
Digital Technologies Research and Applications | Volume 04 | Issue 02

Digital Technologies Research and Applications
http://ojs.ukscip.com/index.php/dtra

Article

AWeb‑Based Multiplayer Common‑Pool Resource Game Platform
Vasileios Tzimourtos

Department of Economics, University of Thessaly, Volos 38333, Greece
* Correspondence: vtzimourtos@uth.gr

Received: 15 May 2025; Revised: 6 July 2025; Accepted: 8 July 2025; Published: 22 July 2025

Abstract: The paper introduces a web‑based platform for conducting multiplayer common‑pool resource (CPR)
games, replicating the experimental framework of Ahn et al. Built using technologies such as PHP, MySQL, HTML5,
and JavaScript the platform facilitates remote and synchronous gameplay in structured groups with conϐigurable
settings. Players extract tokens from a shared resource over multiple rounds, with payoffs determined by token‑
order pricing and optional costly punishment stages. The system supports dynamic group formation, randomized
player order, and round‑based synchronization to ensure fairness. It includes real‑time coordination via AJAX
polling; a responsive Bootstrap interface; administrative controls, and livemonitoring through Grafana dashboards.
Data integrity is maintained using server‑side validation, prepared S.Q.L. statements, and transactional database
updates, with all actions logged in a normalized relational schema. The platform addresses technical challenges
such as session timeouts, synchronization delays, and dropouts using heartbeat callbacks, waiting screens, and ro‑
bust state checks. Designed for extensibility, it can support different game‑theoretic designs and is suitable for
both lab and remote experiments. Future enhancements include WebSocket‑based real‑time communication and
Docker‑based deployment for reproducibility. By offering a customizable, secure, and scalable CPR experiment en‑
vironmentwith real‑time feedback and comprehensive logging, this platform serves as a valuable tool for advancing
research in experimental economics, particularly in cooperation, punishmentmechanism, and resource governance.
The platformdemonstrates reliable performancewith low‑latency synchronization andminimal dropout‑related is‑
sues. Compared to tools like oTree and LIONESS Lab, it offers amore lightweight andmodular alternative optimized
for small‑scale deployment, remote teaching, and rapid experimental design.
Keywords: Common‑Pool Resource; Experimental Economics; Web‑Based Game; Multiplayer Coordination; Ses‑
sion Management; Penalty Mechanisms

1. Introduction
Common‑pool resources (CPRs)–such as ϐisheries, forests, or irrigation systems – are characterized by being

non‑excludable yet rivalrous: individuals cannot be easily excluded from using them, but one person’s consump‑
tion reduces availability for others [1]. Garrett Hardin’s seminal essay The Tragedy of the Commons argued that, in
the absence of regulation, rational self‑interested users will overexploit such resources, leading to their eventual
depletion [2]. In contrast, Elinor Ostrom’s pioneering work challenged this view, showing that communities often
succeed in self‑organizing sustainable governance structures for CPRs [3]. In Working Together, Poteete, Janssen,
and Ostrom further emphasized the importance of integrating behavioral experiments, case studies, and theoret‑
ical models to understand collective action problems in commons governance [4]. This principle has also been
demonstrated in regional experiments, such as those conducted in Greece, where community‑based institutional
responses have been shown to support cooperation in CPR dilemmas [5].

https://doi.org/10.54963/dtra.v4i2.1232 80

https://orcid.org/0009-0000-4457-2455

Digital Technologies Research and Applications | Volume 04 | Issue 02

Empirical laboratory and ϐield experiments have since explored how communication, norms, and institutions
affect CPR outcomes. For instance, Ahn et al. conducted experiments demonstrating that non‑binding communica‑
tion among participants in a ϐinite‑horizon token‑extraction game could yield nearly efϐicient outcomes [6]. Punish‑
ment mechanisms, such as costly peer penalties, have also been shown to support cooperation in social dilemmas
[7]. CPR games are essential tools in behavioral economics for studying cooperation, self‑governance, and insti‑
tutional responses to shared resource dilemmas. In real‑world contexts such as ϐisheries, water distribution, or
climate governance, these dynamics mirror collective action problems that require sustainable and equitable so‑
lutions. Experiments help evaluate which mechanisms—like communication or sanctioning—improve outcomes
under scarcity and interdependence. Field studies also show that participants bring context‑speciϐic norms and
shared experiences into CPR experiments, shaping cooperation in important ways [8].

Building on this tradition, we have developed a web‑based platform that replicates the CPR experiment of Ahn
et al. [6], allowing multiple remote participants to interact in a token‑collection game with monetary incentives
and optional sanctioning. The platform supports asynchronous joining, dynamic group formation, round‑based
decision‑making, and real‑time monitoring via an administrative interface.

Web‑based experimental platforms have become increasingly important tools in behavioral economics. Be‑
yond behavioral economics, such platforms have proven essential in collective behavior studies using web‑based
market simulations [9]. Notable examples include oTree, a Python/Django‑based framework [10], and LIONESS
Lab, an HTML5‑based tool designed to reduce wait times and support flexible grouping [11]. Chan et al. surveyed
dozens of experimental tools and found that oTree and SoPHIE offered the most comprehensive feature sets [12].
These studies highlight the growing need for accessible experimental platforms. Similarly, in ϐields such as sustain‑
ability and supply chain design, heuristic and AI‑based modeling frameworks have gained traction [13–15], rein‑
forcing the demand for adaptable digital tools that support strategic coordination. Most current platforms share
common technological foundations, typically using languages like Python, PHP, or Java, and web frameworks such
as Django or Zend with front‑end tools like Bootstrap.

Our system follows a similar architecture, using a standard LAMP‑like stack. It allows remote participants to
be matched into groups and play synchronously through round‑based decision screens, while an admin interface
enables real‑time experiment conϐiguration and monitoring.

In this paper, we ϐirst review relevant literature (Section 2), then present the design and architecture of our
system (Section 3), describe the implementation (Section 4), discuss key challenges and solutions (Section 5), and
detail platform features (Section 6). We conclude with directions for future development (Section 7).

The main contributions of this work are:

• A fully functionalweb‑basedplatformreplicating awell‑knownCPRexperimentwith support for penaltymech‑
anisms;

• A modular and extensible design compatible with both lab and remote use;
• Integration of real‑time monitoring tools and data export functions for experimental control;
• Detailed documentation of design choices, implementation logic, and challenges encountered to support re‑

producibility and future development.

2. Design and Architecture
The system follows a client‑server architecture using proven web technologies. On the server side, we use

PHP 8.2 and MySQL 8. These open‑source tools are common in web‑based experiments; for example, Chan et al.
note that many economics software platforms rely on PHP or Python backends with MVC frameworks [12]. They
also allow integrationwith containerizedworkflows that improve replicability and version control in experimental
platforms [16]. We chose PHP (with jQuery and Bootstrap) for easy deployment on standard Linux/Apache stacks
(i.e., LAMP). On the client side, the interface is built with HTML5, CSS3, and JavaScript, communicating via AJAX
requests. Using the Bootstrap CSS framework ensures that the UI is responsive and accessible on desktops, tablets,
or phones without additional development effort. For instance, all pages adapt to screen size, and range‑slider
inputs provide immediate visual feedback. Figure 1 (below) shows the initial registration and lobby screens.

81

Digital Technologies Research and Applications | Volume 04 | Issue 02

Figure 1. Waiting Screen Until Groups Assemble.

Players begin by registering a pseudonymous username (no personal data is collected). They then enter a
lobby until enough players have joined. We form ϐixed‑size groups (e.g., four players per group) either on a ϐirst‑
come/ϐirst‑served basis or randomly. Once groups are full, the experiment session starts simultaneously for all
(“lockstep” synchronization). This structure—borrowed from prior designs like Ahn et al.—ensures fairness: no
subgroup progresses ahead of the others, and all group members make decisions together [6]. Within each group,
players participate in a series of identical rounds. In each round, every player selects how many tokens to extract
using a range slider. The token‑order pricing rule then determines each player’s payoff: higher token orders incur
higher costs (based on a convex supply curve) and produce lower net returns. This replicates the CPR payoff struc‑
ture used by Ahn et al. [6]. Similar incentive structures have been explored to compare institutional performance
under sanctioning rules and cooperative pressures [17,18].

An optional penalty stage follows each round if enabled: players may assign costly punishment points to oth‑
ers, which reduces both the punished player’s and the punisher’s payoffs. This implements the well‑known “costly
punishment” mechanism, which has been shown to promote cooperation in social dilemmas e.g., Fehr & Gächter [7].

Administrators can conϐigure session parameters (e.g., group size, number of rounds, penalty rate) through a
password‑protected admin panel. All parameters are stored in the database and dynamically accessed by the game
logic.

Network and session flow are illustrated in Figure 2. All client‑server communication is handled asynchron‑
ously. A key design choice was to implement real‑time state monitoring using short polling via AJAX. For example,
once a player submits their token choice, their browser enters a “waiting” screen and sends AJAX requests (via
JavaScript) to the backend API (e.g., check_group_status.php) every few seconds. When the server conϐirms that all
players have submitted, the client receives a redirect to the next round’s input screen. While short polling is less
efϐicient than WebSockets, it is easier to implement and works well over standard HTTP. Tools like Socket.IO could
be used in future versions to enable push‑based communication. However, in our tests, the current approach (with
a 2–3 second polling interval) performed reliably and is compatible with shared hosting environments that lack
WebSocket support. While AJAX polling is simple and widely supported, it introduces some latency and overhead,
particularly in large‑scale or fast‑paced experiments. WebSocket‑based communication could improve synchro‑
nization and responsiveness by enabling server‑push updates, and is considered for future releases to enhance
scalability and real‑time performance [19].

Security and data integrity were key concerns throughout development. All client‑server communication is
encrypted via HTTPS. Server‑side validation and prepared SQL statements are used to prevent injection attacks and
ensure valid data. A complete audit log is maintained in the database: every token submission, payoff calculation,
and penalty assignment are recorded. The schema (Figure 3) consists of ϐive primary tables: users, tokenorders,
penalties, instructions, and settings. Parameters such as maxRounds or penaltyRate are stored centrally in settings
and can be modiϐied during an experiment session if needed.

82

Digital Technologies Research and Applications | Volume 04 | Issue 02

Figure 2. Administrator’s Grafana Dashboard (A) Token Metrics, (B) User Response and Request Metrics.

Figure 3. Database Schema.

The interface follows responsive design principles, including Bootstrap’s grid system, accessible forms, and
mobile‑friendly layouts. We tested the platform across all major browsers and operating systems. These choices re‑
sult in a flexible, extensible, and secure environment for conducting standard CPR experiments online. The system’s
logging design also aligns with reproducible research practices. All data is timestamped, exportable in machine‑
readable formats, and compatible with FAIR data management standards [20], facilitating post‑experimental anal‑
ysis, transparency, and long‑term archival.

All game actions—such as token submissions, penalty allocations, and timestamps—are logged in real time
to the MySQL database. For live monitoring, we integrated a Grafana dashboard using a Prometheus exporter or
MySQL plugin. This setup provides real‑time statistics on active sessions, average payoffs, submitted tokens, and
server performance. The administrator can thus monitor ongoing experiments (e.g., number of groups playing,
response times) and detect potential issues. This architecture supports continuous data flows and periodic client
updates, enabling synchronized gameplay across distributed users (see Figure 2A,B) [1,6].

3. Implementation
The core implementation consists of front‑end HTML and JavaScript pages, back‑end PHP API scripts, and a

relational database schema built on MySQL. Both the codebase and the database design were originally developed
by the author and are described in detail below. We deliberately selected a traditional LAMP‑based stack (PHP,
MySQL, JavaScript) to ensure maximum compatibility, ease of hosting, and simplicity for non‑specialist deployers.

83

Digital Technologies Research and Applications | Volume 04 | Issue 02

While modern frameworks (e.g., Node.js, Django, or cloud‑native stacks) offer advanced modularity and scala‑
bility, they may introduce barriers to adoption for small labs or single‑instructor classrooms. Our current architec‑
ture balances accessibility and functionality, though future iterationsmay explore decoupled ormicroservice‑based
implementations for greater flexibility and integration with real‑time analytics or AI modules [16]. The following
sections outline the key components and workflows that underpin the system’s operation. Figure 4 provides a
visual overview of the sequential user flow, from registration to game completion.

Figure 4. Illustration of the Sequential User Interaction Flow in the CPR Game Platform, from Registration to Game
Completion.

3.1. User Interface and Token Ordering
Players interact through an HTML5 token request form with a range slider (<input type = “range”>). As the

player moves the slider, a JavaScript calcBeneϐits() function computes the expected beneϐit using the quadratic for‑
mula:

B = t × (0.761− 0.007t) (1)
This value is updated in real time on the interface [6]. Real‑time visual feedback has been shown to enhance

decision‑making and user engagement in online public goods experiments [21].
The current token request and calculated beneϐit are shown on the page (Figure 5). When the player sub‑

mits the form, the client captures the selected value (rangeValue) and beneϐit, then sends it via fetchWithRetry

84

Digital Technologies Research and Applications | Volume 04 | Issue 02

(‘process_token_request.php’, {method:‘POST’}). The form data includes: username, round number (currentRound
from sessionStorage), group ID, tokens requested, and a timestamp of when the round started (pageLoadTime).

Figure 5. Token Request Interface with Dynamic Calculation of Beneϐits.

Upon receiving a token submission, the process_token_request.php script on the server performs the following
steps (Figure 6):

Figure 6. User Interface Displays for Managing Group Requests: (A) Waiting Screen for Group Requests, (B) Infor‑
mation Alert for Total Group Requests.

1. Store Token Order: The chosen token count (order) is saved in the tokenorders table. Each record includes
ϐields (round, user, usergroup, tokenorder) plus placeholders for later ϐields (tokenprice, netbeneϐit, groupto‑
kens);

2. Synchronize Group: The script checks if all group members have submitted for this round (by querying to‑
kenorders for the group and round). If not, all have submitted, it marks the submission and returns status
pending. If all are present, it proceeds (Figure 6A);

3. Compute Grouptokens: Sum all tokens in the group to get groupTokens. This value is updated in each row’s
grouptokens ϐield for the current round (Figure 6B);

4. Compute Beneϐits and Costs: For each player in the group, the server calculates the average cost:

avgCost = 0.01 × (groupTokens+ 1)/2 (2)

Then the token price (cost per player) is tokenorder × avgCost, and net beneϐit = (calculated beneϐit from for‑
mula) – (total cost). These values are written into a database table;

5. Advance Round: Once payoffs are computed, the PHP sets a success response. The client script then incre‑
ments currentRound in sessionStorage and navigates players to a waiting‑group page. This page polls the
server until it signals that the next round can begin (handled via a small AJAX call to a next_round.php which
checks if the admin hasn’t blocked the next round or if all players are ready).
These steps implement the “token ordering” logic and round progression. The ordering of tokens (priority)

is not explicitly determined when players submit identical values; in such cases, the system may assign order
randomly for record‑keeping purposes, although the underlying model assumes simultaneous decisions [4]. The
database table tokenorders (see schema) records all of this information. Key columns are:

• round: round index;

85

Digital Technologies Research and Applications | Volume 04 | Issue 02

• user: username of player;
• usergroup: group identiϐier;
• tokenorder: tokens requested by the user;
• tokenprice, netbeneϐit: calculated payoff ϐields;
• grouptokens: total tokens of the group in that round;
• Timestamps (round_start_time, round_time2decision) track timings.

3.2. Penalty Mechanism
An optional peer‑penalty stage is supported in later rounds (Figure 7). If enabled by each player group after

a threshold round (e.g., round ≥ 7), the platform shows a secondary formwhere each player can assign penalties to
group members (Figure 7A,B). The penalty rate could act as the conversion factor; for example, if a player selects
a penalty value for another, that amount is deducted from the other player’s payoff and charged to the punisher at
a deϐined cost.

Figure 7. Game Player Interface: (A) Game Options to Enable Penalization, (B) Setup Options for Penalty Severity.

Costly punishment mechanisms have been shown to sustain cooperation in repeated social dilemmas by de‑
terring free‑riding behavior. Long‑term experiments further demonstrate that punishment can yield sustained co‑
operation beneϐits over time, even when its application declines [22]. In our implementation, this dynamic can be
explored by adjusting the penalty cost‑to‑impact ratio, enabling researchers to examine how varying punishment
burdens affect cooperation over time. This makes the system useful not only for replicating past designs but also
for exploring novel treatment variations in institutional design experiments.

Implementation details:

• The HTML includes a hidden <div> with dropdowns for each other player. At the penalty stage, the page popu‑
lates these <select> elements via createPenaltyInputs() by fetching current group members from
get_group_members.php;

• When submitted, save_penalties.php receives a JSONmap of {target: penaltyValue}. The script iterates through
each pair: it inserts rows into the penalties table with round, punisher, punished, penalty (value set by pun‑
isher), and computes cost (punisher’s actual cost, e.g. penalty × penaltyRate). It then updates the punished
player’s net beneϐit in tokenorders by subtracting the penalty. Concurrently, the punisher’s own payoff is re‑
duced by the cost. The UI then conϐirms with a “Penalties saved” message;

• A separate get_penalty_cost.php API is used to fetch combined penalty costs for display in the previous‑rounds
table: it returns how much a given player gave and received in penalties so that the interface can show ϐinal
payoff = netBeneϐit – totalPenalties.

The penalty logic is a sample implementation following similar experiments where costly punishment has
been shown to deter selϐish over‑withdrawal [7]. In code, the penalty entries form a unique key (round, punisher,

86

Digital Technologies Research and Applications | Volume 04 | Issue 02

punished) to avoid duplicates.

3.3. Database Structure
The MySQL schema is simple and normalized. The ϐive key tables include (Figure 3):

• users: (id, username, groupid, penaltyrate). Holds registered players. groupid is assigned when the game
starts; penaltyrate settings;

• tokenorders: (id, round, user, usergroup, tokenorder, tokenprice, netbeneϐit, round_start_time,
round_time2decision, grouptokens). Captures each player’s action and payoff for every round in a group;

• penalties: (idpen, round, punisher, punished, penalty, cost, …). Records eachpenalty assignment betweenpairs
in a group;

• instructions: (id, round, instruction). Stores per‑round instructions or messages shown on the UI;
• settings: (id, option, optvalue). Stores game parameters (e.g., maxRounds, penaltyRate, groupSize) that the

admin conϐigures.

For example, when the administrator sets a parameter such as maxRounds = 6 through the interface, the cor‑
responding value is stored in the settings table and retrieved by the client via an AJAX call to the getMaxRound()
method [6]. The use of a relational database (MySQL InnoDB) with transactional support ensures atomic updates
to player payoffs and maintains data consistency in the event of errors. All records are time‑stamped, allowing
for complete archival of each game session. Additionally, player data can be archived between sessions using the
admin_archive_game.php utility.

3.4. Code Handling
All dynamic operations use AJAX (fetch or XMLHttpRequest). Key code elements include:

• Session Management and Dynamic Logic: All asynchronous client‑server interactions are handled using AJAX,
either via the Fetch API or XMLHttpRequest, depending on the page. To preserve per‑client game state (e.g.,
the current round number), the system uses the browser’s sessionStorage object. JavaScript functions such as
getCurrentRound() and updateRoundNumber() initialize and manage the round state locally [6]. After each
token submission, the round number is incremented. When the client detects that currentRound >maxRound,
the interface disables input elements and displays a “Game Ended” message, preventing further interaction
and signaling the session’s completion;

• Client Callbacks: The slider’s input event triggers an update of the tooltip and the calculated beneϐit in real time
[6]. The form’s submit handler sends the choice to process_token_request.php, handles the JSON response,
increments the round, and navigates to waiting pages [6];

• Waiting Screens and Synchronization Logic: To coordinate players during the game, the system uses dedicated
waiting pages—waiting_group.html and waiting_start.html (Figure 6A,B)—which display the message “Wait‑
ing for other players...”. These pages implement JavaScript polling logic using setInterval to call the
check_group_status.php API every few seconds. The server responds when all members of a group have sub‑
mitted their choices, atwhich point the client automatically redirects back to the token submission interface for
the next round. Similarly, before the game begins, waiting_start.html ensures that all players have registered
and been assigned to groups before allowing the session to proceed (Figure 1). This mechanism ensures syn‑
chronized progression across players and preserves group integrity during gameplay [6];
Admin Panel: The administrator controls the experiment through a dedicated settings interface

(adminpages.html, Figure 8). Each conϐigurable option—such as adjusting group size or user count—triggers an
AJAX POST request to backend scripts like save_value_to_settings.php, which update the settings table in real time.
Toggle switches and dropdowns allow quick changes without disrupting the live session. The panel also displays
a list of current users using admin_fetch_users.php and enables direct interaction with individual player data. Ad‑
ditional buttons provide access to core administrative actions: admin_export_data.php allows the experimenter
to download a complete CSV of the session results, while admin_reset_game.php clears the database to prepare
for a new session. This separation of administrative functions ensures that the researcher can monitor and man‑

87

Digital Technologies Research and Applications | Volume 04 | Issue 02

age the experimentwithout interferingwith the user experience [6]. Such administrative flexibility alignswith best
practices in experimental economics software, as emphasized in recent comparative evaluations [23]. While the ad‑
min interface allows full customization of session parameters, future development will include pre‑conϐigured tem‑
plates (e.g., “Basic CPR game”, “CPR with penalties”) to simplify setup. This enhancement would help researchers
without technical backgrounds conϐigure and launch sessions more quickly, improving accessibility across disci‑
plines.

Figure 8. Admin Panel (Settings Page): The Researcher Sets Game Parameters (e.g., Group Size, Max Rounds) and
Can Control User Groups, Data Export, and Resets.

Overall, the implementation tightly couples the client and serverwith asynchronous calls. Thedatabase schema
underlies both game logic and data retrieval (for scoreboards, Grafana metrics, etc.), while the JavaScript front end
ensures a smooth, responsive user experience with immediate feedback on actions.

4. Challenges and Solutions
Several technical and experimental challenges arose in building a reliable and robust online CPR game. Key

issues and their solutions are:

• Session Timeout and Connectivity: Internet connections can be unreliable. In web experiments, users may

88

Digital Technologies Research and Applications | Volume 04 | Issue 02

experience disconnects or leave idle. We implemented a retry mechanism (fetchWithRetry) to mitigate tran‑
sient failures [6]. On the server side, PHP sessions have long timeouts and a heartbeat (via AJAX) can keep the
session alive. If a user disconnects permanently, the admin panel allows resetting or archiving the game state.
In practice, if one group member times out, the waiting‑room logic can stall. To address this, we included a
manual “reset game” option in the admin User Interface;

• Player Waiting and Synchronization: It is crucial that all group members advance rounds together. After each
submission, players go to a waiting page and cannot proceed until the server conϐirms everyone is ready. This
strict lock‑step ensures no one gains an advantage. We gave clear feedback (e.g., “Round complete, waiting for
others...”) to mitigate impatience. The client polls the server every few seconds to check if the round result is
ready. This ensured fairness (no player can proceed before others) but introduced idle wait times. We mini‑
mized unnecessary polling by using moderate intervals (e.g., 2–3 seconds) and only updating visible status;

• Group Fairness: We ensured groups were balanced by size and wait times. Upon registration, users may have
to wait until enough players arrive (Figure 6A). We considered adjustable group sizes. The system can form
groups either sequentially (ϐirst‑come, ϐirst‑served) or randomly; we implemented ϐirst‑come grouping. To
avoid long waits, the admin can adjust parameters or launch the game with partial groups. In case of uneven
ϐinal group, the researcher can omit the last incomplete group or merge with another;

• Fairness inPlayOrder: In a common‑payoff structure, the order of tokenextraction can introduceunfairness, as
earlier extractors may face lower marginal costs than those whomove later. To mitigate this bias and promote
fairness, the system applies one of two approaches: (a) randomizing the order of players’ token submissions
each round, or (b) treating all submissions as simultaneous by applying a uniform pricing formula based on
the group’s total token requests. In the current implementation, the method used is ϐixed in the back‑end
logic. Exploring decision order and timing effects has been crucial in studying strategic adaptation in social
dilemmas [24]. However, future versions of the platformmay expose this choice as a conϐigurable option in the
administrative interface. Thesemechanisms ensure that no player beneϐits from a ϐixed “ϐirst‑mover” position,
thereby enhancing the experimental validity of the platform [6];

• Data Consistency and Recovery: All critical database operations—such as payoff calculations and group token
totals—are executed within SQL transactions to ensure atomicity and prevent partial updates in the event of a
script failure. Every game action is time‑stamped and logged to preserve the complete state of the experiment.
The administrative panel includes “Archive” and “Export” functions, enabling experimenters to save raw data
for analysis or replicate sessions. These tools allow the researcher to snapshot the full database—such as
downloading a CSV of all token decisions—at any point during or after a session. In the case of a server crash
or restart, the most recent state persists in the database, and unsubmitted form data is minimal, allowing for
a straightforward recovery or controlled reset. To monitor system health and performance, we integrated a
Prometheus exporter with a Grafana dashboard. This setup provides real‑time metrics such as CPU usage,
memory load, active users, and request latency (see Figure 9). Alerts can be conϐigured (e.g., when response
times exceed a threshold), allowing the researcher to identify issues and intervene if needed. Grafana and
Prometheus are widely adopted open‑source tools for real‑time systemmonitoring and alerting [1];

Figure 9. Server Monitoring Dashboard.

89

Digital Technologies Research and Applications | Volume 04 | Issue 02

• User Interface Robustness: To ensure the integrity of gameplay and prevent exploitation through browser
manipulation, we implemented several security‑focused interface and server‑side controls. The browser’s
back button is disabled during play to prevent repeated form submissions or state inconsistencies. All user
inputs—such as token requests and penalty assignments—are validated on the server, even if constraints are
already enforced on the client side. For example, the token slider is restricted to a valid range (e.g., 0–60 to‑
kens) via HTML attributes, and the server independently veriϐies that submitted values fall within acceptable
bounds. Penalty input ϐields are dynamically shown only for valid group members and only when the penalty
phase is active, minimizing user‑side tampering. On the administrative side, form validation prevents invalid
conϐigurations—for instance, ensuring that penalty thresholds align with the number of game rounds, or that
incompatible options are not selected simultaneously. These measures collectively help maintain consistency
across sessions and ensure that the recorded data is clean, complete, and trustworthy.

By addressing these challenges, we established a stable and reliable experimental environment that allows
participants to focus on the decision‑making task rather than technical issues. This, in turn, improves data quality,
enhances experimental validity, and supports reproducibility.

5. Features
The platform provides several features to streamline CPR experiments:

• A simple registration formcollects uniqueusernames fromparticipants, who are thenplaced in a lobby to await
the start of the game (Figure 10). This approach accommodates late arrivals and ensures that all players begin
simultaneously. Once the required number of players has joined, the administrator triggers the session, and
all players advance together;

Figure 10. User Registration Form to Enter the Game.

• Graphical Interfaces: The game interface is built using responsive design principles and styled with the Boot‑
strap framework to ensure a clean and consistent appearance across devices. All game screens—including the
registration, token submission, and feedback pages—automatically adapt to different screen sizes, supporting
both desktop and mobile browsers. The token‑submission form (Figure 5) is centered on the page and fea‑
tures a range slider that updates the calculated payoff in real time, providing immediate feedback and helping
keep players engaged. After each round, players are presented with a “Game Insights” summary table (Figure
11), which displays all group members’ token choices, total group tokens, individual beneϐits, and any penal‑
ties received or given. This transparent feedbackmechanism, inspired by Ahn et al. [6], allows players to learn
from previous outcomes and reϐine their strategies over time;

• Admin Controls: The administrator panel (Figure 8) provides a flexible interface for conϐiguring and manag‑
ing game sessions. It allows on‑the‑fly adjustments to key parameters such as group size, number of rounds,
penalty activation round, and penalty rate. Features like costly punishment can be enabled or disabled with
immediate effect. The admin can also manage players directly—for example, by force‑assigning a latecomer
to a group or removing an idle participant to prevent delays. All settings changes are written to the settings
table and persist throughout the session. The panel also supports exporting data at any point during or after
the game. With a single click, the administrator can download a complete CSV of the session data for analysis.

90

Digital Technologies Research and Applications | Volume 04 | Issue 02

Additionally, the “Reset” function clears the game state, enabling quick setup of new sessions or experimen‑
tal conditions. This control interface signiϐicantly simpliϐies the process of running repeated experiments or
testing different treatment conϐigurations [6];

Figure 11. Sample of Game Insights Section.

• Real‑Time Monitoring: A Grafana dashboard connects to the database (via Prometheus MySQL exporter). It
displays real‑time metrics: current number of active users, response times and aggregate game statistics (e.g.,
average tokens per round). Experimenters can thus monitor the experiment remotely and identify issues (e.g.,
stalled groups) (Figure 2A,B) [1]. Alerts can be set for critical events like high latency on the server (Figure
9);

• Data Logging andExport: All game events—including token order, payoffs, and penalty assignments—are time‑
stamped and logged. The system exports the complete dataset (CSV format) upon conclusion, capturing all
intermediate states and archiving past games for comparative analysis. This archive enables seamless analysis
and replication, with direct compatibility for statistical software (e.g., using R to compute summarymetrics or
generate plots offline);

• Security and Privacy: All client‑server communications are encrypted via HTTPS. Participant anonymity is
preserved throughpseudonymous identiϐiers, with no collection of personally identiϐiable information. Server‑
side input validation and sanitization mitigate injection attacks (e.g., SQLi) and cross‑site scripting (XSS) vul‑
nerabilities. These measures ensure both data integrity and conϐidentiality while complying with standard
web security practices for behavioral research platforms.

The system provides a turnkey solution for CPR experiments, combining a polished participant interface with
robust administrative controls. Researchers beneϐit from real‑time monitoring capabilities and rapid experimen‑
tal reconϐiguration, eliminating the need for low‑level coding or manual data management. This integrated design
ensures both experimental flexibility and operational efϐiciency while maintaining rigorous data collection stan‑

91

Digital Technologies Research and Applications | Volume 04 | Issue 02

dards. The broader validity of online behavioral experiments has also been established in digital labormarkets and
distributed experimental labs [25].

6. FutureWork
To maintain alignment with evolving research standards, several platform enhancements may be planned for

future implementation. These prospective developments will focus on: (1) expanding experimental paradigms
through additional modular components, (2) incorporating advanced data visualization tools for real‑time anal‑
ysis, and (3) implementing additional security protocols to address emerging cybersecurity requirements. Such
improvements will further reduce technical barriers while increasing the platform’s versatility for complex experi‑
mental designs:

• WebSocket orWebRTCUpgrade: Currently the game uses AJAX polling for synchronization. We could integrate
WebSocket (e.g., via Socket.IO) so the server can push updates instantly when all players are ready, reducing
latency and server load. This would allow a truly real‑time experience and simpler code for wait synchroniza‑
tion;

• ContainerizedDeploymentwithDocker: Apractical enhancement to theplatform involves packaging the entire
application using container technologies such as Docker. This would allow for easier deployment, scalability,
and portability across different server environments. A containerized setup ensures consistent behavior re‑
gardless of the underlying operating system, simpliϐies updates, and facilitates reproducibility; key concerns
in experimental economics. Additionally, container orchestration (e.g., with Docker Compose or Kubernetes)
could be used to manage multiple parallel game sessions for large‑scale experiments or classroom use;

• Extended Experimental Modules: Beyond the replicated Ahn et al. game, the platform can be adapted for other
economic games. Future adaptations might include: public goods games with different contribution functions,
bargaining games, or market experiments. The penalty mechanism can be generalized to any multi‑round
game where peer punishment is relevant;

• Mobile Optimization: While the platform currently supports desktop browsers, future development will pri‑
oritize mobile optimization to accommodate diverse participant devices. Planned enhancements include im‑
plementing responsive design with touch‑friendly controls (e.g., larger buttons, improved spacing), reϐining
touch‑event handling for smoother interactions, and rigorous cross‑device testing on phones and tablets. Ad‑
ditionally, we will integrate accessibility features such as keyboard navigation and colorblind‑friendly palettes
to ensure inclusive participation. These improvements aim to maintain experimental ϐidelity while expanding
accessibility and ecological validity in online behavioral research.

• Enhanced Analytics: Integrating Python or R for real‑time statistical analysis on the backend (e.g., calculating
Gini coefϐicients of token usage, running reinforcement learning updates). This real‑time analysis can help the
experimenter identify emerging free‑riders or exploiters, compare inequality trends across treatment groups
and assess the effectiveness of penalties or other mechanisms [6]. Visualizations (charts) could be embedded
in the Grafana dashboard for quick insights during the experiment;

• User Experience: While followingAhn et al.’s non‑communication paradigmas our baseline, the platform could
support modular addition of communication features (e.g., text chat lobbies in later rounds) to study deliber‑
ation effects. These optional toggles—which could include structured feedback prompts or real‑time chat—
enable controlled investigation of communication dynamics and behavioral nudges while preserving core CPR
game mechanics. Researchers can thus balance methodological consistency with novel hypothesis testing.

• Bot players: One could simulate players bywriting a script thatmimics theAJAX calls of a real user. For example,
a PHP or Python bot could POST to register.php, wait in check_game_started.php until a group forms, then
submit random (or strategy‑driven) token requests to process_token_request.php. Because the game logic is
encapsulated in these APIs, bots can be inserted without changing core code;

• Alternative beneϐit curves: Currently, the beneϐit formula is hard‑coded in process_token_request.php. To allow
different curves, the code could be refactored so that the quadratic parameters (0.761 and 0.007) come from
the settings table. For example, adding ϐields like beneϐit_a and beneϐit_b and reading them (via
get_value_from_settings.php)would let the admin experimentwithdifferent functionswithoutmodifying code;

• Enhanced logging: Right now, game data is stored in MySQL tables. For better debugging or analytics, one

92

Digital Technologies Research and Applications | Volume 04 | Issue 02

could add a logging layer (e.g., writing key events to a log ϐile or using a PHP logging library). For instance,
adding log statements in process_token_request.php or in the polling scripts could record timestamps and
event flows. This would complement the existing Grafana integration by providing server‑side logs of errors
or performance metrics;

• Participant diversity: Another promising extension involves localizing the interface into multiple languages
to support cross‑cultural experiments. Combined with mobile optimization, this would enable researchers
to reach broader participant pools, including underrepresented regions, and conduct comparative behavioral
studies in a more inclusive and globally accessible format;

• Modularize frontend/backend: The current implementation uses many individual PHP scripts and inline JS.
To improvemaintainability, common code (like the database connection or session handling) could be central‑
ized. For example, using a single db.php include, or converting to a simple MVC framework. On the frontend,
repeated JS functions (AJAX utilities, session helpers) could bemoved into separate .js ϐiles rather than embed‑
ded in HTML. This would reduce duplication (notice, e.g., fetchWithRetry() appears in multiple pages). Such
refactoring would make it easier to add features like a chat interface or a WebSocket server later.

By pursuing these development pathways, our platform will maintain its position at the forefront of online
experimental methodology. These advancements will yield a more powerful research tool capable of supporting
richer behavioral investigations in CPR and related domains, while fully leveragingmodernweb infrastructure. The
resulting enhancements will enable researchers to address increasingly complex questions with improvedmethod‑
ological rigor and ecological validity. Emerging research in reinforcement learning and AI‑enhanced simulation
suggests potential extensions in adaptive experiment design [26].

In future research, the platform can be used to simulate alternative governance regimes or collective choice
settings relevant to public policy. For example, it could support classroom simulations of carbon budgeting, ϐish‑
eries management, or land use decisions. Its flexibility enables comparative experiments across cultures or policy
environments, offering insights for institutional design and real‑world coordination challenges. The platform could
support dynamic goal‑alignment experiments, as studied in recent CPR cooperation work [27].

7. Conclusions
We have presented the design, implementation, and operation of an open‑source web platform for conducting

online common‑pool resource (CPR) experiments. Faithfully replicating the canonical Ahn et al. [6], paradigmwhile
augmenting it with researcher‑focused features—including real‑time group dynamics, sanctioning algorithms, and
remote monitoring—our system provides a turnkey solution for multiplayer economic games. The technical expo‑
sition (covering database architecture, client‑server callbacks, and administrative controls) offers implementable
insights for developing similar systems using standard web technologies (HTML5/JS, PHP, MySQL). Designed for
reproducibility and scalability, the platform reduces technical barriers to rigorous CPR research while addressing
key web‑experiment challenges. Future enhancements in real‑time communication and containerization will fur‑
ther support large‑scale studies. The platform’s transparency, reproducibility, and adaptability make it a valuable
methodological contribution to experimental economics. It enables researchers to test institutional mechanisms
under controlled yet scalable settings and offers a practical bridge between theoretical modeling and real‑world
economic behavior. By combining methodological ϐidelity with operational flexibility, this work advances the ex‑
perimental economics toolkit, enabling both laboratory and ϐield investigations of resource dilemmas through a
robust, accessible interface. A pilot trial of the platform is envisioned for future implementation in a classroom
environment, where it will be used to gather initial user feedback and explore its real‑world applicability.

Funding
This work received no external funding.

Institutional Review Board Statement
Not applicable.

93

Digital Technologies Research and Applications | Volume 04 | Issue 02

Informed Consent Statement
Not applicable.

Data Availability Statement
No new data were created or analyzed in this study. The paper focuses on the system’s design and implemen‑

tation for online CPR experiments.

Acknowledgments
I would like to thank Dr. Paschalis A. Arvanitidis, Professor of Institutional Economics at the Department

of Economics, University of Thessaly, and Director of the Laboratory of Economic Policy and Strategic Planning
(L.E.P.S.PLAN), for bringing the common‑pool resource (CPR) game and the publication by Ahn et al. [6], to my
attention.

Conflicts of Interest
The author declares no conflict of interest.

References
1. Stephen, M.; Rosie, W.; Christian, S. 15.2: Common Pool Resource Theory. In International Relations. Social

Science LibreTexts: Davis, CA, USA, 2021. Available online: https://socialsci.libretexts.org/Bookshelves/S
ociology/International_Sociology/Book%3A_International_Relations_(McGlinchey)/15%3A_The_Environ
ment/15.02%3A_Common_Pool_Resource_Theory (accessed on 1 May 2025).

2. Hardin, G. The tragedy of the commons: the population problem has no technical solution; it requires a fun‑
damental extension in morality. Science 1968, 162, 1243–1248. [CrossRef]

3. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University
Press: Cambridge, UK, 1990.

4. Poteete, A.R.; Janssen, M.A.; Ostrom, E.Working Together: Collective Action, the Commons and Multiple Meth‑
ods in Practice; Princeton University Press: Princeton, NJ, USA, 2010.

5. Arvanitidis, P.; Nasioka, F. From Commons Dilemmas to Social Solutions: A Common Pool Resource Exper‑
iment in Greece. In Institutionalist Perspectives on Development; Vliamos, S., Zouboulakis, M., Eds.; Palgrave
Macmillan: Cham, Switzerland, 2018; pp. 125–142. [CrossRef]

6. Ahn, T.K.; Ostrom, E.; Walker, J. A common‑pool resource experiment with postgraduate subjects from 41
countries. Ecol. Econ. 2010, 69, 2624–2633. [CrossRef]

7. Fehr, E.; Gächter, S. Cooperation and punishment in public goods experiments. Am. Econ. Rev. 2000, 90, 980–
994. [CrossRef]

8. Cárdenas, J.C.; Ostrom, E. What do people bring into the game? Experiments in the ϐield about cooperation
in the commons. Agric. Syst. 2004, 82, 307–326. [CrossRef]

9. Salganik, M.J.; Watts, D.J. Web‑based experiments for the study of collective social dynamics in cultural mar‑
kets. Top. Cogn. Sci. 2009, 1(3), 439–468. [CrossRef]

10. Chen, D.L.; Schonger, M.; Wickens, C. oTree—An open‑source platform for laboratory, online, and ϐield exper‑
iments. J. Behav. Exp. Finance 2016, 9, 88–97. [CrossRef]

11. Chan, S.W.; Schilizzi, S.; Iftekhar, M.S.; et al. Web‑based experimental economics software: How do they com‑
pare to desirable features? J. Behav. Exp. Finance 2019, 23, 138–160. [CrossRef]

12. Brandt, D.J.; Megiddo, I.; Head, J.W.; et al. OGUMI—An Android‑based open‑source mobile application to con‑
duct common‑pool resource experiments. PLoS One 2017, 12, e0178951. [CrossRef]

13. Rezaei Zeynali, F.; Parvin, M.; ForouzeshNejad, A. A.; et al. A heuristic‑based multi‑stage machine learning‑
basedmodel to design a sustainable, resilient, and agile reverse corn supply chain by considering third‑party
recycling. Appl Soft Comput. 2025, 174, 113042. [CrossRef]

14. Tajally, A.; Babakhani, B.; Jeyzanibrahimzade, E.; et al. Sustainable supplier selection and order allocation
problem considering the agility and resilience dimensions: A novel multi‑stage data‑driven decision‑making
approach. Int. J. Syst. Sci. Oper. Logist. 2025, 12, 2458756. [CrossRef]

15. Pazouki, S.; Jamshidi, M.; Jalali, M.; et al. Artiϐicial intelligence and digital technologies in ϐinance: a compre‑
hensive review. J. Econ. Finance Account. Stud. 2025, 7, 54–69. [CrossRef]

94

https://socialsci.libretexts.org/Bookshelves/Sociology/International_Sociology/Book%3A_International_Relations_(McGlinchey)/15%3A_The_Environment/15.02%3A_Common_Pool_Resource_Theory
https://socialsci.libretexts.org/Bookshelves/Sociology/International_Sociology/Book%3A_International_Relations_(McGlinchey)/15%3A_The_Environment/15.02%3A_Common_Pool_Resource_Theory
https://socialsci.libretexts.org/Bookshelves/Sociology/International_Sociology/Book%3A_International_Relations_(McGlinchey)/15%3A_The_Environment/15.02%3A_Common_Pool_Resource_Theory
https://doi.org/10.1126/science.162.3859.1243
https://doi.org/10.1007/978-3-319-98494-0_8
https://doi.org/10.1016/j.ecolecon.2010.08.007
https://doi.org/10.1257/aer.90.4.980
https://doi.org/10.1016/j.agsy.2004.07.008
https://doi.org/10.1111/j.1756-8765.2009.01030.x
https://doi.org/10.1016/j.jbef.2015.12.001
https://doi.org/10.1016/j.jbef.2019.04.007
https://doi.org/10.1371/journal.pone.0178951
https://doi.org/10.1016/j.asoc.2025.113042
https://doi.org/10.1080/23302674.2025.2458756
https://doi.org/10.32996/jefas.2025.7.2.5

Digital Technologies Research and Applications | Volume 04 | Issue 02

16. Boettiger, C. An introduction to Docker for reproducible research. ACM Oper. Syst. Rev. 2015, 49, 71–79.
[CrossRef]

17. Gürerk, Oǆ .; Irlenbusch, B.; Rockenbach, B. The competitive advantage of sanctioning institutions. Science
2006, 312, 108–111. [CrossRef]

18. Yamagishi, T. The provision of a sanctioning system as a public good. J. Pers. Soc. Psychol. 1986, 51, 110–116.
[CrossRef]

19. Liu, Q.; Sun, X. Research of Web Real‑Time Communication Based on WebSocket. Int. J. Commun. Netw. Syst.
Sci. 2012, 5, 797–801. [CrossRef]

20. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; et al. The FAIR Guiding Principles for scientiϐic data man‑
agement and stewardship. Sci. Data 2016, 3, 160018. [CrossRef]

21. Fischbacher, U.; Gächter, S. Social preferences, beliefs, and the dynamics of free riding in public goods exper‑
iments. Am. Econ. Rev. 2010, 100, 541–556. [CrossRef]

22. Gächter, S.; Renner, E.; Sefton, M. The long‑run beneϐits of punishment. Science 2008, 322, 1510. [CrossRef]
23. Giamattei, M.; Yahosseini, K.S.; Gächter, S.; et al. LIONESS Lab: a free web‑based platform for conducting

interactive experiments online. J. Econ. Sci. Assoc. 2020, 6, 95–111. [CrossRef]
24. Isaksen, E.T.; Brekke, K.A.; Richter, A. Positive framing does not solve the tragedy of the commons. J. Environ.

Econ. Manage. 2019, 95, 45–56.
25. Horton, J.J.; Rand, D.G.; Zeckhauser, R.J. The online laboratory: Conducting experiments in a real labormarket.

Exp. Econ. 2011, 14, 399–425. [CrossRef]
26. Sandholm, T.; Crites, R. Multiagent reinforcement learning in the iterated prisoner’s dilemma. Biosystems

1996, 37, 147–166. [CrossRef]
27. Tu, C.; D’Odorico, P.; Li, Z.; et al. The emergence of cooperation from shared goals in the governance of

common‑pool resources. Nat. Sustain. 2023, 6, 139–147. [CrossRef]
Copyright© 2025 by the author(s). Published by UK Scientiϐic Publishing Limited. This is an open access article
under the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Publisher’s Note: The views, opinions, and information presented in all publications are the sole responsibility of the respective
authors and contributors, and do not necessarily reflect the views of UK Scientiϐic Publishing Limited and/or its editors. UK
Scientiϐic Publishing Limited and/or its editors hereby disclaim any liability for any harm or damage to individuals or property
arising from the implementation of ideas, methods, instructions, or products mentioned in the content.

95

https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1126/science.1123633
https://doi.org/10.1037/0022-3514.51.1.110
https://doi.org/10.4236/ijcns.2012.512083
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1257/aer.100.1.541
https://doi.org/10.1126/science.1164744
https://doi.org/10.1007/s40881-020-00087-0
https://doi.org/10.1007/s10683-011-9273-9
https://doi.org/10.1016/0303-2647(95)01551-5
https://doi.org/10.1038/s41893-022-01008-1

	Introduction
	Design and Architecture
	Implementation
	User Interface and Token Ordering
	Penalty Mechanism
	Database Structure
	Code Handling

	Challenges and Solutions
	Features
	Future Work
	Conclusions

