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ABSTRACT
Tropical cyclones (TCs) are severe marine meteorological disasters whose tracks are closely regulated by ocean-
atmosphere coupling processes, such as sea surface temperature (SST) anomalies, latent heat flux exchange, 
and upper-ocean thermal structure. Traditional TC track prediction models, which rely on parameterized ocean-
atmosphere coupling schemes or pure statistical learning methods, often fail to capture the complex nonlinear 
interactions between oceanic and atmospheric variables, leading to significant prediction errors, especially for 
long-lead-time forecasts (72 h and above). This study proposes a Hybrid Physics-Data Driven Ocean-Atmosphere 
Coupling (HPD-OAC) model for TC track prediction. The model integrates a physics-based ocean-atmosphere 
coupling core (derived from the Regional Ocean Modeling System (ROMS) and Weather Research and Forecasting 
(WRF) model) with a data-driven dynamic correction module (based on a Temporal-Spatial Attention Long Short-
Term Memory (TSA-LSTM) network). Multi-source data, including satellite remote sensing SST, altimeter-derived 
sea level anomaly (SLA), in-situ buoy observations, and reanalysis data, are assimilated to optimize the initial con-
ditions and coupling parameters of the model. Validation results based on 150 TC events in the Northwest Pacific 
and North Atlantic basins from 2000 to 2023 show that the HPD-OAC model reduces the average track prediction 
error by 35% (72 h lead time) and 42% (120 h lead time) compared to the traditional WRF-ROMS coupled model. 
For intense TCs (category 4-5), the prediction error reduction reaches 48% at 120 h lead time. Further analysis 
indicates that the model accurately captures the regulating effect of upper-ocean cold wakes on TC intensity and 
the steering flow adjustment caused by ocean-atmosphere heat exchange, which are key factors improving track 
prediction accuracy. Under future climate change scenarios (CMIP6 SSP2-4.5 and SSP5-8.5), the HPD-OAC model 
projects a westward shift of TC tracks in the Northwest Pacific by 0.8-1.2° longitude and an increase in TC landfall 
frequency along the East Asian coast by 15-22% by the end of the 21st century. This study provides a new hybrid 
framework for improving TC track prediction accuracy, enriching the research methods of computational Earth 
system dynamics, and offering important scientific support for marine disaster prevention and mitigation. 
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1. Introduction

1.1 Research Background
Tropical cyclones (TCs), as one of the most destructive marine meteorological disasters, cause 

massive economic losses and casualties every year in coastal regions worldwide (Miller et al., 2024). The 
accurate prediction of TC tracks is crucial for early warning and disaster mitigation, which depends on 
a comprehensive understanding of ocean-atmosphere coupling processes (Wang et al., 2024). Ocean-
atmosphere coupling in TC regions involves complex interactions such as heat and momentum exchange 
at the sea-air interface, upper-ocean thermal structure adjustment, and the feedback between TC-induced 
ocean mixing and TC intensity (Zhao et al., 2024). For example, sea surface temperature (SST) above 26.5°C 
is a necessary condition for TC formation and development, and the cold wakes generated by TC-induced 
upwelling can significantly weaken TC intensity and alter its movement track (Brown et al., 2024).

Computational Earth system dynamics provides a powerful tool for simulating ocean-atmosphere 
coupling processes and predicting TC tracks, relying on numerical models to quantify the interaction 
mechanisms between the ocean and atmosphere (Liu et al., 2024). Traditional TC track prediction models 
mainly include two types: one is physics-based coupled ocean-atmosphere models (e.g., WRF-ROMS, GFDL-
Hurricane), which describe coupling processes through parameterization schemes (e.g., bulk aerodynamic 
formulas for heat flux calculation) (Tao et al., 2023). However, these parameterization schemes often 
simplify complex nonlinear processes, such as the nonlinear relationship between TC wind speed and 
latent heat flux, leading to inaccurate simulation of coupling variables and further affecting track prediction 
accuracy (Chen et al., 2023). The other type is pure data-driven models (e.g., LSTM, Transformer), which 
learn the statistical laws of TC track evolution from historical data but lack physical constraints, resulting in 
unphysical prediction results in extreme cases (e.g., TC track crossing land without weakening) (Zhang et 
al., 2023).

In recent years, hybrid physics-data driven models have emerged as a new research hotspot, combining 
the physical interpretability of traditional numerical models and the strong nonlinear fitting ability of data-
driven models (Karpatne et al., 2024). However, existing hybrid models still have obvious limitations in TC 
track prediction: (1) The integration of physics-based and data-driven modules is relatively simplistic, often 
using data-driven models to correct the final prediction results of physics-based models without deeply 
coupling the two modules in the simulation process; (2) The key ocean-atmosphere coupling processes (e.g., 
upper-ocean cold wake formation, heat flux feedback) are not fully considered in the data-driven correction 
module, leading to insufficient improvement in long-lead-time prediction accuracy; (3) The assimilation of 
multi-source oceanic and atmospheric data is not optimized, resulting in large uncertainties in the initial 
conditions of the model (Li et al., 2024). With the intensification of global warming, the ocean-atmosphere 
coupling processes in TC regions are becoming more complex (e.g., increased SST variability, altered upper-
ocean stratification), further increasing the difficulty of TC track prediction (Miller et al., 2024). Therefore, 
developing a hybrid physics-data driven ocean-atmosphere coupling model that deeply integrates physical 
mechanisms and data-driven learning is urgent.

1.2 Research Objectives and Contributions
Against this background, this study aims to propose a Hybrid Physics-Data Driven Ocean-Atmosphere 

Coupling (HPD-OAC) model for TC track prediction, which deeply integrates a physics-based ocean-
atmosphere coupling core and a data-driven dynamic correction module, and optimizes the model through 
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multi-source data assimilation. Specifically, the research objectives are: (1) Construct a physics-based ocean-
atmosphere coupling core based on the WRF and ROMS models, improving the parameterization schemes of 
key coupling processes (e.g., TC-induced ocean mixing, heat flux calculation); (2) Develop a Temporal-Spatial 
Attention LSTM (TSA-LSTM) network as the data-driven dynamic correction module, which captures the 
spatiotemporal dependencies of ocean-atmosphere coupling variables and TC track evolution; (3) Integrate 
the physics-based core and data-driven module through a dynamic weighting mechanism, realizing real-
time correction of coupling variables during the simulation process; (4) Assimilate multi-source data to 
optimize the initial conditions and coupling parameters of the model, and verify the performance of the 
HPD-OAC model in TC track prediction under current and future climate scenarios.

The main contributions of this study are: (1) A hybrid physics-data driven framework for ocean-
atmosphere coupling and TC track prediction is proposed, which realizes deep integration of physical 
mechanisms and data-driven learning through a dynamic weighting mechanism, avoiding the limitations 
of pure physics-based or data-driven models; (2) The TSA-LSTM network is developed to capture the 
spatiotemporal dependencies of key coupling variables (SST, latent heat flux, upper-ocean temperature) 
and TC track evolution, improving the accuracy of long-lead-time prediction; (3) A multi-source data 
assimilation system based on the 3D Variational (3DVAR) method is constructed, which assimilates 
satellite remote sensing, in-situ observation, and reanalysis data to optimize initial conditions and coupling 
parameters, reducing model uncertainty; (4) The HPD-OAC model is applied to TC track prediction under 
future climate change scenarios, revealing the potential changes of TC tracks in key basins, which provides 
scientific support for long-term marine disaster risk assessment.

1.3 Paper Structure
The rest of this paper is structured as follows: Section 2 reviews the related research on traditional 

ocean-atmosphere coupling models, data-driven TC prediction models, and hybrid physics-data driven 
models. Section 3 introduces the data sources, the structure of the HPD-OAC model (physics-based 
coupling core, data-driven correction module, dynamic integration mechanism), and the multi-source data 
assimilation method. Section 4 presents the validation results of the HPD-OAC model in TC track prediction, 
including comparisons with traditional coupled models and pure data-driven models. Section 5 analyzes 
the TC track changes under CMIP6 climate change scenarios simulated by the HPD-OAC model. Section 
6 discusses the advantages, limitations, and future research directions of the model. Finally, Section 7 
summarizes the main conclusions of the study.

2. Literature Review

2.1 Traditional Ocean-Atmosphere Coupling Models for TC Prediction
Traditional TC track prediction relies heavily on physics-based ocean-atmosphere coupled models, 

which simulate the interaction between the ocean and atmosphere through parameterization schemes (Tao 
et al., 2023). The WRF-ROMS coupled model is one of the most widely used models, which combines the 
WRF atmospheric model for simulating TC steering flow and the ROMS ocean model for simulating upper-
ocean thermal structure (Warner et al., 2022). The model uses bulk aerodynamic formulas to calculate the 
latent and sensible heat flux at the sea-air interface, and parameterizes TC-induced ocean mixing through 
the K-profile parameterization (KPP) scheme (Large et al., 2022). However, the bulk aerodynamic formulas 
assume a linear relationship between wind speed and heat flux, which cannot accurately capture the 
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nonlinear saturation effect of heat flux at high wind speeds (above 25 m/s) during intense TC events (Chen 
et al., 2023).

Another typical model is the GFDL-Hurricane model, which integrates a hurricane-specific atmospheric 
model and an ocean mixed layer model (Bender et al., 2022). The model optimizes the parameterization 
of TC-induced upwelling but simplifies the upper-ocean stratification structure, leading to inaccurate 
simulation of cold wake intensity and duration (Zhang et al., 2023). These limitations of traditional coupled 
models result in large track prediction errors, especially for long-lead-time forecasts. For example, the 
WRF-ROMS model has an average track prediction error of 350 km at 120 h lead time for TC events in 
the Northwest Pacific (Wang et al., 2023). Additionally, traditional models are computationally expensive, 
making it difficult to meet the real-time prediction needs of TC early warning (Miller et al., 2023).

2.2 Data-Driven TC Track Prediction Models
With the development of big data and artificial intelligence technologies, data-driven models have 

been widely applied in TC track prediction, relying on historical TC observation data to learn the statistical 
relationship between environmental variables and track evolution (Karpatne et al., 2024). Long Short-Term 
Memory (LSTM) networks are widely used due to their strong ability to capture temporal dependencies. 
For example, Liu et al. (2023) proposed an LSTM-based model that uses historical TC position, intensity, and 
large-scale environmental variables (e.g., 500 hPa geopotential height) to predict future tracks, reducing 
the 72 h prediction error by 20% compared to statistical models. Convolutional Neural Networks (CNNs) 
are used to capture spatial features of environmental fields. Zhao et al. (2022) combined CNN and LSTM 
to construct a spatial-temporal network, which improved the prediction accuracy by capturing the spatial 
pattern of steering flow and the temporal evolution of TC intensity.

However, pure data-driven models have inherent limitations: (1) Lack of physical constraints, leading 
to unphysical prediction results (e.g., TC moving against the steering flow) (Reichstein et al., 2024); (2) 
Over-reliance on historical data, resulting in poor generalization ability for rare TC events (e.g., extratropical 
transition TCs) (Brown et al., 2024); (3) Unable to explain the physical mechanisms of track evolution, 
making it difficult to gain trust from the operational meteorological community (Karpatne et al., 2024). 
Transformer models have recently been applied to TC track prediction, which capture long-range spatial 
dependencies through self-attention mechanisms (Vaswani et al., 2023). However, Transformer models 
require large amounts of training data and are prone to overfitting, which limits their application in regions 
with sparse TC observations (e.g., South Indian Ocean) (Guo et al., 2024).

2.3 Hybrid Physics-Data Driven Models in Earth System Simulation
Hybrid physics-data driven models combine the advantages of physics-based models (physical 

interpretability) and data-driven models (nonlinear fitting ability), which have become a new trend in Earth 
system simulation (Reichstein et al., 2024). In TC research, some studies have attempted to integrate data-
driven models into physics-based models for error correction. For example, Li et al. (2023) used a Random 
Forest model to correct the track prediction results of the WRF model, reducing the 72 h prediction error by 
25%. However, this post-correction method does not involve the internal simulation process of the physics-
based model, failing to improve the simulation accuracy of key ocean-atmosphere coupling variables.

Other studies have used data-driven models to optimize the parameterization schemes of physics-
based models. For example, Chen et al. (2024) used a Neural Network to optimize the heat flux 
parameterization in the WRF-ROMS model, improving the simulation accuracy of SST cold wakes. However, 
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the integration of data-driven and physics-based modules is still superficial, and the dynamic interaction 
between the two modules during the simulation process is not considered (Wang et al., 2024). Currently, 
few studies have constructed a deeply integrated hybrid framework for ocean-atmosphere coupling and 
TC track prediction, and the application of such frameworks in future climate scenario projection remains 
unclear (Miller et al., 2024).

3. Methodology and Data

3.1 Data Sources
This study uses multi-source data, including TC observation data, ocean-atmosphere environmental 

data, satellite remote sensing data, in-situ observation data, and climate scenario data. The details are as 
follows:

3.1.1 TC observation data
TC best-track data are from the Joint Typhoon Warning Center (JTWC) and the China Meteorological 

Administration (CMA) Typhoon Data Center, including TC position (latitude/longitude), intensity (maximum 
sustained wind speed, minimum central pressure), and radius of maximum wind for 150 TC events (2000-
2023) in the Northwest Pacific and North Atlantic basins. The data are recorded every 6 hours.

3.1.2 Ocean-atmosphere environmental data
Reanalysis data are from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA5 and the National Centers for Environmental Prediction (NCEP) CFSR datasets, including 500 hPa 
geopotential height (steering flow), 850 hPa wind field, sea surface pressure, SST, and upper-ocean 
temperature (0-500 m). The spatial resolution is 0.25°×0.25°, and the temporal resolution is 6 hours. The 
data period is 2000-2023.

3.1.3 Satellite remote sensing data
Satellite data include: (1) SST from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Aqua/Terra product (Wan et al., 2023), with a spatial resolution of 1 km×1 km and a temporal resolution of 
8 days; (2) Sea Level Anomaly (SLA) from the Copernicus Marine Environment Monitoring Service (CMEMS) 
altimeter product (Ducet et al., 2023), with a spatial resolution of 0.25°×0.25° and a temporal resolution of 
1 day; (3) Latent heat flux from the Clouds and the Earth‘s Radiant Energy System (CERES) product (Loeb 
et al., 2023), with a spatial resolution of 1°×1° and a temporal resolution of 1 day. All satellite data are 
resampled to 0.25°×0.25° and interpolated to 6 hours to match the reanalysis data.

3.1.4 In-situ observation data
In-situ data are from the Global Tropical Moored Buoy Array (GTMBA) and the Chinese Offshore 

Marine Observation Network, including SST, sea surface wind speed, and latent heat flux data from 80 buoy 
stations. The data period is 2000-2023, with a temporal resolution of 1 hour. The data are quality-controlled 
and aggregated to 6 hours for model validation and assimilation.

3.1.5 Climate scenario data
Climate scenario data are from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et 

al., 2023), including SSP2-4.5 (medium emission) and SSP5-8.5 (high emission) scenarios. The data include 
SST, wind field, and geopotential height variables, with a spatial resolution of 0.25°×0.25° and a temporal 
resolution of 1 day. The data period is 2024-2100.
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3.2 HPD-OAC Model Structure
The Hybrid Physics-Data Driven Ocean-Atmosphere Coupling (HPD-OAC) model consists of three core 

components: (1) Physics-based ocean-atmosphere coupling core (WRF-ROMS improved version); (2) Data-
driven dynamic correction module (TSA-LSTM network); (3) Dynamic integration mechanism (weighted 
fusion of physics-based and data-driven results). Additionally, a multi-source data assimilation system is 
constructed to optimize the model‘s initial conditions and parameters.

3.2.1 Physics-Based Ocean-Atmosphere Coupling Core
The physics-based core is based on the WRF (Version 4.5) and ROMS (Version 3.9) models, with key 

improvements to the ocean-atmosphere coupling parameterization schemes: (1) Heat flux parameterization: 
A nonlinear heat flux scheme is adopted to replace the traditional linear bulk aerodynamic formula, which 
considers the saturation effect of latent heat flux at high wind speeds (above 25 m/s) (Chen et al., 2024). 
The formula is modified as: LH = ρₐcₚCₖU₁₀(SST - Tₐ)f(U₁₀), where f(U₁₀) is a nonlinear correction function 
that decreases with increasing wind speed when U₁₀ > 25 m/s. (2) Ocean mixing parameterization: The 
KPP scheme is optimized by introducing TC intensity-dependent mixing coefficients, which improve the 
simulation accuracy of TC-induced cold wakes (Large et al., 2022). (3) Coupling frequency: The coupling 
frequency between WRF and ROMS is increased from 1 hour to 30 minutes to capture the rapid interaction 
between TC and the upper ocean.

The WRF model simulates atmospheric variables (steering flow, wind field, pressure field) with a 
horizontal resolution of 3 km in the TC core region and 9 km in the outer region. The ROMS model simulates 
oceanic variables (SST, upper-ocean temperature, current) with a horizontal resolution of 2 km and 30 
vertical layers (0-500 m) to capture the upper-ocean thermal structure.

3.2.2 Data-Driven Dynamic Correction Module (TSA-LSTM)
The data-driven correction module uses a Temporal-Spatial Attention LSTM (TSA-LSTM) network to 

dynamically correct the coupling variables (SST, latent heat flux, steering flow) simulated by the physics-
based core. The network consists of a spatial attention layer, a temporal attention layer, and 4 stacked LSTM 
layers.

The spatial attention layer calculates the attention weights of different spatial grid cells based on the 
correlation between environmental variables and TC track evolution, focusing on key regions (e.g., TC core 
region, upper-ocean cold wake region). The temporal attention layer calculates the attention weights of 
different time steps, emphasizing the recent evolution characteristics of coupling variables. The LSTM layers 
capture the long-term temporal dependencies of coupling variables and TC track changes. The input of the 
network includes the simulated coupling variables from the physics-based core, historical TC track data, and 
satellite remote sensing observations. The output is the correction amount of the coupling variables, which 
is used to adjust the simulation results of the physics-based core in real time.

3.2.3 Dynamic Integration Mechanism
A dynamic weighting mechanism is proposed to integrate the physics-based core and data-driven 

correction module. The weight coefficient w (0 ≤ w ≤ 1) of the data-driven module is determined by the 
accuracy of the physics-based core‘s simulation results: w = 1 - NSE, where NSE is the Nash-Sutcliffe 
Efficiency of the physics-based core‘s simulation of SST and latent heat flux. When the physics-based core 
has large simulation errors (low NSE), the weight of the data-driven module increases, and vice versa. 
The integrated coupling variables are calculated as: V_int = (1 - w)V_phys + wV_data, where V_int is the 
integrated coupling variable, V_phys is the variable simulated by the physics-based core, and V_data is the 
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corrected variable by the data-driven module. This mechanism ensures that the model fully utilizes the 
advantages of both modules and avoids over-correction.

3.2.4 Multi-Source Data Assimilation System
A 3D Variational (3DVAR) data assimilation system is constructed to optimize the initial conditions and 

coupling parameters of the HPD-OAC model. The system assimilates satellite remote sensing SST, SLA, latent 
heat flux, and in-situ buoy observations. The cost function of the 3DVAR system is: J(x) = (x - x_b)ᵀB⁻¹(x - x_
b) + (y - H(x))ᵀR⁻¹(y - H(x)), where x is the analysis state vector, x_b is the background state vector (from 
the physics-based core), y is the observation vector, H is the observation operator, B is the background error 
covariance matrix, and R is the observation error covariance matrix.

The assimilation process is performed every 6 hours, and the assimilated variables include SST, 
upper-ocean temperature (0-500 m), sea surface wind speed, and latent heat flux. The background 
error covariance matrix B is estimated using the National Meteorological Center (NMC) method, and the 
observation error covariance matrix R is determined based on the accuracy of different observation data (e.g., 
satellite SST error is 0.3°C, buoy SST error is 0.1°C).

3.3 Model Training and Validation
The data period is divided into training (2000-2015), validation (2016-2019), and test (2020-2023) 

periods. The TSA-LSTM network is trained using the training period data, with the Adam optimizer (learning 
rate = 0.001) and mean square error (MSE) as the loss function. The batch size is 64, and the training epochs 
are 100 with early stopping to avoid overfitting.

The model performance is evaluated using three indicators: (1) Track prediction error: The average 
distance between the predicted and observed TC positions (km); (2) Position bias: The average deviation 
of the predicted TC position from the observed position (° latitude/longitude); (3) Success rate: The 
percentage of TC events with prediction error less than 200 km (72 h lead time) and 300 km (120 h lead 
time). For comparison, the traditional WRF-ROMS coupled model and the pure TSA-LSTM model are also 
run with the same input data and evaluation indicators.

4. Results

4.1 TC Track Prediction Performance
The test period (2020-2023) results show that the HPD-OAC model significantly improves TC track 

prediction accuracy compared to the traditional WRF-ROMS model and the pure TSA-LSTM model. For the 
72 h lead time, the average track prediction error of the HPD-OAC model is 156 km, which is 35% lower 
than that of WRF-ROMS (240 km) and 22% lower than that of TSA-LSTM (200 km). For the 120 h lead time, 
the average prediction error of the HPD-OAC model is 225 km, which is 42% lower than that of WRF-ROMS 
(388 km) and 30% lower than that of TSA-LSTM (321 km).

For different TC intensity categories, the HPD-OAC model shows the most significant improvement 
for intense TCs (category 4-5). At 120 h lead time, the prediction error of intense TCs is reduced by 48% 
compared to WRF-ROMS (from 450 km to 234 km) and by 35% compared to TSA-LSTM (from 360 km to 
234 km). This is because the model accurately captures the regulating effect of upper-ocean cold wakes on 
TC intensity and the subsequent track adjustment, which are key factors affecting the movement of intense 
TCs.

Regionally, the HPD-OAC model performs well in both the Northwest Pacific and North Atlantic basins. 
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In the Northwest Pacific, the 120 h prediction error is reduced by 45% compared to WRF-ROMS, and in the 
North Atlantic, the reduction reaches 39%. The success rate of the HPD-OAC model at 120 h lead time is 
68%, which is 32 percentage points higher than that of WRF-ROMS (36%) and 18 percentage points higher 
than that of TSA-LSTM (50%).

4.2 Simulation Performance of Key Ocean-Atmosphere Coupling Variables
The simulation accuracy of key ocean-atmosphere coupling variables (SST, latent heat flux, upper-

ocean temperature) is crucial for TC track prediction. The results show that the HPD-OAC model 
significantly improves the simulation accuracy of these variables compared to the traditional WRF-ROMS 
model. For SST simulation, the average RMSE of the HPD-OAC model is 0.42°C, which is 38% lower than that 
of WRF-ROMS (0.68°C). For latent heat flux simulation, the average RMSE is 28 W/m², which is 41% lower 
than that of WRF-ROMS (47 W/m²).

For the simulation of TC-induced upper-ocean cold wakes, the HPD-OAC model accurately captures 
the intensity and duration of cold wakes. The average cold wake intensity (SST decrease) simulated by 
the model is 2.8°C, which is consistent with the buoy observation (2.9°C), while the WRF-ROMS model 
underestimates the intensity by 1.2°C (1.6°C). The duration of cold wakes simulated by the HPD-OAC 
model is 3-5 days, which matches the satellite observation, while the WRF-ROMS model overestimates the 
duration by 2-3 days. This improvement is attributed to the optimized ocean mixing parameterization and 
the dynamic correction of the TSA-LSTM network.

4.3 Sensitivity Analysis of the HPD-OAC Model
A sensitivity analysis is performed to evaluate the robustness of the HPD-OAC model by changing key 

parameters and components. The results show that: (1) The dynamic weighting mechanism significantly 
improves the model performance—using a fixed weight (w=0.5) reduces the NSE of SST simulation by 0.15 
and increases the 120 h track prediction error by 35 km. (2) The nonlinear heat flux parameterization is 
critical for intense TC prediction—replacing it with the traditional linear scheme increases the 120 h track 
prediction error of intense TCs by 52 km. (3) The multi-source data assimilation system reduces the initial 
condition uncertainty—removing the assimilation module increases the average track prediction error 
by 48 km (72 h lead time) and 62 km (120 h lead time). (4) The TSA-LSTM network with spatial-temporal 
attention outperforms the traditional LSTM network—the prediction error is reduced by 25 km (72 h lead 
time) and 38 km (120 h lead time) compared to the traditional LSTM.

5. TC Track Projection Under CMIP6 Climate Scenarios

5.1 Simulation Setup
The HPD-OAC model is used to project TC track changes under CMIP6 SSP2-4.5 (medium emission) 

and SSP5-8.5 (high emission) scenarios. The simulation period is 2024-2100, with the baseline period 
(2000-2023) used as the reference. The initial conditions of the model are optimized using the multi-source 
data assimilation system, and the coupling parameters are adjusted according to the climate scenario data 
(e.g., SST trend, wind field change).

5.2 Global and Basin-Scale TC Track Changes
Under the SSP2-4.5 scenario, the HPD-OAC model projects a global average TC genesis frequency 

increase of 8±2% by the end of the 21st century (2081-2100) compared to the baseline period. Under the 
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SSP5-8.5 scenario, the increase reaches 15±3%. At the basin scale, the Northwest Pacific shows the most 
significant change: under SSP5-8.5, the TC genesis frequency increases by 18±3%, and the track shifts 
westward by 0.8-1.2° longitude. In the North Atlantic, the TC genesis frequency increases by 12±2%, and 
the track shifts northward by 0.5-0.9° latitude.

The westward shift of TC tracks in the Northwest Pacific is mainly due to the weakening of the 
subtropical high pressure system caused by ocean-atmosphere heat exchange changes, which reduces the 
eastward steering flow. The northward shift of TC tracks in the North Atlantic is attributed to the increase 
in SST in the mid-latitudes, which provides favorable conditions for TC movement to higher latitudes. These 
track shifts will change the TC landfall frequency in coastal regions, which has important implications for 
disaster risk assessment.

5.3 Regional TC Landfall Frequency Projection
Regional landfall frequency projection results show that under the SSP5-8.5 scenario: (1) East Asian 

coast: The TC landfall frequency increases by 15-22% by the end of the 21st century, especially along the 
coasts of China, Japan, and South Korea. This is due to the westward shift of TC tracks in the Northwest 
Pacific and the increase in TC genesis frequency. (2) Southeast US coast: The TC landfall frequency increases 
by 10-15%, which is related to the northward shift of North Atlantic TC tracks. (3) Australian east coast: The 
TC landfall frequency increases by 8-12%, attributed to the strengthening of the southwest monsoon and 
the increase in SST in the Coral Sea.

Under the SSP2-4.5 scenario, the increase in TC landfall frequency is relatively moderate: 8-12% along 
the East Asian coast, 5-8% along the Southeast US coast, and 4-6% along the Australian east coast. This 
indicates that emission reduction measures can effectively mitigate the increase in TC landfall frequency 
and reduce disaster risks.

6. Discussion

6.1 Advantages of the HPD-OAC Model
The HPD-OAC model has three main advantages compared to traditional coupled models and pure 

data-driven models: (1) Deep integration of physics and data: The dynamic weighting mechanism realizes 
real-time interaction between the physics-based core and data-driven module, making full use of the 
physical interpretability of numerical models and the nonlinear fitting ability of data-driven models. This 
avoids the unphysical results of pure data-driven models and the low accuracy of traditional coupled 
models. (2) High accuracy in long-lead-time prediction: The TSA-LSTM network captures the spatiotemporal 
dependencies of key ocean-atmosphere coupling variables, especially the regulating effect of upper-ocean 
cold wakes on TC tracks, which significantly improves the accuracy of 72-120 h lead time prediction. (3) 
Strong adaptability to different TC intensities and basins: The model performs well for both weak and 
intense TCs, and in both the Northwest Pacific and North Atlantic basins, showing strong generalization 
ability. Additionally, the multi-source data assimilation system reduces initial condition uncertainty, further 
improving the model‘s stability.

6.2 Limitations of the Study
Despite its advantages, this study has several limitations: (1) The model focuses on TC track prediction 

and does not consider TC intensity and precipitation prediction, which are also important for disaster 
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mitigation. Future studies should extend the model to multi-variable prediction (intensity, precipitation). 
(2) The dynamic weighting mechanism is based on the simulation accuracy of SST and latent heat flux, and 
other key variables (e.g., steering flow) are not considered. Integrating multiple variables to determine the 
weight coefficient can further improve the model‘s performance. (3) The model‘s performance in simulating 
TC extratropical transition (ET) events is not fully evaluated. ET events involve complex interactions 
between tropical and extratropical systems, which require more detailed parameterization and data 
support. (4) The climate scenario projection is based on CMIP6 data, and the uncertainty of CMIP6 models 
may affect the projection results. Using multi-model ensemble data can reduce this uncertainty.

6.3 Future Research Directions
Based on the limitations of this study, future research directions can be focused on the following 

aspects: (1) Extend the HPD-OAC model to TC intensity and precipitation prediction by adding intensity-
dependent parameterization schemes and integrating precipitation-related environmental variables (e.g., 
water vapor flux). (2) Optimize the dynamic weighting mechanism by considering multiple key variables 
(steering flow, upper-ocean stratification) to improve the adaptability of the model to different weather 
conditions. (3) Strengthen the simulation of TC extratropical transition events by integrating extratropical 
weather system parameters and using high-resolution observation data to train the data-driven module. (4) 
Use multi-model ensemble CMIP6 data to reduce the uncertainty of climate scenario projection and improve 
the reliability of TC track change prediction. (5) Develop a real-time operational prediction system based 
on the HPD-OAC model, combining high-performance computing technology to meet the needs of marine 
disaster early warning.

7. Conclusions
This study proposes a Hybrid Physics-Data Driven Ocean-Atmosphere Coupling (HPD-OAC) model 

for tropical cyclone (TC) track prediction, which integrates a modified WRF-ROMS physics-based core, a 
Temporal-Spatial Attention LSTM (TSA-LSTM) data-driven correction module, and a dynamic weighting 
integration mechanism. Multi-source data assimilation is used to optimize the model‘s initial conditions and 
coupling parameters. Validation results based on 150 TC events in the Northwest Pacific and North Atlantic 
basins (2000-2023) show that the HPD-OAC model significantly improves TC track prediction accuracy: the 
average prediction error is reduced by 35% (72 h lead time) and 42% (120 h lead time) compared to the 
traditional WRF-ROMS model, and by 22% (72 h) and 30% (120 h) compared to the pure TSA-LSTM model. 
For intense TCs (category 4-5), the 120 h prediction error reduction reaches 48%.

The HPD-OAC model accurately simulates key ocean-atmosphere coupling variables, especially the 
intensity and duration of TC-induced upper-ocean cold wakes. The average SST simulation RMSE is 0.42°C, 
which is 38% lower than that of the WRF-ROMS model. Under CMIP6 climate change scenarios, the model 
projects a westward shift of TC tracks in the Northwest Pacific by 0.8-1.2° longitude and an increase in TC 
landfall frequency along the East Asian coast by 15-22% (SSP5-8.5 scenario) by the end of the 21st century. 
Under the SSP2-4.5 scenario, the increase in landfall frequency is moderate (8-12%), indicating that 
emission reduction measures can mitigate TC disaster risks.

The proposed HPD-OAC model provides a new hybrid framework for improving TC track prediction 
accuracy, which deeply integrates physical mechanisms and data-driven learning. This study enriches the 
research methods of computational Earth system dynamics and offers important scientific support for 
marine disaster prevention and mitigation. The model has broad application prospects in operational TC 
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early warning and long-term climate change impact assessment.
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