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Abstract: This study employs panel data from1884 listedmanufacturing companies in China (2009–2021) to inves‑
tigate the environmental effects of path dependence on atmospheric pollution emissions. Using dictionary‑based
textual analysis of annual reports, we measure three dimensions of path dependence—technological, institutional,
and managerial—and examine their non‑linear relationships with sulfur dioxide emissions through fixed‑effects
models. Our findings reveal consistent U‑shaped patterns across all dependence types: moderate levels initially
reduce emissions (the “honey phase”) while excessive reliance leads to increased pollution (the “arsenic phase”).
The analysis demonstrates that technological path dependence operates through sunk costs and learning effects, in‑
stitutional dependence reflects regulatory inertia, andmanagerial dependence stems from organizational routines.
Robustness tests using alternative pollutionmeasures and instrumental variable approaches confirm these relation‑
ships. The study identifies significant heterogeneity in these effects. Non‑state‑owned enterprises exhibit stronger
path dependence impacts due to greater flexibility, while high‑maturity firms show amplified U‑curves reflecting
their accumulated experience. Conversely, capital‑intensive enterprises display attenuated effects, suggesting di‑
minishing returns to scale in pollution control. These findings highlight the dual nature of path dependence as both
a stability mechanism and potential barrier to innovation. The policy implication is that manufacturing pollution
control strategies should account for both dependence levels and firm‑specific characteristics, maintaining path de‑
pendence within optimal ranges to harness stabilization benefits without impeding technological transitions. This
research contributes to environmental governance literature by extending path dependence theory to pollution
control and offering a multidimensional analytical framework for sustainable manufacturing transformation.
Keywords: Technological Dependence; Institutional Dependence; Management Dependence; Air Pollution; Manu‑
facturing Industry

1. Introduction
The manufacturing industry is the cornerstone of the Chinese economy, carrying the crucial missions of tech‑

nological innovation and industrial upgrading [1]. Manufacturing processes emit a significant amount of pollutants
into the atmosphere, including sulphur dioxide, nitrogen oxides, and particulate matter—primary sources of air
pollution that also contribute to climate chang. As climate governance becomes a global priority, air pollution
control in manufacturing must be integrated into broader strategies for carbon neutrality and sustainable devel‑
opment. For instance, synergies between air pollution reduction and CO2 mitigation can amplify the co‑benefits of
path‑breaking innovations. As environmental regulations become more comprehensive and environmental tech‑
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nologies advance, mitigation efforts related to manufacturing have had significant results, resulting in a decrease
in the growth rate of air pollution emissions [2]. However, total energy consumption continues to increase, with
heavy polluting sectors such as petrochemicals and steel accounting for more than 50% of industrial air pollution
emissions. This underscores the need to align path dependence research with climate‑oriented industrial policies.

Although the challenges facing air pollution control in the manufacturing sector may appear to be caused by
economic growth and inflexible energy consumption structures, the underlying mechanisms require further explo‑
ration. According to the theory of path dependence, once an institution, technological combination, ormanagement
approach is established, it persists for a period due to its self‑reinforcingmechanism, regardless ofwhether it is ben‑
eficial for performance [3]. This can lead to a lock‑in phenomenon, making it difficult, if not impossible, to adapt
to changes in the environment [4]. This may result in two forms of lock‑in, which are active and passive. Active
lock‑in refers to the initial selection of a certain technology (institutional or management) that generates increas‑
ing returns and attracts other technologies to adjust to it, further reinforcing the direction of technological change,
and enabling both society and the economy to develop along a positive path. On the other hand, passive lock‑in oc‑
curs when despite a particular technology (institutional or managerial) path being inefficient, the ongoing support
provided by existing arrangements, as well as the concerted efforts of stakeholders to maintain it, lock entities into
inefficient paths. Lacklustre implementation has long been one of the main reasons for the manufacturing sector’s
sluggish progress in air pollution control.

To address these challenges, it is necessary to deconstruct and transform the mechanisms that lead to ineffi‑
cient pathways and leverage external forces to steer the subject towards a virtuous course. The current literature
on path dependence primarily focuses on economic growth, structural change, industrial aggregation, and organi‑
zational behaviour, with limited analysis of the role of path dependence in pollution control. A few scholars have
explored the concept of path dependence in the context of green growth [5], or analyzed the effects of the reduction
in the path of global emissions [6]. Further, research that specifically focuses on the impact of path dependence on
atmospheric pollution control is lacking. In the context of industrial air pollution control, does there exist a path de‑
pendence? If so, what type of path dependence is it? Should it be encouraged or discarded? Does the impact of path
dependence on air pollution control vary among different enterprises? The answers to these questions will deepen
research into pollution control and effectively facilitate the green transformation and high‑quality development of
the manufacturing industry.

The remainder of this paper is organized as follows: Section 2 describes the current state of research on path
dependence on air pollution control. Section 3 elaborates the theoretical basics and research hypothesis. Section
4 is the methodology. Section 5 presents the empirical results. Section 6 compares the differences between this
article and similar literature to highlight the marginal contribution of this research. Finally, Section 7 summarizes
main conclusions and policy implications.

2. Literature Review
2.1. Essence and Measurement Methods of Path Dependence

The concept of path dependence can be traced back to palaeontology, with its theoretical evolution and inter‑
disciplinary integration subsequently being introduced into fields such as sociology and economics [7]. In recent
decades, it has become one of the core elements of evolutionary economic geography. In summary, path depen‑
dence refers to an event being the result of its own historical trajectory. The classic path dependence model is
divided into four stages—an initial state (caused by historical contingency), self‑reinforcement, path dependence
(or lock‑in), and path unlocking.

Path‑dependent measurement methods and technologies can be broadly categorized into three types. First, a
single indicator is used tomeasure the degree of path dependence. Second, a composite indicator is used to decom‑
pose and evaluate path dependence phenomena from multiple dimensions. Third, path dependence is described
qualitatively through processes such as the generation of operational, search, and flexible conventions that reflect
the organizational conventions of case firms or are measured through experimental methods, fuzzy set qualitative
comparative analysis, and similar methods. The single‑indicator method is simple but lacks comprehensiveness;
the qualitative description method can encompass a wider range of dimensions but is subject to subjective inter‑
pretation; while the composite indicatormethod, althoughmore comprehensive and objective, presents challenges
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in data acquisition. By comparison, dictionary‑based approaches, which rely on predefined vocabularies or dictio‑
naries to identify terms in texts and conduct quantitative analysis, are characterized by simplicity, clarity, speed,
and efficiency, as well as ease of explanation [8]. However, there is currently a lack of methodology for evaluating
path dependence in atmospheric pollution control.

2.2. Phenomenon of Path Dependence in Air Pollution Control
2.2.1. Technological Path Dependence in Air Pollution Control

Technological innovation research suggests that technological self‑reinforcement, accumulation, and scale ef‑
fects can lead to technological path lock‑in to form technological path dependence [9]. In the context of climate‑
aware manufacturing, technological path dependence may hinder the adoption of low‑carbon technologies, such
as energy‑efficient processes or carbon capture systems, due to entrenched investments in conventional pollution
control methods. It may manifest in corporations persistently employing a particular technology or combination
of technologies for air pollution control, despite historical factors, technological lock‑ins, sunk investments, and so
on, even when newer technologies or methods are more effective or cost‑effective.

2.2.2. Path Dependence in Air Pollution Control

Initial institutional arrangements often determine subsequent pathways. Institutional change may enter a
virtuous cycle or become locked in an inefficient state along predefined pathways [10]. Sustainable policy frame‑
works, such as carbon pricing or green subsidies, may fail to achieve scalability if institutional path dependence
favors short‑term compliance over long‑term climate resilience. It manifests as a reliance on government‑provided
institutional frameworks, policy support, and regulatorymechanisms, neglecting their own pivotal role and respon‑
sibilities in environmental governance.

2.2.3. Path Dependence in Air Pollution Control Management

After selecting a particular strategy or management practice organizations may continue to develop along this
path due to factors such as historical reasons, corporate culture, and organizational inertia, even if new information
or environmental changes offer better alternatives [11]. For example, management dependence on traditional per‑
formance metrics may overlook carbon footprint assessments, delaying the integration of climate goals into corpo‑
rate strategy. It manifests as an over‑reliance on existing management models, management experiences, or policy
directives for tackling air pollution, with reluctance or inability to adapt promptly to new changes or requirements.

In practice, when path dependence overlap, double or even triple dependence can arise.

2.3. Path Dependence in Atmospheric Pollution Control
From a technological path dependence perspective, manufacturing enterprises often find themselves influ‑

encedby factors such as technologymaturity andpolicy directives, gradually developingdependence on aparticular
technology in their selection process for air pollution control. As companies increasingly invest in technology, the
phenomenon of technological lock‑in becomes more pronounced. Enterprises may favour standardized technolo‑
gies because of a lack of motivation among internal employees to learn new ones and a preference for technologies
that are already proficiently mastered to reduce costs [12]. Over time, this can lead to the neglect or postpone‑
ment of adoptingmore environmentally friendly but less mature technologies, inefficient management due to over‑
reliance on outdated techniques unable to meet new environmental requirements, or difficulty in transitioning to
more effective pollution control technologies due to the sunk costs associated with existing technologies.

From the perspective of institutional path dependence, given the interplay between economics and politics, as
well as the influenceof cultural heritage, institutional changemaybemore complex than technological change. Thus,
existingpollution control policies and regulationsmay resist the introductionof newpolicies (e.g., stakeholdersmay
resist changes to an existing system), and the legitimacy of existing systems adds to the challenges in implementing
institutional change. Thus, enterprisesmay find it difficult to respond promptly to environmental changes and new
governance requirements due to rigid systems; the path‑locking effect of existing frameworks will further increase
the cost and difficulty of reform [13]; and the reliance on systems will exacerbate unfairness in environmental
governance, with some enterprises potentially escaping their reduction responsibilities through loopholes in the
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system.
From the perspective of path dependence inmanagement, business administrators, influenced by their own cog‑

nition, corporate culture, and other factors, gradually form a unique management model as they tackle atmospheric
pollution. When an establishedmanagement process and convention prevails in an organization, it persists with iner‑
tia; managers’ cognitive frameworks may limit their perception and acceptance of newmanagement methodologies;
and corporate culture and values may solidify specific management approaches, resisting change [14]. An outdated
management model may lead to inefficiencies, hindering the effective resolution of pollution issues. In addition, re‑
liance on management may leave enterprises ill‑equipped to adapt to new environmental requirements and market
changes. The rigidity of the management model might impede the adoption of new management tools and methods
by enterprises, thereby affecting the effectiveness of pollution control.

Moreover, in manufacturing air pollution control, there may be multi‑path dependence [15]. The interplay
between technological, institutional, and management path dependence could either accelerate or decelerate the
green transition, depending onwhether these dependencies alignwith low‑carbon objectives. On the one hand, the
path dependence of technology, institutions, and management may reinforce each other, resulting in delayed envi‑
ronmental governance and making it difficult to achieve sustainable governance. On the other hand, the interplay
between different path dependencemay lead tomisallocation of governance resources and hinder the development
and application of new technologies. Thus, while multi‑pathway locking may contribute to pollution reduction to
some extent, it ultimately necessitates path unlocking to propel atmospheric pollution control towards a more flex‑
ible, efficient, and sustainable direction. This is particularly critical for achieving climate‑smart manufacturing
systems.

3. Theoretical Basics and Research Hypothesis
Path dependence influences pollution control through distinct economic mechanisms. Technological path de‑

pendence operates via sunk costs (e.g., prior investments in pollution control equipment) and learning effects (e.g.,
efficiency gains from repeated use of established technologies). Institutional path dependence reflects regulatory
inertia and policy continuity, where firms adhere to existing frameworks due to high adaptation costs and stake‑
holder resistance. Managerial path dependence arises from organizational routines and cognitive constraints, lead‑
ing to persistent reliance on established management practices despite emerging alternatives. These mechanisms
collectively underpin the non‑linear effects of path dependence on pollution emissions.

To provide a more intuitive understanding of the mechanisms by which different types of path ‑ dependence
affect pollution emissions, the following Figure 1 illustrates the specific theoretical frameworks of technological,
institutional, and managerial path‑dependence.

Figure 1. The theoretical framework.
Note: This figure depicts the mechanisms through which three distinct types of path‑dependence, namely technological, institutional, and managerial, influence
pollution emissions. It outlines the initial factors, intermediate effects, and ultimate consequences for each type, providing a comprehensive view of their complex
inter‑relationships.
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3.1. Environmental Impacts of Technological Dependence
When adopting certain air pollution control technologies, manufacturing enterprises often require substan‑

tial financial investment for the procurement of equipment, as well as the modification of production lines. Once
these investments are completed, they continue utilizing these technologies to amortize and recoup their invest‑
ment costs. With time, enterprises gradually gain mastery over specific technologies, resulting in reduced opera‑
tional costs and fault rates, thereby achieving commendable emission reduction effects. By employing a particular
pollution‑control technology on a long‑term basis, enterprises can achieve economies of scale to reduce their unit
costs. Given the cost considerations, companies may continue to rely on existing technologies. Although new tech‑
nologies may emerge, uncertainty and risk abound, so enterprises may opt for continued use of existing technolo‑
gies because of risk aversion. As technology advances and is applied, facilities, processes, and procedures must be
developed in tandem. This can leave enterprises locked in their existing technological status, potentially decreasing
rather than increasing emissions reduction efforts [16].

3.2. Environmental Impacts of Institutional Dependence
Air pollution control policies and regulations are often continuous and stable. Companies and their stakehold‑

ers will adapt their decisions accordingly, with these frameworks gradually evolving into a habituated reliance.
When institutions are widely recognized through laws, regulations, and the like, corporations persistently adhere
to existing systems, which promote pollution reduction within a certain period. As some corporations or groups
derive specific benefits from existing systems, they may serve as powerful forces that resist any potential reforms
that can harm their interests. Changing an existing institutional structure requires significant political and social
costs, while the implementation of new institutions brings uncertainty and risks. Thus, the existing path is con‑
tinuously relied upon. Although enterprises may already be experiencing diminishing marginal returns or even
negative effects in pollution control, short‑term efforts to change this situation are futile.

3.3. Environmental Impacts of Management Dependence
Over time, enterprises develop unique management processes and conventions that are effective means of en‑

hancing efficiency and reducing costs, which may have led to more noticeable pollution control effects. Once man‑
agers become accustomed to a particular management paradigm, they may resist new management philosophies
and methodologies. Corporate culture refers to the shared values, beliefs, and behavioral norms in an organiza‑
tion that shape its management style and decision‑making processes. A culture that places a premium on stability
and traditional values may stifle management innovation, despite changes in external conditions. Adopting a new
management model also necessitates retraining employees—a time‑consuming and costly endeavour that often
prompts enterprises to cling to existing methodologies.

Moreover, when multiple pollution control measures are employed simultaneously, different policy instru‑
ments may interact, jointly influencing pollution emissions. When technology interacts with institutions, technol‑
ogy with management, institutions with management, or even when all three interact, multiple path dependence
may arise in industrial air pollution control.

In summary, the following hypotheses are proposed:
Hypothesis 1. In the context of manufacturing sector air pollution control, a non‑linear technological dependence
effect exists.

Hypothesis 2. In the context of manufacturing sector air pollution control, a non‑linear institutional dependence
effect exists.

Hypothesis 3. In the context of manufacturing sector air pollution control, a non‑linear dependence effect exists.

Hypothesis 4. In the context of manufacturing sector air pollution control, non‑linear multi‑path dependence effects
exist.
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4. Methodology
4.1. Sources of Data

This study employed a sample of 1884 listed companies in China’s manufacturing sector, comprising 19,428
observations spanning from 2009 to 2021. The pollution data originate from China’s industrial enterprises’ pol‑
lution database (https://www.cnopendata.com/data/m/recent/gyqywrpf.html); the financial data are from the
CSMAR (China Stock Market & Accounting Research, https://data.csmar.com/) and Wind databases (https://ww
w.wind.com.cn/); the path‑dependence data are obtained through keyword extraction methods for analyzing an‑
nual reports of listed companies (http://www.cninfo.com.cn/new/index). By matching the enterprise code in the
pollution emissiondatabasewith the securities code in thedata of listed companies;merging thepollutiondatawith
financial and path‑dependence data; and deleting ST, *ST, PT, and delisted enterprises as well as those with miss‑
ing core variables, the final sample comprises 29 sub‑industries of listed companies with manufacturing two‑digit
codes ranging from 13 to 42 (excluding sub‑sector 16). Incomplete data were imputed with the mean method. To
render the data sequence more stable and mitigate the effects of collinearity and heteroscedasticity, the explained
and core explanatory variables were log‑transformed.

4.2. Variable Settings
4.2.1. Explained Variable

The explained variable is sulphur dioxide emissions (𝑙𝑛𝑠𝑜2). To measure atmospheric pollution emissions
levels, the logarithm of sulphur dioxide emissions was used as a proxy variable [17]. Moreover, nitrogen oxide
emissions (𝑙𝑛𝑛𝑜𝑥), particulate matter emissions (𝑙𝑛𝑠𝑜𝑑𝑢), and air pollution equivalent logarithms (𝑙𝑛𝑐𝑎𝑝𝑒) were
selected as alternative explained variables for robustness tests. The data are sourced from the China Industrial
Enterprises Pollution Database.

4.2.2. Explanatory Variables

The explanatory variable is path dependence, containing technological dependence (𝑙𝑛𝑡𝑒𝑐ℎ_𝑑), institutional
dependence (𝑙𝑛𝑖𝑛𝑠𝑡_𝑑), andmanagementdependence (𝑙𝑛𝑚𝑎𝑛𝑎_𝑑). Thepath‑dependencevariables are constructed
based on the dictionary method [18], following two steps. First, keywords related to technology, institutions, and
management were determined through a review of existing literature and official documents, forming a keyword
dictionary. Second, keywords in the annual reports of listed companies were searched, and the Jieba word segmen‑
tation function of Python was utilized to segment the text into individual words and count the frequency of each
word. Then, those with a frequency of five or more were filtered out (Table 1), and the frequency of technical key‑
wordswas summed up to obtain the technological dependence level for each year. The samemethod can be applied
to calculate institution and management dependence. Figure 2 describes the time‑varying characteristics of path
dependence. It can be observed that during the study period, the three levels of path dependence in air pollution
control in the manufacturing industry all showed an increasing trend.

Table 1. Path dependence keyword extraction.

Variables Keywords

Technological dependence
Technology, digitization, innovation, transformation, change, reform, advancement, breakthrough, impact, emerging,
knowledge, information, high‑tech, core, derivative, ecosystem, investment, upgrade, importation, cooperation, transfer,
consultation, service, support, maintenance, promotion, advanced, automation, internet, optimization (a total of 30
words)

Institutional dependence
Regulation, norms, supervision, operation, competition, regulations, advantages, factors, execution, foundation,
arrangements, construction, credit, incentives, protection, green, regulation, delegation, policy, laws, regulations,
procedures, approval, internal, governance, disclosure, audit, criteria, culture (a total of 29 words)

Management dependence
Management, efficiency, systems, control, training, risk, standards, environment, market, systems, quality, restructuring,
models, approaches, performance, participation, personnel, expectations, institutions, values, strategies, safety, costs,
administration, subsidies, organizations, goals, resources, prevention, environmental protection (a total of 30 words)

We acknowledge that textual analysis of annual reports inherently captures managerial disclosure and strate‑
gic emphasis. Our measure of path dependence, therefore, primarily reflects the degree to which firms rhetorically
commit to and emphasize their established technological, institutional, and managerial approaches in their official
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communications. This emphasis is a valid proxy for behavioral path dependence for two key reasons. First, sus‑
tained rhetorical commitment in formal documents signals organizational priority and resource allocation, which
often translates into actual operational routines. Second, for the phenomenon of path dependence, the cognitive
and discursive commitment to established paths is a fundamental component of the lock‑inmechanism itself. While
this measure may not directly observe operational behaviors, it effectively captures the discursive and strategic di‑
mension of path dependence, which is a precursor to and a manifestation of behavioral lock‑in.

Figure 2. The evolution law of path dependence.
Notes: Using dictionarymethod to calculate the frequency of technological dependence, institutional dependence, andmanagement dependence of allmanufacturing
enterprises respectively, and taking the arithmetic mean of each frequency of all enterprise over 2009–2021.

4.2.3. Control Variables

To exclude the interference of other factors, we focus on the influence of core explanatory variables and try to
minimize the possibility of missing variables. Referring to the study [19], the following variables are controlled in
the model: (1) Tobin’s Q value (𝑡𝑜𝑏𝑖𝑛), estimated by enterprise value/asset replacement cost; (2) book‑to‑market
ratio (𝑚𝑏𝑟𝑎𝑡𝑖𝑜), reflected by book value/market value; (3) whether to disclose the internal control evaluation re‑
port (equal to 1 if disclosed and 0 otherwise) (𝑖𝑠𝑑𝑖𝑠_𝐸𝑣𝑎); (4) whether to disclose the internal audit report (equal
to 1 if disclosed and 0 otherwise) (𝑖𝑠𝑑𝑖𝑠_𝐴𝑢𝑑𝑖𝑡); (5) number of directors with overseas background (𝑜𝑣𝑒𝑟𝑠𝑒𝑎𝑠);
and (6) degree of separation of two rights (𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) (%), measured by ownership/control.

4.3. Empirical Models
To investigate the impact of path dependence on air pollution control, based on the micro data of listed manu‑

facturing companies, the panel fixed effect model is constructed as follows:

𝑙𝑛𝑠𝑜2𝑖𝑡 = 𝛼1 + 𝛽11𝑙𝑛𝑑𝑒𝑝𝑖𝑡 + 𝛽12𝑙𝑛𝑑𝑒𝑝2𝑖𝑡 +෍
𝑛

𝑖=1
𝛾𝑖𝑡𝑋𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (1)

where the explained variable (𝑙𝑛𝑠𝑜2𝑖𝑡) represents air pollution emission, which ismeasured by the logarithm of sul‑
phur dioxide emission of listedmanufacturing companies. The core explanatory variable (𝑙𝑛𝑑𝑒𝑝𝑖𝑡) represents path
dependence, including three forms—technological dependence (𝑙𝑛𝑡𝑒𝑐ℎ_𝑑), institutional dependence (𝑙𝑛𝑖𝑛𝑠𝑡_𝑑),
and management dependence (𝑙𝑛𝑚𝑎𝑛𝑎_𝑑). As the impact of path dependence on air pollution emissions may be
non‑linear, the model also includes the square term of the explanatory variable (𝑙𝑛𝑑𝑒𝑝2𝑖𝑡), and the coefficients 𝛽11
and 𝛽12 represent the impacts of path dependence and its square term on air pollution emissions, respectively. 𝛼1
is the constant term. The control variables (𝑋𝑖𝑡) include Tobin’s Q value (𝑡𝑜𝑏𝑖𝑛), book‑to‑market ratio (𝑚𝑏𝑟𝑎𝑡𝑖𝑜),
whether to disclose the internal control evaluation report (𝑖𝑠𝑑𝑖𝑠_𝐸𝑣𝑎), whether to disclose the internal audit report
(𝑖𝑠𝑑𝑖𝑠_𝐴𝑢𝑑𝑖𝑡), the number of directors with overseas background (𝑜𝑣𝑒𝑟𝑠𝑒𝑎𝑠), and the separation of two rights
(𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛). The coefficients (𝛾𝑖𝑡) are the regression coefficients of the control variable to the explained variable;
𝜇𝑖 and 𝛿𝑡 represent the fixed effect of the enterprise and year, respectively; and 𝜀𝑖𝑡 is the random error term.
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As mentioned earlier, path dependence may intersect with one another, jointly influencing atmospheric pol‑
lution emissions to create a phenomenon of multiple path dependence. To this end, a panel regression model was
constructed to examine whether there exist multiple path dependence in air pollution control.

𝑙𝑛𝑠𝑜2𝑖𝑡 = 𝛼2 + 𝛽21𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑖𝑡 + 𝛽22𝑖𝑛𝑡𝑒𝑟𝑎𝑐2𝑖𝑡 +෍
𝑛

𝑖=1
𝜔𝑖𝑡𝑋𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (2)

where cross‑products (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑖𝑡) denote path‑dependence variables that may exhibit either double dependence,
such as the interaction between technological dependence and institutional dependence (𝑡𝑒𝑐ℎ𝑖𝑛𝑠𝑡𝑖𝑡), technological
dependence and management dependence (𝑡𝑒𝑐ℎ𝑚𝑎𝑛𝑎𝑖𝑡), institutional dependence and management dependence
(𝑖𝑛𝑠𝑡𝑚𝑎𝑛𝑎𝑖𝑡), or even triple dependence (𝑡𝑖𝑚𝑖𝑡), in which technological, institutional, and managerial factors in‑
teract simultaneously. 𝑖𝑛𝑡𝑒𝑟𝑎𝑐2𝑖𝑡 account for the square terms corresponding to the aforementioned multi‑path
dependence variables. 𝜔𝑖𝑡 represents the coefficients of the control variables in Model (2). The remaining conno‑
tations are consistent with Model (1).

5. Empirical Results
5.1. Descriptive Statistics

Table 2 presents the descriptive statistics of the variables.

Table 2. Descriptive statistics of the variables.

Variables N Minimum Maximum Mean Standard Deviation

lnso2 19,428 6.563 7.432 7.050 0.251
lnnox 19,428 6.698 7.911 7.432 0.262
lnsodu 19,428 7.139 8.343 7.868 0.261
lncape 19,428 0.137 0.160 0.151 0.005
lntech_d 19,428 0.000 7.624 5.708 0.729
lninst_d 19,428 0.000 7.688 6.377 0.707
lnmana_d 19,428 0.000 8.351 7.101 0.759
tobin 19,428 0.000 126.952 2.261 2.921

mbratio 19,428 0.000 1.463 0.566 0.256
isdis_Eva 19,428 0.000 1.000 0.929 0.257
isdis_Audit 19,428 0.000 1.000 0.678 0.467
overseas 19,428 0.000 9.000 0.746 1.097
separation 19,428 0.000 60.323 5.236 7.870

5.2. Model Validation
Before performing regression analysis, it is necessary to examine for multicollinearity in the explanatory vari‑

ables. The variance inflation factor (VIF) analysis revealed that the VIF values for all variables were less than 5,
indicating the absence of severe multicollinearity. Furthermore, given the results of both the F‑test and the Haus‑
man test, a fixed effect model should be used for regression analysis.

5.3. Benchmark Regression
To investigate the impact of path dependence on the atmospheric pollution emissions of manufacturing listed

companies, this study employed technology dependence, institutional dependence, and management dependence
as central explanatory variables and utilized Equation (1) for regression analysis. The results are presented in Ta‑
ble 3. It is important to emphasize that the primary objective of this analysis is to identify the existence and shape
of a non‑linear relationship, rather than to pinpoint precise, universal turning points. As presented in the table (Col‑
umn 1), the negative coefficient of technological dependence has a significant dependence effect on air pollution
control in the manufacturing sector. Moreover, the squared term for technological dependence exhibits a signifi‑
cant positive impact, indicative of a U‑shaped curve in its influence on sulphur dioxide emissions, which is currently
on the left half of the curve. Therefore, short‑term technological dependence can facilitate atmospheric pollution
reduction. However, if excessive reliance occurs, in where technological dependence crosses the inflection point
beneath the U‑shaped curve’s bottom, an increase in technological emissions may occur. This validates Hypothe‑
sis 1. Based on Columns (2) and (3), all the regression coefficients for path dependence and their squared terms
passed the significance test at the 1% level, with the linear and quadratic coefficients having opposite signs. This
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indicates a similar non‑linear impact of institutional andmanagerial dependence on corporate pollution emissions.
Hypotheses 2 and 3 are validated.

Table 3. Summary of the benchmark regression results.

Variables (1) (2) (3)

lntech_d −0.5159***
(0.0207)

lntech_d2 0.0857***
(0.0021)

lninst_d −0.5835***
(0.0190)

lninst_d2 0.0853***
(0.0017)

lnmana_d −0.6989***
(0.0172)

lnmana_d2 0.0940***
(0.0016)

tobin 0.0008
(0.0007)

0.0003
(0.0008)

0.0001
(0.0006)

mbratio −0.0066
(0.0099)

−0.0050
(0.0107)

−0.0195**
(0.0090)

isdis_Eva 0.1350***
(0.0076)

0.1835***
(0.0084)

0.1135***
(0.0073)

isdis_Audit 0.0486***
(0.0042)

0.0621***
(0.0049)

0.0380***
(0.0038)

overseas 0.0063*
(0.0034)

0.0134***
(0.0038)

0.0052
(0.0030)

separation −0.0012**
(0.0005)

−0.0013***
(0.0005)

−0.0011***
(0.0004)

Note: The figures in parentheses represent robust standard errors. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

With respect to the control variables, all impacts on the explained variable were statistically significant ex‑
cept for Tobin’s Q (𝑡𝑜𝑏𝑖𝑛) and the book‑to‑market ratio (𝑚𝑏𝑟𝑎𝑡𝑖𝑜). Specifically, the regression coefficients for the
variables of whether internal control evaluation reports and internal audit reports were disclosed, as well as the
number of directors with overseas experience, were all positive. This may suggest that despite the choice to dis‑
close such reports or to have a greater number of directors with overseas experience, these companies might not
have placed a strong emphasis on environmental performance or environmental responsibility, resulting in higher
pollution emissions. Furthermore, the regression coefficient for the degree of separation between ownership and
management was negative, indicating that when there is a higher degree of separation between ownership and
management within a firm, the level of atmospheric pollution emissions tends to decrease. This could be because
the separation of ownership and management introduces additional monitoring and accountability mechanisms,
thereby promoting environmentally friendly behaviors.

Furthermore, Model (2) was employed to examine whether there exist multiple path dependence in air pol‑
lution control for manufacturing industries, and the regression results are presented in Table 4. As presented in
Column (1), the dual dependence on technology and institution has a significant non‑linear effect on pollution emis‑
sions, characterized by a U‑shaped curve, that is, as the degree of dual dependence increases, atmospheric pollution
emissions initially decrease before increasing. This implies that, in its initial phase, as technological and institu‑
tional dual dependence intensifies, atmospheric pollution emissions will initially decrease, exhibiting the effects of
pollution control. However, when this interdependence surpasses a certain threshold, its square effect begins to
manifest, leading to an increase in atmospheric pollution emissions. This implies that excessive interdependence
may exacerbate pollution. Table 4 presents the regression results for the other dual dependence on technology and
management and on institution and management (Columns (2) and (3)), where the signs and significance levels of
the coefficients are similar. This reveals potential path dependence in the implementation of air pollution control
measures by listed manufacturing companies. Thus, enterprises may become overly reliant on certain methods
or strategies in terms of technology, institution, or management, which initially reduce pollution. However, exces‑
sive reliance can limit their ability to adopt more effective or innovative pollution control measures, leading to an
increase in emissions. Hypothesis 4 is validated. Regarding the triple dependence in Column (4), while the regres‑
sion coefficients remain significant at the 1% level, their impacts on atmospheric pollution emissions are much
smaller comparedwith dual dependence. This implies that the interaction among the three path dependence is not
simply a linear addition but may exhibit an offsetting effect, resulting in a smaller marginal effect of additional path
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dependence. Furthermore, the interplay between a three‑way dependence is more complex than that of a two‑way
dependence, thereby further increasing the uncertainty and dynamism of path dependence effects.

Table 4. Summary of multi‑path dependence regression results.

Variables (1) (2) (3) (4)

techinst −0.0442***
(0.0028)

techinst2 0.0012***
(0.0000)

techmana −0.0437***
(0.0026)

techmana2 0.0011***
(0.0000)

instmana −0.0515***
(0.0023)

instmana2 0.0010***
(0.0000)

tim −0.0031***
(0.0004)

tim2 0.0001***
(0.0000)

Control variables Yes Yes Yes Yes
N 19428 19428 19428 19428
R2 0.3535 0.3796 0.4123 0.3776

F‑statistic 894.62 927.72 1350.49 837.59
Note: The figures in parentheses represent robust standard errors. *** denotes significance at the 1% level.

5.4. Robustness Test
5.4.1. Replace the Explained Variable

As mentioned previously, the level of industrial atmospheric pollution emissions was measured in terms of
sulphur dioxide emissions. To examine the robustness of the conclusion, we use nitrogen oxide emissions (𝑙𝑛𝑛𝑜𝑥),
particulate matter emissions (𝑙𝑛𝑠𝑜𝑑𝑢), and air pollution equivalent logarithms (𝑙𝑛𝑐𝑎𝑝𝑒) as alternative variables
for the explained variable in Model (1) (refer to Appendix A Tables A1–A3).

5.4.2. Sub‑Sample Analysis Based on Information Transparency

To examine the robustness of our findings to potential measurement errors in the path dependence variables,
we conduct a sub‑sample analysis. This test addresses the concern that keyword frequencies may capture manage‑
rial rhetoric rather than actual behavioral lock‑in (the core construct of path dependence). The underlying logic is
that if the textual measures primarily reflect empty discourse, the estimated relationship with pollution emissions
should be weaker or non‑existent among firms with low‑quality information disclosure, where the gap between
rhetoric and reality is likely largest. Conversely, a stable relationship across different transparency levels would
lend credibility to the measures.

We employ the effectiveness of internal controls (isvalid) as a proxy for information transparency and split the
sample into high‑ and low‑transparency subgroups. The results, presented in Appendix A Table A4, demonstrate
that the U‑shaped relationships for all three types of path dependence remain statistically significant and stable in
both sub‑samples. Notably, the regression coefficients (absolute values) of path dependence variables on pollution
emissions are larger in the high‑transparency group. This pattern supports the validity of our measurement ap‑
proach: the amplified effects in the high‑transparency subgroup suggest keyword frequencies reflect substantive
corporate behaviors rather than rhetorical claims. Thus, consistent findings across subgroups rule out the possibil‑
ity that our results are driven solely by managerial rhetoric (refer to Appendix A Table A4).

5.4.3. Abnormal Values in Truncated Data Sets

Given the potential for outliers or extreme values to induce bias in estimates, winsorization—a technique that
substitutes extreme values with less stringent thresholds (such as 5% and 95%)—was employed to assess sensi‑
tivity to extreme values. This was followed by a fixed effects regression with Model (1) again (refer to Appendix A
Table A5).
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5.4.4. Grouped Regression across Sub‑Sectors

Differences in atmospheric pollution emissions across sub‑sectors may lead to enhanced or mitigated total
path dependence effects. Further testing is required. Based on the sample enterprises’ sulfur dioxide emissions
(logarithmic values), all enterprises were divided into three groups: the high‑emission group, consisting of the
top 10 sub‑sectors such as black metal, non‑metallic mineral, and other metal industries; the medium‑emission
group, including food manufacturing, beverage, chemical fiber, rubber and plastic, printing and recording, wood
processing, textiles and clothing, general equipment, and other manufacturing industries as well as leather, fur,
feathers and their products, and footwear industry; and the low‑emission group, comprising the remaining nine
sub‑sectors. Employ model (1) for grouped regression (refer to Appendix A Table A6).

5.4.5. Consider Endogeneity Issues

Endogeneity concerns—including sample selection bias, omitted variables, and bidirectional causality—are
carefully addressed through multiple empirical strategies to ensure the robustness of our findings. To mitigate
sample selection bias, our analysis utilizes a comprehensive sample of 1884 listed manufacturing firms across 29
two‑digit sectors, providing broad coverage that minimizes selection‑related distortions. For omitted variable bias,
we incorporate a comprehensive set of time‑varying firm‑level controls in all regression specifications, including
Tobin’s Q (tobin) as a measure of investment opportunities, book‑to‑market ratio (mbratio) indicating financial
performance, and internal governance variables (isdis_Eva and isdis_Audit) capturing the quality of internal control
and audit disclosures. The stability of our core results across different model specifications, as presented in Table
3, suggests that omitted variable bias is unlikely to drive our findings.

Most importantly, we address potential reverse causality through two distinct instrumental variable (IV) ap‑
proaches. First, we employ a dynamic panel approach using lagged values of the core explanatory variables as
instruments, leveraging the temporal precedence of path dependence measures relative to current pollution out‑
comes. Second, we construct amore robust instrument based onpeer effectswithin industries, utilizing the average
level of technological path dependence among other firms in the same two‑digit industry and year (excluding the
focal firm) as an instrument for the focal firm’s ownpath dependence. This instrument satisfies the relevance condi‑
tion because firms within the same industry face similar technological environments and tend to converge toward
industry norms, while plausibly satisfying the exclusion restriction since peer firms’ path dependence should not
directly affect the focal firm’s emissions except through shaping its own strategic technological choices.

The IV regression results, presented in Appendix A Tables A7 and A8, provide strong evidence supporting
our main findings. The first‑stage F‑statistics exceed conventional thresholds (e.g., F = 128.03 for the peer‑effects
instrument in Table A8), decisively rejecting weak instrument concerns. Both identification strategies yield sta‑
tistically significant coefficients for the U‑shaped relationship between path dependence and pollution emissions,
with the peer‑effects instrument showing particularly strong explanatory power. The consistency of results across
these complementary approaches reinforces the conclusion that our findings are not driven by endogeneity bias,
providing robust evidence that the identified U‑shaped relationship reflects a causal effect of path dependence on
manufacturing pollution.

The above robustness test results are consistent with those of the benchmark regression, thereby confirming
the robustness of the preceding conclusions.

5.5. Heterogeneity Analysis
To examine the heterogeneous effects of path dependence across different firm characteristics, we conduct

subgroup analyses based on ownership types, firmmaturity, and investment scale. The complete regression results
are presented in Appendix A Tables A9–A11, while key findings are summarized below.

5.5.1. Ownership Types (State‑Owned vs. Non‑State‑Owned)

The analysis reveals systematic differences in path dependence effects between state‑owned and non‑state‑
owned enterprises (see Appendix A Table A9), with both groups exhibiting the characteristic U‑shaped relation‑
shipwhere initial technological, institutional, andmanagerial dependence reduces emissions but excessive reliance
leads to rebound effects. Non‑state‑owned enterprises demonstrate stronger path dependence effects, evidenced
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by consistently larger coefficient magnitudes across all three dependence dimensions, attributable to their greater
innovation motivation and organizational flexibility enabling rapid adoption of new pollution control technologies,
superior resource allocation efficiency for effective emission reduction tool utilization, and heightened sensitiv‑
ity to cost‑revenue dynamics making them more responsive to environmental regulations [20]. In contrast, state‑
owned enterprises exhibit a more attenuated U‑shaped relationship, likely reflecting institutional constraints and
different innovation incentives, underscoring the need for ownership‑specific policy approaches to optimize path
dependence effects in pollution control.

5.5.2. FirmMaturity Levels

The analysis reveals distinct path dependence effects across firmmaturity levels (seeAppendix A Table A10),
with high‑maturity enterprises demonstrating significantly stronger U‑shaped relationships across all three de‑
pendence dimensions compared to their low‑maturity counterparts. This enhanced sensitivity manifests in larger
coefficient magnitudes for technological, institutional, and managerial path dependence among established firms,
attributable to their superior technological and managerial efficiency derived from accumulated experience and
resource advantages, scale economies that amplify the emission impacts of marginal changes in dependence levels,
and enhanced innovation capacity enabling more rapid adaptation to new regulatory requirements and technolog‑
ical opportunities [21]. The steeper U‑curve for mature firms indicates that while they achieve greater emission
reductions at optimal dependence levels, they also face heightened rebound risks when dependence exceeds crit‑
ical thresholds, underscoring the particular importance of dynamic capability maintenance for long‑established
enterprises in pollution control.

5.5.3. Investment Scale Differences

The analysis reveals a distinctive pattern in path dependence effects across investment scale levels (see Ap‑
pendix A Table A11), with high‑investment enterprises exhibiting attenuated but still significant U‑shaped rela‑
tionships compared to their low‑investment counterparts. Contrary to conventional expectations, the smaller coef‑
ficient magnitudes for technological, institutional, and managerial path dependence among capital‑intensive firms
suggest diminishing marginal returns to scale in pollution control, potentially reflecting investment efficiency con‑
straints where excessive capital allocation without corresponding managerial innovations leads to resource under‑
utilization, scale economyparadoxeswhere large production volumes dilute the emission reduction effectiveness of
incremental technological improvements, and regulatory compliance burdens that create formalistic environmen‑
tal responses rather than substantive innovation‑driven solutions. This attenuated U‑curve pattern indicates that
while high‑investment firms achieve moderate emission reductions through resource‑intensive approaches, they
face structural limitations in leveraging path dependence for transformative environmental performance improve‑
ments, highlighting the critical need for complementary organizational innovations alongside capital investments
in manufacturing pollution control [22].

6. Discussion
This study examines the dual role of path dependence in manufacturing pollution control, revealing a consis‑

tent U‑shaped relationship across technological, institutional, andmanagerial dimensions. The findings demonstrate
that while moderate path dependence initially reduces emissions (the “honey phase”), excessive reliance risks in‑
creasing pollution (the “arsenic phase”)—a pattern particularly pronounced in non‑state‑owned, high‑maturity, and
low‑investment‑scale enterprises.

Our research extends path dependence theory to environmental governance by identifying three concurrent de‑
pendence mechanisms. The dictionary‑based measurement approach, while capturing discursive commitments in
corporate disclosures, primarily reflects strategic emphasis rather than operational behaviors. This methodological
choice aligns with the cognitive dimensions of organizational lock‑in but acknowledges limitations in directly observ‑
ing behavioral routines. Future studies could strengthen this approach by integrating textual analysiswith behavioral
metrics such as patent filings for technological lock‑in or compliance records for institutional dependence.

Thenonlinear relationshipnecessitatesdifferentiatedpolicy approaches. For enterpriseswith low‑to‑moderate
dependence, policies can carefully leverage existing paths’ stabilization benefits. However, for firms exhibiting high
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dependence, the priority shifts to preventing lock‑in through knowledge transfer, pilot subsidies, and innovation‑
friendly regulations. The heightened effects in non‑state‑owned andmature enterprises highlight opportunities for
targeted interventions, such as phased carbon pricing that rewards path‑breaking innovation over path‑following
compliance.

While establishing the U‑shaped pattern, this study does not identify precise inflection points or fully explore
multi‑path dependence interactions. Future research should investigate howpath dependence interactswith climate‑
specific variables like carbon disclosure or renewable adoption, particularly under rapid policy shifts like carbon neu‑
trality mandates. Additionally, interactions with unexamined factors such as CSR initiatives or leadership styles may
further nuance the observed relationships.

Unlike macro‑level studies of path dependence in economic growth or industrial aggregation [23–25], our
firm‑level analysis reveals howmicro‑foundations of technological, institutional, andmanagerial lock‑in collectively
shape environmental performance. This granular perspective complements national and industry‑level analyses
by elucidating the organizational mechanisms through which path dependence influences pollution outcomes.

7. Conclusions
This study is based on the annual data of 1884 listedmanufacturing enterprises in China from 2009 to 2021. A

fixed effects model was constructed to examine the path‑dependent effect on air pollution and the heterogeneities.
The major findings include the following: (i) Significant technological dependence, institutional dependence, and
management dependence exist in the process of air pollution control in manufacturing industries. Furthermore,
the U‑shaped characteristics of the impacts of these three types of path dependence and their interactions on at‑
mospheric emissions indicate that as the degree of path dependence and their interactions increases, atmospheric
emissions initially decrease before increasing. (ii) In non‑state‑owned enterprises, high‑maturity enterprises, and
low‑capitalization enterprises, the path‑dependent emission reduction effects are more pronounced.

Based on the empirical findings of this study, the following policy implications arise: Firstly, due to the non‑
linear impact of path dependence on atmospheric pollution emissions, efforts should be made to keep path depen‑
dence at a low level (the left part of the U‑shaped curve) to harness the emission reduction effect (known as the
honey phase) and avoid exacerbating pollution emissions due to excessive reliance (known as the arsenic phase).
Thus, path dependence is a double‑edged sword that requires policymakers to use it judiciously. Secondly, given the
heterogeneity in pollution emissions resulting frompath dependence across different sample groups, differentiated
emission reduction plans should be proposed, integrating the effectiveness of pollution control for enterprises in
various sub‑industries. Such plans should enhance the emission reduction effects of non‑state‑owned enterprises,
high‑maturity enterprises, and enterpriseswith low investment scales, ensuring fairness and efficiency in pollution
reduction efforts. In summary, while advancing pollution mitigation efforts, it is crucial to avoid over‑reliance on
single or combined remediation pathways. Encouragement should be given to diversified and innovative solutions,
with regular assessments and adjustments to treatment strategies made to ensure sustained and effective control
of atmospheric pollution over the long term.

In conclusion, effectively managing path dependence is not only crucial for controlling atmospheric pollution
but also a key determinant in facilitating the manufacturing sector’s transition to a green and low‑carbon future,
ultimately contributing to the broader climate goals.

This studymeasures the path dependence level of air pollution control in listedmanufacturing companies from
multiple dimensions using dictionary‑based methods. It also reveals the non‑linear emission reduction effect and
environmental heterogeneity of path dependence. However, certain limitations remain. For example, the study
does not explore the inflection point of the U‑shaped curve associated with path dependence effects, nor does it
examine the influencing factors of multi‑path dependence, which require further systematic research in the future.
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Appendix A

Table A1. Summary of regression results for replacing the explained variable (𝑙𝑛𝑛𝑜𝑥).

Variables lnnox

lntech_d −0.5442***
(0.0234)

lntech_d2 0.0902***
(0.0023)

lninst_d −0.6144***
(0.0215)

lninst_d2 0.0895***
(0.0019)

lnmana_d −0.7367***
(0.0193)

lnmana_d2 0.0988***
(0.0017)

Control variables Yes Yes Yes
N 0.3274 0.3496 0.4703
R2 19,428 19,428 19,428

F‑statistic 895.57 1095.08 1031.11
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A2. Summary of regression results for replacing the explained variable (𝑙𝑛𝑠𝑜𝑑𝑢).

Variables lnsodu

lntech_d −0.5476***
(0.0235)

lntech_d2 0.0906***
(0.0023)

lninst_d −0.6145***
(0.0214)

lninst_d2 0.0894***
(0.0019)

lnmana_d −0.7370***
(0.0192)

lnmana_d2 0.0987***
(0.0017)

Control variables Yes Yes Yes
N 0.3293 0.3497 0.4735
R2 19,428 19,428 19,428

F‑statistic 847.06 1117.00 1047.48
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.
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Table A3. Summary of regression results for replacing the explained variable (𝑙𝑛𝑐𝑎𝑝𝑒).

Variables lncape

lntech_d −0.0109***
(0.0005)

lntech_d2 0.0018***
(0.0000)

lninst_d −0.0123***
(0.0004)

lninst_d2 0.0018***
(0.0000)

lnmana_d −0.0147***
(0.0004)

lnmana_d2 0.0020***
(0.0000)

Control variables Yes Yes Yes
N 0.3624 0.3853 0.5205
R2 19,428 19,428 19,428

F‑statistic 928.53 1225.20 1124.80
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A4. Summary of sub‑sample analysis based on information transparency.

Variables
(1) (2) (3)

High Low High Low High Low

lntech_d −0.4306***
(0.0267)

−0.3773***
(0.0319)

lntech_d2 0.0792***
(0.0025)

0.0536***
(0.0051)

lninst_d −0.5418***
(0.0253)

−0.2535***
(0.0299)

lninst_d2 0.0840***
(0.0021)

0.0278***
(0.0042)

lnmana_d −0.6645***
(0.0263)

−0.4782***
(0.0325)

lnmana_d2 0.0926***
(0.0020)

0.0594***
(0.0046)

Control variables Yes Yes Yes Yes Yes Yes
N 17,878 1550 17,878 1550 17,878 1550
R2 0.2633 0.5572 0.2964 0.5478 0.4197 0.5871

F‑statistic 633.86 142.72 786.53 137.48 731.02 168.26
Note: Sub‑sample analysis is conducted by dividing the full sample into high and low information transparency groups, based on firm information transparency
(measured by the variable 𝑖𝑠𝑣𝑎𝑙𝑖𝑑, where “0” indicates ineffective internal control and “1” indicates effective internal control). The data for the isvalid are sourced
from the CSMAR (China Stock Market & Accounting Research, https://data.csmar.com/). The sub‑sample sizes are 17,878 for the high‑information‑transparency
group and 1550 for the low‑information‑transparency group, respectively.
The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A5. Summary of winsorize processing outliers regression results.

Variables (1) (2) (3)

lntech_d −0.5159***
(0.0207)

lntech_d2 0.0857***
(0.0021)

lninst_d −0.5835***
(0.0190)

lninst_d2 0.0853***
(0.0017)

lnmana_d −0.6989***
(0.0172)

lnmana_d2 0.0940***
(0.0016)

Control variables Yes Yes Yes
N 19,428 19,428 19,428
R2 0.3146 0.3383 0.4576

F‑statistic 841.42 1041.40 993.64
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A6. Summary of grouped regression results based on SO2 emissions.

Variables
(1) (2) (3)

High Medium Low High Medium Low High Medium Low

lntech_d −0.5343***
(0.0327)

−0.5802***
(0.0319)

−0.4727***
(0.0333)
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Table A6. Cont.

Variables
(1) (2) (3)

High Medium Low High Medium Low High Medium Low

lntech_d2 0.0882***
(0.0031)

0.0931***
(0.0040)

0.0830***
(0.0033)

lninst_d −0.5978***
(0.0331)

−0.6570***
(0.0234)

−0.5391***
(0.0278)

lninst_d2 0.0860***
(0.0029)

0.0919***
(0.0028)

0.0815***
(0.0026)

lnmana_d −0.6895***
(0.0284)

−0.7765***
(0.0268)

−0.6761***
(0.0269)

lnmana_d2 0.0921***
(0.0025)

0.1009***
(0.0030)

0.0927***
(0.0025)

Control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 7718 3521 8189 7718 3521 8189 7718 3521 8189
R2 0.3645 0.3384 0.2786 0.3528 0.3581 0.3165 0.4693 0.4656 0.4441

F‑statistic 466.53 157.12 287.19 441.89 225.60 396.70 438.98 210.80 377.82
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A7. IV‑2SLS estimation with lagged path dependence instruments.

Variables
(1) (2) (3)

lntech_d lnso2 lninst_d lnso2 lnmana_d lnso2

L.lntech_d −0.1184***
(0.0236)

lntech_d −1.2358***
(0.1521)

L.lninst_d −0.0844***
(0.0230)

lninst_d −1.2823***
(0.2049)

L.lnmana_d −0.1151***
(0.0254)

lnmana_d −1.2110***
(0.1282)

Control variables Yes Yes Yes Yes Yes Yes
N 17,544 17,544 17,544 17,544 17,544 17,544

F‑statistic (first stage) 25.11 13.53 20.49
Note: L.lntech_d, L.lninst_d, and L.lnmana_d denote the one‑period lagged values of the corresponding explanatory variables, used as instruments in the IV estimation.
The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A8. IV‑2SLS estimation with peer firms’ path dependence instruments.

Variables
(1) (2) (3)

lntech_d lnso2 lninst_d lnso2 lnmana_d lnso2

indavg.lntech_d −0.3424***
(0.0303)

lntech_d −2.0934***
(0.1785)

indavg.lninst_d −0.4919***
(0.0324)

lninst_d −1.5242***
(0.0944)

indavg.lnmana_d −0.5820***
(0.0323)

lnmana_d −1.4027***
(0.0686)

Control variables Yes Yes Yes Yes Yes Yes
N 19,425 19,425 19,425 19,425 19,425 19,425

F‑statistic (first stage) 128.03 229.91 324.41
Note: indavg.lntech_d, indavg.lninst_d, and indavg.lnmana_d represent industry‑year averages of path dependence levels excluding the focal firm, employed as instru‑
mental variables.
The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A9. Heterogeneity test of enterprise ownership.

Variables
(1) (2) (3)

State‑Owned Non‑State‑
Owned State‑Owned Non‑State‑

Owned State‑Owned Non‑State‑
Owned

lntech_d −0.4709***
(0.0308)

−0.5286***
(0.0234)
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Table A9. Cont.

Variables
(1) (2) (3)

State‑Owned Non‑State‑
Owned State‑Owned Non‑State‑

Owned State‑Owned Non‑State‑
Owned

lntech_d2 0.0813***
(0.0032)

0.0856***
(0.0024)

lninst_d −0.5100***
(0.0267)

−0.6005***
(0.0214)

lninst_d2 0.0772***
(0.0028)

0.0857***
(0.0019)

lnmana_d −0.6330***
(0.0270)

−0.7161***
(0.0195)

lnmana_d2 0.0872***
(0.0028)

0.0948***
(0.0018)

Control variables Yes Yes Yes Yes Yes Yes
N 6761 12,667 6761 12,667 6761 12,667
R2 0.3729 0.2775 0.4094 0.2937 0.4896 0.4397

F‑statistic 478.84 447.23 450.90 654.29 444.13 627.57

Table A10. Heterogeneity test of enterprise maturity.

Variables
(1) (2) (3)

High Low High Low High Low

lntech_d −0.4686***
(0.0233)

−0.3768***
(0.0333)

lntech_d2 0.0771***
(0.0025)

0.0658***
(0.0031)

lninst_d −0.5461***
(0.0218)

−0.3384***
(0.0289)

lninst_d2 0.0794***
(0.0022)

0.0521***
(0.0028)

lnmana_d −0.6430***
(0.0208)

−0.5420***
(0.0325)

lnmana_d2 0.0861***
(0.0022)

0.0745***
(0.0029)

Control variables Yes Yes Yes Yes Yes Yes
N 10,331 9097 10,331 9097 10,331 9097
R2 0.3935 0.2413 0.4491 0.2160 0.5036 0.3945

F‑statistic 540.23 254.46 661.80 143.44 630.62 180.63
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.

Table A11. Heterogeneity test of investment scale.

Variables
(1) (2) (3)

High Low High Low High Low

lntech_d −0.4330***
(0.0286)

−0.5436***
(0.0236)

lntech_d2 0.0795***
(0.0030)

0.0872***
(0.0024)

lninst_d −0.4846***
(0.0248)

−0.5989***
(0.0218)

lninst_d2 0.0751***
(0.0024)

0.0862***
(0.0021)

lnmana_d −0.6169***
(0.0248)

−0.7222***
(0.0198)

lnmana_d2 0.0867***
(0.0023)

0.0958***
(0.0020)

Control variables Yes Yes Yes Yes Yes Yes
N 8262 11,166 8262 11,166 8262 11,166
R2 0.3812 0.2645 0.3567 0.3163 0.4743 0.4357

F‑statistic 352.65 426.58 358.66 502.46 380.84 506.97
Note: The figures enclosed in parentheses represent robust standard errors. *** denotes significance at 1%.
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