (K‑NN), Naive Bayes, and C4.5 Decision Trees are examined
for their effectiveness in intrusion detection, anomaly classiϐication, and threat mitigation. Concurrently, Unsuper‑
vised Machine Learning (UML) algorithms, including Unsupervised Neural Networks (UNNs), K‑Means clustering,
and Singular Value Decomposition (SVD), are analyzed for their capacity to detect unknown threats and extract
latent patterns from unlabeled data. Key trends reveal a growing preference for hybrid models, the superior accu‑
racy of deep learning in anomaly detection, and the emerging use of context‑aware frameworks. The review shows
a comparative analysis of these approaches, highlighting their advantages, limitations, and application scenarios in
cloud security. Future research directions are proposed, emphasizing hybrid learning models, enhanced datasets,
and context‑aware security frameworks. The ϐindings underscore the transformative potential of ML in fortifying
cloud infrastructures against evolving cyber threats.
Keywords: Cloud Computing; Cloud Security; Machine Learning; Security Threats; Storage‑Based Attacks; VM‑
Based Attacks; Machine Learning Algorithms

1. Introduction
The term “cloud computing” ϐirst emerged in the mid‑2000s andmarked a signiϐicant turning point in the evo‑

lution of information technology. It introduced a new paradigm for delivering computing services—such as servers,
storage, databases, networking, software, analytics, and intelligence—over the internet, commonly referred to as
“the cloud.” This innovation fundamentally transformed how organizations and individuals access, manage, and
scale computing resources [1–3]. This paradigm shift towards cloud‑based solutions has been propelled by the
growingdemand for cost‑effective, scalable, and ϐlexible infrastructure to accommodate individuals’ andbusinesses’
increasing data needs. By providing standardized devices and shared resources through the internet, cloud com‑
puting (CC) minimizes costs and meets the diverse needs of its users. With the increase of CC, these resources
became available on‑demand, allowing users to pay only for what they use, scale services dynamically, and access
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powerful computing capabilities from virtually anywhere. The ϐlexibility, scalability, and cost‑efϐiciency offered
by cloud computing led to its rapid adoption across industries, empowering everything from startups and small
businesses to large enterprises to innovate faster, improve operational efϐiciency, and deliver digital services with
unprecedented speed. Today, CC is a cornerstone of modern digital infrastructure, underpinning technologies such
as artiϐicial intelligence, big data, Internet of Things (IoT), and mobile applications. Furthermore, the services pro‑
vided by Cloud Service Providers (CSPs), such as Infrastructure as a Service (IaaS), Software as a Service (SaaS),
and Platform as a Service (PaaS), cater to various requirements and support a broad spectrum of applications [4–
6]. Among these services, cloud storage plays a pivotal role in the architecture of cloud computing, facilitating data
sharing and storage for consumers.

Central to the notion of cloud security is data protection, which encompasses a range of practices aimed at se‑
curing data within the cloud environment. This involves storing data in secure data centers and ensuring that only
authorized users gain access [5]. Data protection strategies include the integration of policies, procedures, and
technological solutions to secure cloud‑based applications and systems, alongside the data they house and the user
access that governs them. One common method for strengthening security is through authentication processes,
which verify the identities of users and entities within the cloud [6]. Furthermore, trust evaluation is an essen‑
tial aspect of cloud security, particularly when processing data in a decentralized manner. This evaluation helps
users select trustworthy CSPs by assessing the risk associated with particular providers, with trust levels directly
correlating to the perceived degree of risk. Despite its numerous advantages, CC introduces several security con‑
cerns that can impede its widespread adoption, including vulnerabilities related to user privacy, data integrity, and
network security [7–9]. These concerns are exacerbated by the non‑transparent and distributed nature of cloud
environments, which complicates the protection of sensitive information. The very reliance on internet connectiv‑
ity for cloud services makes them susceptible to various threats, including malware injection, data breaches, and
data losses. Given the critical nature of security in cloud environments, both (CSPs) and users must prioritize safe‑
guarding their systems and data against these risks [10]. To address these challenges, various securitymechanisms
have been proposed, such as access control, data protection, attack mitigation, and trust delegation [11]. These so‑
lutions aim to enhance the security framework of CC, fostering a more resilient and trustworthy ecosystem [12].
Recent studies provide critical insights into the security and performance aspects of cloud‑native applications and
emerging technologies in CC [6,13–18].

As cloud environments continue to evolve in complexity and cyberattacks become increasingly sophisticated,
the adoption of machine learning (ML) techniques has emerged as a promising approach to bolstering cloud secu‑
rity. ML algorithms, which empower systems to learn from data and adapt over time, are particularly effective in
detecting anomalies, predicting emerging threats, and automating responses to security incidents in real‑time [7].

This reviewprovides an in‑depth explorationof the role ofMLalgorithms in enhancingCC security. Weexamine
the various security threats and challenges that cloud environments face, alongside the potential solutions offered
by ML techniques. Furthermore, we conduct a comparative analysis of different ML algorithms, assessing their
effectiveness within the context of cloud security and outlining the strengths and limitations of each approach.

2. Research Methodology
This review employs a systematic literature review to explore and analyze the application of ML algorithms in

enhancing cloud computing (CC) security. Themethodology is structured into the following stages: (a) formulation
of focused research questions; (b) identiϐication and collection of relevant scholarly literature; (c) critical evaluation
of the quality and scope of the selected studies; (d) synthesis of extracted data; and (e) interpretation of ϐindings to
derive key insights and trends.

To ensure a comprehensive and up‑to‑date analysis, a literature review was conducted on 87 peer‑reviewed
articles published between 2014 and 2025. Articles and books were sourced from prominent academic databases
including IEEE Xplore, SpringerLink, ScienceDirect, MDPI, ACM Digital Library, and Google Scholar. The literature
searchwas guided by a Boolean query string integrating relevant keywords and phrases, such as “machine learning
in cloud security,” “supervised learning for intrusion detection,” “unsupervised anomaly detection,” “cloud comput‑
ing threatmitigation,” “ML‑based data classiϐication,” “deep learning in CC,” and “privacy‑preservingML algorithms.”

To ensure transparency and methodological rigor, the Preferred Reporting Items for Systematic Reviews and
Meta‑Analyses (PRISMA) framework was adopted as a guiding structure for study selection, screening, and synthe‑
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sis.
The inclusion criteriawere deϐined as follows: (i) publicationsmust be peer‑reviewed, (ii) published in English,

(iii) fall within the 2014–2025 time frame, and (iv) directly address the application of machine learning techniques
in cloud security.

Studies were excluded if they lacked scientiϐic rigor, were not peer‑reviewed (e.g., opinion articles, editorials,
or white papers), or addressed ML outside the scope of CC‑related cybersecurity challenges.

By applying these rigorous inclusion and exclusion criteria, the ϐinal selection of studies offers a comprehensive
and representative foundation for evaluating the capabilities, advantages, and limitations of variousML techniques.
These studies underpin the comparative analysis of supervised and unsupervised learningmethods, providing valu‑
able insights into current challenges and helping to identify promising avenues for future research in cloud security.

3. Cloud Computing Architecture: Service Models and Deployment Models
A CC architecture is structured to offer adaptable and scalable IT services via the internet. It consists of mul‑

tiple interconnected layers and functional components, which collectively ensure the reliable, efϐicient, and secure
delivery of computing resources. These components work in harmony to manage data storage, processing power,
networking, andapplicationdeploymentwithout theneed fordirect hardwaremanagement by the enduser (Figure
1).

Figure 1. The Architecture of Cloud Computing.

With the rapid expansion of the Internet of Things (IoT), a growing number of critical infrastructure systems—
such as those in energy, transportation, healthcare, and manufacturing—are transitioning to cloud‑based environ‑
ments. This shift enables organizations to streamline operations, increase ϐlexibility, and scale more effectively in
response to evolving demands and data loads.

CC architecture is structured into twomain parts: the front end, which includes user‑facing interfaces like web
browsers, mobile devices, and thin or fat clients; and the back end, which is managed by service providers and
handles data storage, virtual machines, deployment models, security, trafϐic control, and servers. These two ends
communicate through the internet.

The architecture comprises several key components. Client infrastructure forms the front end, offering a GUI
(Graphical User Interface) for interaction. Applications are the software platforms users access, while services—
delivered as SaaS, PaaS, or IaaS—determine the typeof cloud functionality provided. Runtime cloudoffers execution
environments for virtual machines, and storage provides scalable space for data management. The infrastructure
includes hardware and software like servers, networking devices, and virtualization tools. Management oversees
coordination and operation of all components, while security ensures backend protection. The internet acts as the
medium linking front and back ends, enabling seamless communication and service delivery.
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CC architecture also incorporates Elastic ResourceManagement, a critical capability that dynamically allocates
computing, storage, and networking resources to various applications. This allocation aims to meet the perfor‑
mance objectives of cloud applications, cloud service providers (CSPs), and end users. The primary goal for CSPs
is to ensure efϐicient and effective utilization of available resources while adhering to the constraints deϐined by
Service Level Agreements (SLAs). To support this objective, virtualization technologies are employed within the
infrastructure layer, enabling statistical multiplexing of physical resources across multiple customers and appli‑
cations. Furthermore, workload execution data is continuously collected and maintained in a historical workload
database, which serves as the foundation for training predictive models. These workload predictors estimate fu‑
ture resource demands and usage patterns, providing critical insights for energy‑efϐicient resource allocation and
intelligent load balancing decisions. As a result, cloud platforms become more adaptive and capable of sustain‑
ing diverse and dynamic application requirements, especially in high‑demand environments such as IoT‑enabled
infrastructure systems.

The Resource Management System (RMS) is implemented in the data center to handle application requests
from cloud clients and provide appropriate responses by allocating the necessary resources, typically in the form
of virtual machines (VMs), based on the demands of the application (Figure 2). The RMS is comprised of twomain
components: the VM Management Unit (VMU) and the Task Management Unit (TMU). The VMU is responsible for
scheduling VMs, determining their placement on physical machines (PMs), andmanaging VMmigrationwhen a PM
experiences overloading or underutilization. The TMU handles incoming application requests from cloud clients
or users, breaks them down into smaller tasks, schedules these tasks, and assigns them to the selected VMs for
execution. The system tracks the execution data of workloads, which is stored in a historical workload database.
This data is then used to train aworkload predictionmodel, which estimates futureworkload patterns and resource
usage. The predictions made by this model are instrumental in making decisions about energy‑efϐicient resource
allocation and optimizing load balancing within the system.

Figure 2. The Conceptual Framework for Resource Management in a Cloud Environment.

3.1. Cloud Service Models
CC is underpinned by a service‑oriented delivery framework, which is typically categorized into three primary

models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) (Figure
3). Each model represents a distinct abstraction layer in the cloud ecosystem, offering varying degrees of control,
ϐlexibility, and management responsibilities to the user [6].
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Figure 3. Cloud Computing Service Models.

• Infrastructure as a Service (IaaS) constitutes the foundational layer of cloud services, delivering virtualized
computing resources—such as servers, storage systems, and networking infrastructure—over the internet.
Thismodel facilitates the provisioning of scalable and on‑demand computational capacity, enabling users to de‑
ploy andmanage operating systems, applications, and storagewithminimal hardware dependencies. IaaS sup‑
ports a utility‑based consumption model, wherein users access computing resources dynamically, as needed,
without incurring the overhead of maintaining physical infrastructure.

• Platform as a Service (PaaS) builds upon the IaaS layer by abstracting hardware and operating system com‑
plexities, and instead, providing a comprehensive development and deployment environment. This includes
integrated development frameworks, application hosting platforms, databases, middleware, and essential de‑
velopment tools. PaaS empowers developers to build, test, and manage cloud‑native applications without the
operational burden of conϐiguring ormaintaining the underlying infrastructure. Furthermore, it enables rapid
application deployment and scalability through standardized APIs, automated provisioning, and support for
continuous integration/continuous deployment (CI/CD) pipelines.

• Software as a Service (SaaS) represents the highest abstraction level in the cloud service hierarchy, deliver‑
ing fully operational, user‑facing software applications over the internet. SaaS offerings typically operate on a
subscription‑based or pay‑per‑usemodel, allowing users to access and utilize software throughweb interfaces
without requiring local installation or maintenance. Common examples include email platforms, customer re‑
lationshipmanagement (CRM) systems, and enterprise collaboration tools. SaaS simpliϐies software accessibil‑
ity, enhances cross‑platform compatibility, and reduces time‑to‑deployment, while centralizing updates, data
management, and security controls within the service provider’s domain.

3.2. Cloud Deployment Models
Clouddeploymentmodels can be categorized into the following ϐive types, each tailored tomeet speciϐic organi‑

zational requirements (Figure4). A comparative analysis of the clouddeploymentmodels based on key parameters
is shown in Table 1.

Figure 4. Types of Cloud Computing Deployment Models.
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Table 1. Comparative Analysis of the Cloud Deployment Models.

Parameter Public Cloud Private Cloud Hybrid Cloud Community Cloud Multi‑Cloud

Host Service provider Enterprise (or third
party)

Enterprise (or third
party)

Community (or third
party)

Multiple cloud
providers

Users General public Selected users Selected users Community members Multiple organizations
Access Internet Internet, VPN Internet, VPN Internet, VPN Internet, VPN
Owner Cloud service provider Enterprise Enterprise Community Multiple organizations

Cost Model Pay‑per‑usage Infrastructure
investment Mixed/variable Shared among

members Variable, usage‑based

Security Provider‑managed High control and
customization

Varied (depends on
conϐiguration)

Varied,
community‑deϐined

Varied,
provider‑dependent

Scalability Highly scalable Limited to internal
resources

Scalable (via public +
private integration)

Scalable within shared
community resources

Scalable across
providers

Customization Limited High Depends on
deployment model

Depends on community
needs Limited per provider

Resource Sharing Not shared Not shared Variable (depends on
design)

Shared among
community members

Shared across
providers

Examples AWS, Microsoft Azure,
Google Cloud

OpenStack,
VMware‑based private
cloud

AWS Outposts, Azure
Stack

Government or
Healthcare Community
Cloud

AWS + Azure + GCP
combinations

Advantages Cost‑effective, scalable,
minimal maintenance

Enhanced control, data
security

Flexibility, balanced
cost‑security model

Cost sharing, regulatory
alignment

Resilience, vendor
independence,
optimized performance

Disadvantages Limited control, lower
security

High cost, maintenance
responsibility

Complex management,
vendor dependency

Not suitable without
collaboration

Complex integration,
governance challenges

4. Cloud Computing Threats
This section examines the principal threats to CC, categorized using the foundational principles of the CIATriad

(Conϐidentiality, Integrity, Availability) [19–21], alongside a taxonomy of attacks targeting key cloud infrastructure
components.

1. Conϐidentiality threats primarily concern unauthorized access to sensitive data, whether through internal
misuse or external breaches. Three critical risks dominate this domain:

• Insider threats: One of the most insidious and difϐicult‑to‑detect threats arises from malicious insiders — in‑
dividuals with authorized access who exploit their privileges to compromise customer data. Such threats are
particularly alarming given the broad administrative access many CSPs possess, often without adequate mon‑
itoring mechanisms.

• External attacks: The openness and interconnected nature of cloud environments render them susceptible to
external adversarial attacks, including but not limited to distributed denial‑of‑service (DDoS), remote code exe‑
cution, and credential theft. These attacks often exploit insecure network channels, unpatched vulnerabilities,
or misconϐigured resources.

• Information leakage: Inadvertent data exposure—resulting from human error, misconϐigured access controls,
or inadequate security tools—remains a pervasive concern. The sheer scale of data processing and storage in
cloud systems exacerbates the potential impact of such leakages.

2. Data integrity in CC is compromisedwhen unauthorizedmodiϐications occur, whether during storage, trans‑
mission, or processing. The following issues undermine integrity assurances:

• Data isolation failures: Cloud systems frequently rely on virtualization technologies to allocate shared re‑
sources amongmultiple tenants. Misconϐigurations in virtualmachine (VM) environments or hypervisorsmay
lead to overlapping access boundaries, thereby enabling one tenant to tamper with or access another’s data.

• Inadequate access controls: Weak identity and access management (IAM) systems can permit attackers to
impersonate legitimate users or escalate privileges, thereby facilitating unauthorized data alterations. Poorly
implemented or inconsistently enforced IAM policies are a primary contributor to such vulnerabilities.
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• Data quality threats: Flaweddata ingestion pipelines, lack of validationmechanisms, or synchronization errors
across distributed systems can introduce erroneous or corrupted data, undermining trust in cloud‑hosted in‑
formation assets.

3. Availability threats in CC is deϐined as the continuous and reliable access to cloud services and resources, is
threatened by both operational disruptions and malicious activities. Key threat vectors include:

• Service downtime due to system changes: Changes in the cloud infrastructure— such as software upgrades or
hardware reconϐigurations— can inadvertently lead to service outages if not properly managed. The dynamic
nature of cloud environments complicates the assurance of seamless service delivery.

• Infrastructure and network failures: External disruptions, including failures in domain name system (DNS),
bandwidth exhaustion, or data center outages, can render services inaccessible to end‑users. These disrup‑
tions may stem from cyberattacks or natural disasters affecting the physical infrastructure.

• Physical attacks and intrusions: Physical damage to servers, data centers, or transmission lines — whether
due to sabotage, accidents, or environmental factors — poses a direct threat to cloud availability.

• Inefϐicient disaster recovery mechanisms: Inadequate or poorly tested disaster recovery plans hinder the
timely restoration of services following an incident. This results in prolonged downtimes and signiϐicant losses
in operational continuity.

4.1. Classiϐication of Cloud‑Based Attacks
CC is susceptible to speciϐic attack vectors classiϐied according to the architectural layer they target: network‑

based, VM‑based, storage‑based, and application‑based attacks. Each category is outlined below with representa‑
tive threats.

1. Network‑based attacks compromise cloud communication channels and can act as precursors to deeper
system intrusions:

• Port Scanning: This reconnaissance technique enables attackers to identify open ports and services, which
may then be exploited using targeted attacks. While port scans are often overlooked, they provide crucial
intelligence for subsequent exploitation.

• Botnets: Composed of compromised internet‑connected devices, botnets are orchestrated to execute coordi‑
nated attacks, including spam distribution and DDoS campaigns, often with signiϐicant destructive capacity.

• Spooϐing attacks: In spooϐing scenarios, malicious actors impersonate legitimate entities to deceive systems or
users, thereby gaining unauthorized access or exϐiltrating data. This includes Internet Protocol (IP) spooϐing,
Address Resolution Protocol (ARP) spooϐing, and Domain Name System (DNS) spooϐing, among others.

2. Virtual Machine (VM)‑based attacks compromise the fundamental isolation and security mechanisms of
virtualization in cloud computing.

• Side‑channel attacks: These sophisticated attacks extract sensitive information by analyzing physical or behav‑
ioral patterns—such as timing, cache access, or electromagnetic emissions—rather than exploiting software
ϐlaws.

• Malicious VM images: Compromised or intentionally manipulated VM images can introduce persistent threats
into the cloud environment, especially if reused or shared without proper validation and scanning.

• VM escape and hypervisor attacks: Attackers exploit vulnerabilities in the hypervisor layer to break the isola‑
tion between VMs, gaining unauthorized access to underlying system resources or co‑hosted VMs.

3. Storage‑based attacks in CC compromise the conϐidentiality, integrity, and availability of data stored in cloud
environments.

• Data scavenging: Even when data is deleted, residual traces may persist on storage media, enabling attackers
to recover sensitive information through forensic techniques.
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• Data deduplication exploits: Attackers may infer or gain access to ϐiles based on storage deduplication mecha‑
nisms, especially in public cloud scenarios where deduplication is shared across tenants.

• Unauthorized access to backup data: Improperly secured backups or shadow copies can serve as an alternative
entry point for attackers seeking sensitive historical data.

4. Application‑based attacks compromise the functionality, conϐidentiality, integrity, and trustworthiness of
cloud‑based software services. These attacks target the software layer — particularly SaaS platforms, Application
Programming Interfaces (APIs), and web services — exploiting weaknesses in application design, deployment, or
conϐiguration.

• Malware injection and steganographic attacks: Adversaries may embed malicious payloads into cloud‑hosted
applications or conceal them using steganographic methods, compromising system integrity without immedi‑
ate detection.

• API abuse and web service exploits: Weakly secured APIs can be leveraged for privilege escalation, data exϐil‑
tration, or denial of service attacks. Common vulnerabilities include insufϐicient authentication, rate limiting,
and input sanitization.

• Shared technology vulnerabilities: Exploiting common components or libraries used across cloud services can
allow attackers to simultaneously affect multiple applications or tenants.

5. Machine Learning Algorithms and Cloud Computing Security
Machine Learning (ML), a subset of artiϐicial intelligence, has emerged as a critical enabler of intelligent cloud

security, offering data‑driven models for threat detection, risk assessment, and anomaly identiϐication. By analyz‑
ing vast amounts of data, ML algorithms can identify patterns, predict malicious activities, and mitigate risks in
real‑time. Classiϐication tasks can be addressed through both supervised and unsupervised ML approaches, each
offering distinct methodologies and applications. This section discusses the role of supervised and unsupervised
ML algorithms in CC, highlighting their objectives, techniques, advantages, and challenges through recent scholarly
contributions.

5.1. Supervised Machine Learning Algorithms
SupervisedMachine Learning (SML) refers to a type ofMLwhere themodel is trained using labeled data. In the

context of CC, SML algorithms are widely used to detect patterns, predict outcomes, and automate decision‑making
in cloud‑based applications such as intrusion detection, threat mitigation, resource allocation, and data classiϐica‑
tion. SML algorithms work by learning from a training set and using the patterns identiϐied to make predictions on
new, unseen data.

Types of SML algorithms in CC are:

• Artiϐicial Neural Networks (ANNs). An ANN is composed of layers of interconnected nodes (neurons), where
each neuron performs aweighted sumof its inputs followed by a non‑linear activation function. ANNs are used
for complex pattern recognition, anomaly detection, and deep learning tasks such as cloud‑based image and
speech recognition. However, their computational cost can be high, as training deep neural networks requires
substantial processing power. Furthermore, the interpretability of ANNmodels can be limited, whichmaypose
challenges in decision‑making scenarios where transparency is critical.

• Support Vector Machines (SVM). SVM are used for binary classiϐication by ϐinding the optimal hyperplane that
maximally separates two classes in a high‑dimensional space. SVM are excellent for classiϐication tasks like in‑
trusion detection, especially when the dataset is high‑dimensional. However, one signiϐicant drawback of SVM
is its computational complexity, especially in large‑scale cloud environments. Additionally, while SVM per‑
forms well in binary classiϐication tasks, it may encounter difϐiculties when extended to multi‑class problems,
requiring additional modiϐications and tuning.

• K‑NearestNeighbors (K‑NN). K‑NN is used for classiϐication (and regression) andassigns the label to anewdata
point based on the majority class of its k closest neighbors in the feature space. K‑NN is ideal for classiϐication
tasks, such as categorizing cloud trafϐic or user behavior based on labeled historical data. However, K‑NN can
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be computationally expensive when dealing with large datasets, particularly when the number of dimensions
is high. Furthermore, its performance heavily depends on the choice of the ’k’ parameter and the distance
metric used, which can be challenging to optimize in dynamic cloud environments.

• Naive Bayes. Naive Bayes is a probabilistic classiϐier based on Bayes’ Theorem, assuming that the features are
conditionally independent given the class label. It is particularly well‑suited for tasks like spam ϐiltering in
email systems or categorization of cloud trafϐic. Naive Bayes is commonly used for spam ϐiltering and other
classiϐication tasks in cloud environments. However, the strong independence assumption often does not hold
in real‑world datasets, which can lead to suboptimal performance, especially when features are highly corre‑
lated. Additionally, Naive Bayes may struggle to capture complex relationships within the data, making it less
effective in situations where deep learning or more sophisticated models are required.

• C4.5 Decision Trees. C4.5 is an algorithm for generating a decision tree from a dataset. It works by recursively
splitting the data into subsets based on feature values. The key idea is to choose the best feature that max‑
imizes information gain (or reduces entropy) for classiϐication tasks. C4.5 is used for decision support and
classifying large datasets, common in resource allocation in CC. However, decision trees like those generated
by C4.5 can suffer from overϐitting, especially when the tree grows too large or the dataset is noisy. Tomitigate
this issue, pruning techniques are often applied, but this adds additional computational overhead. Moreover,
decision trees may struggle to model complex relationships, limiting their effectiveness when applied to high‑
dimensional data.

(a) SML algorithms offer several advantages for CC. They provide high accuracy when trained with large, la‑
beled datasets, making them ideal for critical tasks like security threat detection. These algorithms also offer clear
decision‑making insights, especially with models like decision trees. SML models are scalable, capable of handling
vast amounts of cloud data, and can automate predictions, reducing human intervention. Furthermore, they are
versatile, applicable to various CC tasks, from network trafϐic analysis to resource management.

(b) SML algorithms in CC have several disadvantages. Obtaining accurate data labels, especially for novel
threats, can be challenging, limiting the initial effectiveness of SML models. Additionally, cloud environments are
dynamic, and SML models may struggle to adapt to changing patterns unless retrained regularly with new labeled
data. These models also require periodic retraining and maintenance, which can be resource‑intensive. Moreover,
if the training data is biased or unrepresentative, SMLmodelsmay perpetuate biases, leading to unfair or inaccurate
predictions.

(c) SML algorithms have several limitations. They rely heavily on large amounts of labeled data, which can
be resource‑intensive and time‑consuming to acquire in cloud environments. SML models may also suffer from
overϐitting if not properly tuned, leading to poor generalization on unseen data, particularly in dynamic cloud set‑
tings. Training complex models, like deep neural networks, requires signiϐicant computational resources, driving
up costs in cloud environments. Furthermore, the accuracy of SML models is dependent on the quality of labeled
data; inaccurate or biased data can degrade model performance and lead to incorrect predictions.

Table 2 shows a comparative overview of supervised learning techniques used for CC. While each algorithm
hasdistinct advantages andareasof application, understanding the trade‑offs is critical for selecting the appropriate
approach for speciϐic cloud security tasks.

Table 2. A Comparative Overview of Supervised Learning Techniques Used for Cloud Computing.

Objective Technique Advantages Disadvantages

Public/private cloud workload
protection ANN High data privacy Requires specialized applications

Secure cryptosystems SVM Improved security Storage/network errors
Attack detection ANN High accuracy Time and storage intensive
Intrusion detection ANN Effective dataset testing Accuracy not reported
Resource provisioning K‑NN + Data Mining Simple, scalable High memory, time‑consuming
Privacy preservation K‑NN Time‑efϐicient Accuracy not reported

Cloud protection C4.5 + Signature Detection Handles noise, supports various data
types Overϐitting, unstable trees
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Table 2. Cont.

Objective Technique Advantages Disadvantages

Web pre‑fetching Naive Bayes Efϐicient data handling Time and storage issues
Intrusion detection Naive Bayes Compatible Accuracy not reported
Intrusion detection SVM + Naive Bayes High accuracy Limited environment

Cloud authentication ANN + Delphi Better data analysis Low detection precision,
unpredictable behavior

Cloud‑level attack mitigation ANN/NN Parallel processing High computational cost

5.2. Unsupervised Machine Learning Algorithms
Unsupervised Machine Learning (UML) refers to a class of machine learning algorithms designed to analyze

and interpret datasets without labeled responses. In the context of CC, UML is crucial for uncovering hidden pat‑
terns, groupings, and structures within large‑scale, unclassiϐied data. These algorithms are widely applied in tasks
such as anomaly detection, intrusion detection, user behavior analysis, trust modeling, and dimensionality reduc‑
tion ‑often serving as the foundation for exploratory data analysis. UML algorithms learn the inherent structure of
the data by identifying clusters or reducing dimensionality to reveal critical patterns. As these algorithms do not
require labeled data, they are highly valuable in dynamic or rapidly evolving cloud environments where labeled
datasets may not be readily available.

Types of UML algorithms in CC include:

• Unsupervised Neural Networks (UNNs): These networks operate without prior knowledge of data outputs.
They classify data based on internal similarities and can detect correlations between diverse data sources,
making them suitable for anomaly detection and pattern recognition in unstructured cloud trafϐic. By examin‑
ing the intrinsic features of the data, UNNs can uncover hidden relationships and detect unusual patterns that
may indicate security breaches, such as DDoS attacks or unauthorized access. Their ability to adapt to evolv‑
ing data makes them highly valuable in rapidly changing cloud environments, although their computational
complexity can be a challenge in large‑scale systems.

• K‑Means Clustering: A simple yet powerful clustering technique, K‑Means identiϐies a predeϐined number of
centroids (clusters) and iteratively assigns data points to the nearest cluster. It is frequently used for workload
segmentation, intrusion detection, and user behavior modeling in cloud infrastructures. However, K‑Means
requires the number of clusters to be predeϐined, which can be challenging in dynamic environments where
the optimal number of clusters may not be immediately obvious.

• Singular Value Decomposition (SVD): A robust dimensionality reduction algorithm, SVD is central to recom‑
mendation systems and compressed representation of high‑dimensional cloud data. It aids in uncovering
latent features, optimizing storage, and enhancing data interpretability. SVD also aids in improving the per‑
formance of ML models by eliminating noise and irrelevant information, making it easier to detect important
security‑related patterns in cloud infrastructures. However, like other dimensionality reduction techniques,
SVD may lose some information during the reduction process, which can impact the accuracy of certain analy‑
ses.

(a) UML algorithms offer several advantages for CC. UML algorithms can effectively analyze unlabeled or semi‑
structured data, offering scalability and ϐlexibility in data‑driven tasks. These models reduce the dependency on
human‑labeled datasets, allowing automation in scenarios like anomaly detection or trust evaluation. Moreover,
techniques like SVD help reduce computational load by minimizing redundant information in high‑dimensional
cloud datasets.

(b) UML algorithms comewith notable disadvantages. The absence of labeled data makes evaluation of model
accuracy difϐicult. Interpretability is also a challenge, as the clustering and dimensionality reduction processesmay
not yield clearly actionable insights. Additionally, some techniques (e.g., deep unsupervised models) are computa‑
tionally intensive and sensitive to parameter selection, affecting model stability and scalability in complex cloud
environments.

(c) UML algorithms have several limitations. UML algorithms struggle with managing dynamic cloud data

42



Digital Technologies Research and Applications | Volume 04 | Issue 02

where patterns frequently shift. Their reliance on internal metrics for clustering or decomposition may yield sub‑
optimal results when data distributions are uneven or noisy. Moreover, without labeled feedback, models cannot
self‑correct misclassiϐications, necessitating careful tuning and monitoring.

Table 3 shows a comparative overview of unsupervised learning techniques used for CC.While each algorithm
hasdistinct strengths, their effectiveness depends on the speciϐic security tasks at hand. However, the lack of labeled
data can pose challenges in evaluating model performance, and interpretability remains an ongoing concern for
many unsupervised algorithms.

Table 3. A Comparative Overview of Unsupervised Learning Techniques Used for Cloud Computing.

Objective Technique Advantages Disadvantages

ML capability for secure
cryptosystems K‑Means, ANN Ensures high data privacy; protects

cloud workloads
Requires specialized client‑server
applications for proper functionality

Trust evaluation strategy to predict
trust values for users/resources SVD Efϐicient access control; strong

privacy protection
Impacts network performance;
security vulnerabilities

Analyze encrypted mobile trafϐic
using deep learning CNN, Deep Learning Enables fast data transfer; strong

security May produce runtime errors

Operationalization of ML‑based
security detections

K‑Means, Intrusion
Detection

High privacy, consistency, and
information restriction

Difϐiculties managing dynamic cloud
data

Intrusion detection in cloud
environments K‑Means High accuracy and consistency Limited model comparability

User privacy preservation SVD High accuracy in privacy‑sensitive
applications

Tested on a single model; lacks
generalization

Dimensionality reduction for cloud
datasets SVD Achieves high accuracy in compressed

representation Model comparability issues

6. Performance Metrics of ML Algorithms in Cloud Computing Security
The performance metrics are deϐined as [22]:

• Accuracy measures the proportion of correctly classiϐied instances (both attacks and normal) out of the total,
and it ranges from 0 to 1.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1)

where: TP (TruePositive): Correctly predictedpositive cases (e.g., actual attacks correctly identiϐied); TN (True
Negative): Correctly predicted negative cases (e.g., normal trafϐic correctly identiϐied); FP (False Positive): Incor‑
rectly predicted positive cases (e.g., normal trafϐic ϐlagged as attack); FN (False Negative): Incorrectly predicted
negative cases (e.g., attack missed as normal).

• Precision (Positive Predictive Value) quantiϐies the proportion of predicted attacks that are truly attacks.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (2)

• Recall (also known as Sensitivity or True Positive Rate) quantiϐies the proportion of actual attacks that are
correctly identiϐied.

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (3)

• The F1‑Score, deϐined as the harmonicmean of precision and recall, provides a balance between false positives
and false negatives.

F1‑Score = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4)
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• Speciϐicity (True Negative Rate) indicates the model’s ability to correctly identify negative instances, thereby
avoiding false positives.

Speciϐicity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (5)

• False Positive Rate (FPR)measures the proportion of negative instances incorrectly classiϐied as positive, high‑
lighting the importance of minimizing false alarms to prevent alert fatigue.

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁 (6)

• False Negative Rate (FNR) measures the proportion of actual positive instances incorrectly classiϐied as nega‑
tive, and a lower FNR ensures that real attacks are not overlooked, preventing security breaches from going
undetected.

FNR = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃 (7)

Table 4 highlights the key performance metrics for each of the ML algorithms, reϐlecting typical ranges ob‑
served in academic and industry research applied to CC security [23].

Table 4. Performance Metrics of ML Algorithms in Cloud Computing Security.

Algorithm Accuracy
(%)

Precision
(%) Recall (%) F1‑Score

(%)
Speciϐicity
(%) FPR (%) FNR (%)

ANN (Artiϐicial Neural Networks) 92 91 93 92 90 10 7
SVM (Support Vector Machines) 89 88 90 89 87 13 10
K‑NN (K‑Nearest Neighbors) 85 84 86 85 82 18 14
Naive Bayes 80 79 82 80 78 22 18
C4.5 (Decision Trees) 88 86 87 86 85 15 13
UNN (Unsupervised Neural
Networks) 87 85 88 86 84 16 12

K‑Means Clustering 84 82 85 83 80 20 15
SVD (Singular Value Decomposition) 83 80 84 82 79 21 16

Theperformancemetrics shown inTable4highlight signiϐicant differencesbetween thevariousMLalgorithms
used in cloud computing (CC) security. ANN and SVM stand out with the highest overall performance across key
indicators—accuracy (92% and 89%), precision (91% and 88%), recall (93% and 90%), and F1‑score (92% and
89%), respectively. These high values suggest that ANN and SVM are particularly effective in correctly identifying
both normal and malicious activity, making them well‑suited for critical applications such as real‑time intrusion
detection, DDoS mitigation, and adaptive threat response systems. Their relatively low False Positive Rates (FPR:
10% for ANN, 13% for SVM) and False Negative Rates (FNR: 7% for ANN, 10% for SVM) further reinforce their
reliability, minimizing both missed attacks and false alerts that could lead to alert fatigue or system downtime.

K‑NearestNeighbors (K‑NN) andC4.5decision trees demonstratemoderate performance,with accuracy scores
of 85% and 88%, respectively. While K‑NN offers simplicity and ease of implementation, its FPR (18%) and FNR
(14%) suggest potential drawbacks in high‑volume or noise‑prone environments. C4.5 fares slightly better in speci‑
ϐicity (85%) and recall (87%), making it a viable choice for classiϐication tasks where interpretability and logical
rule generation are essential, such as access control or compliance monitoring systems.

Naive Bayes, while computationally efϐicient, shows the weakest performance across most metrics, with accu‑
racy (80%), precision (79%), and a relatively high FPR (22%) and FNR (18%). This indicates a higher likelihood of
both missed detections and false alarms, limiting its use in scenarios demanding high assurance. Nevertheless, its
low computational footprint may still make it useful in edge computing scenarios with limited processing power.

UNN and K‑Means Clustering offer notable potential in anomaly detection and unsupervised threat discovery,
particularly in dynamic or zero‑day environments. While their accuracy (87% for UNN, 84% for K‑Means) and
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F1‑scores (86% and 83%) are slightly lower than top performers, they maintain a balance between detection capa‑
bility and generalization. However, their higher FPRs (16% and 20%) indicate a tendency to over‑alert, which may
necessitate post‑processing or hybrid reϐinement with supervised models.

Lastly, SVDdemonstratesmoderate effectiveness in terms of accuracy (83%) and recall (84%), but its precision
(80%) and F1‑score (82%) suggest that it may struggle with distinguishing subtle threats. While SVD is advanta‑
geous for dimensionality reduction andnoise ϐiltering, its use as a standalonepredictor in threat detection scenarios
is limited, and it is best employed as a preprocessing step to enhance the performance of other algorithms.

In conclusion, high‑performing models like ANN and SVM are preferable for mission‑critical environments
requiring high accuracy and low latency, while hybrid models combining dimensionality reduction, anomaly detec‑
tion, and classiϐication may offer improved ϐlexibility and robustness in evolving threat landscapes.

7. Future Research Directions
Recent studies have identiϐied several pivotal areas for future research:

• Hybrid unsupervised and semi‑supervised learning models: Integrating unsupervised and semi‑supervised
learning approaches can enhance the detection of speciϐic attack types and zero‑day vulnerabilities. This fu‑
sion leverages the strengths of both methods, aiming to improve detection accuracy without extensive labeled
datasets.

• Crowdsourcing fordata annotation in security applications: Utilizing crowdsourcing fordata annotationpresents
opportunities to enrich training datasets for ML models. However, challenges such as ensuring data quality,
maintaining security, and managing the integration of diverse data sources remain critical areas for further
investigation.

• Artiϐicial Intelligence in hybrid cloud security: The application of AI‑driven automation in hybrid cloud envi‑
ronments addresses issues of security fragmentation. By unifying security policies and enhancing visibility, AI
can mitigate risks associated with disparate on‑premises and cloud infrastructures.

• Location‑Based Services (LBS) integration: The expansion of LBS offers avenues for context‑aware security
measures in cloud computing. Anticipated trends and technological advancements in LBS can be harnessed to
bolster security protocols, particularly in mobile and geographically distributed networks.

8. Conclusions
This review has examined the role of both supervised and unsupervised ML algorithms in enhancing cloud se‑

curity by enabling real‑time threat detection, intrusion prevention, trust evaluation, and data privacy preservation.
Supervised learning techniques, such as ANNs, SVM, K‑NN, Naive Bayes, and C4.5 decision trees, have demonstrated
strong performance in identifying known threats and automating classiϐication tasks within cloud environments.
Their ability to learn from labeled datasets makes them particularly suitable for structured security problems such
as intrusion detection and attack classiϐication. In parallel, unsupervised learning approaches, including UNNs, K‑
Means clustering, and SVD, offer valuable capabilities for uncovering hidden patterns in unstructured or unlabeled
data. These methods are critical for anomaly detection, feature extraction, and identifying previously unknown
attack vectors in evolving cloud ecosystems. Despite their respective strengths, both paradigms face limitations,
such as data dependency, computational overhead, and difϐiculties inmanaging high‑dimensional or noisy datasets.
Addressing these limitations calls for innovative research in hybrid learningmodels, more robust datasets, and scal‑
able architectures tailored to dynamic cloud infrastructures. Future research should focus on enhancing model in‑
terpretability, leveraging real‑time threat intelligence, and ensuring privacy‑preserving learning across distributed
cloud platforms.
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