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ABSTRACT

Infectious diseases (e.g, COVID-19, influenza, malaria) pose recurring threats to global health, with urbanization
and international travel accelerating transmission. This study explores how artificial intelligence (AI) technolo-
gies—including predictive analytics, computer vision, and natural language processing (NLP)—enhance infectious
disease prevention and control. We analyze 15 real-world implementations (2022-2025) across 10 countries,
showing Al-driven early warning systems reduce outbreak response time by 40-50% and optimize resource allo-
cation, cutting vaccine waste by 30%. Ethical challenges, such as data sovereignty and equitable access to Al tools,
are addressed through a proposed global collaboration framework. Findings highlight AI's critical role in building
resilient health systems amid evolving infectious disease risks.
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1. Introduction

1.1 Background
Infectious diseases account for 17% of global deaths annually, with outbreaks like COVID-19 (2019-

2023) causing over 7 million fatalities and $12 trillion in economic losses (WHO, 2023). Urbanization
amplifies transmission risks: dense urban areas have 2.5 times higher infection rates than rural regions,
driven by crowding in public spaces and inadequate sanitation in informal settlements (UN-Habitat, 2024).
Conventional surveillance methods—relying on manual case reporting and laboratory testing—often lag
behind transmission, leading to delayed interventions (Chen et al., 2022).

Artificial intelligence (Al) transforms infectious disease control by enabling real-time data analysis
and proactive decision-making. Predictive analytics models integrate multi-source data (e.g., mobility
data, social media, clinical records) to forecast outbreak hotspots, while computer vision tools automate
symptom detection (e.g., fever screening in airports) (Rodriguez et al., 2023). NLP systems extract outbreak

signals from unstructured data, such as social media posts mentioning “severe cough” or local news reports
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of unusual illness clusters (Patel et al., 2024). Despite these advances, disparities persist: 75% of low- and
middle-income countries (LMICs) lack access to Al-driven surveillance tools, and data fragmentation across

borders hinders global outbreak response (Opoku et al., 2023).

1.2 Research Objectives

This study aims to:

Evaluate the efficacy of Al technologies in three key infectious disease control stages: early detection,
transmission mitigation, and resource allocation.

Identify barriers to Al adoption in LMICs vs. high-income countries (HICs), particularly in urban and
informal settlement contexts.

Develop a global collaboration framework to address data sovereignty issues and ensure equitable
access to Al tools.

Propose policy recommendations to integrate Al into national and international infectious disease

preparedness plans.

1.3 Scope and Significance

The scope includes peer-reviewed studies, government reports, and industry case studies (2022-2025)
focusing on Al applications for four high-priority infectious diseases: COVID-19, influenza, malaria, and
dengue. Case studies span 10 countries (United States, Spain, India, Ghana, Japan, Brazil, Nigeria, Thailand,
Canada, and Australia), covering urban centers (e.g., Delhi, Accra) and informal settlements (e.g., Rio de
Janeiro’s favelas).

This research fills a gap in existing literature, which often focuses on Al for single diseases (e.g.,
COVID-19) rather than cross-disease applications. By addressing urban-specific challenges (e.g., rapid
transmission in slums) and LMIC barriers (e.g., limited data infrastructure), the study provides actionable

insights for policymakers and public health practitioners seeking to strengthen outbreak preparedness.
2. Literature Review

2.1 Al Technologies for Infectious Disease Control

2.1.1 Predictive Analytics for Outbreak Forecasting

Predictive models use historical and real-time data to forecast outbreak timing and location. A 2023
study by Chen et al. (2023) developed a gradient-boosted model integrating Google Mobility data, weather
data, and clinical case reports to predict influenza outbreaks in U.S. cities, achieving 85% accuracy 4 weeks
in advance—outperforming traditional epidemiological models (68% accuracy). In malaria-endemic
regions, an Al model combining satellite imagery (tracking mosquito breeding sites) and rainfall data
reduced malaria case underreporting by 35% in rural-urban Ghana (Opoku et al., 2023).

However, model performance depends on data quality. In LMICs, where 60% of clinical cases go
unreported (WHO, 2024), predictive models often rely on proxy data (e.g., social media). A 2024 study in
Delhi found that an NLP-powered model using Twitter data to detect dengue outbreaks had 72% accuracy,

compared to 90% in Tokyo (where clinical data is comprehensive) (Patel et al.,, 2024).
2.1.2 Computer Vision for Symptom and Vector Detection

Computer vision automates labor-intensive tasks, such as symptom screening and mosquito species

identification. In airports and train stations, Al-powered thermal imaging cameras detect fever (a common
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infectious disease symptom) with 98% accuracy, reducing manual screening time by 80% (Tanaka et al,,
2024). For vector-borne diseases like dengue, smartphone apps using computer vision identify Aedes
mosquitoes from photos with 92% accuracy, enabling community-led surveillance in Brazil’s favelas (Silva
etal, 2023).

In resource-constrained settings, low-cost computer vision tools show promise. A 2025 study in
Nigeria deployed Al-enabled smartphone microscopes to diagnose malaria from blood smears, achieving
89% accuracy—comparable to laboratory testing (Okafor et al., 2025). This reduced diagnostic time from
24 hours to 15 minutes, enabling faster treatment initiation.

2.1.3 NLP for Real-Time Surveillance

NLP extracts outbreak signals from unstructured data, complementing formal surveillance systems.
The WHO’s Al-powered Global Outbreak Alert and Response Network (GOARN) uses NLP to analyze
500,000+ news articles, social media posts, and local health reports daily, detecting 70% of outbreaks 3-5
days earlier than traditional methods (WHO, 2024). In India, an NLP system analyzing regional language
social media posts (e.g., Hindi, Tamil) identified a 2024 dengue outbreak in Chennai 4 days before official
case reports (Patel et al., 2024).

Challenges remain in multilingual contexts: NLP models trained on English data perform 20-30%
worse in languages with limited digital text (e.g., Swahili, Hausa) (Opoku et al., 2024). To address this,
researchers in Ghana developed a multilingual NLP model using local language radio transcripts, improving
outbreak detection accuracy by 25% (Opoku et al., 2024).

2.2 Urbanization and Infectious Disease Transmission

Urbanization shapes infectious disease dynamics through three key pathways:

Crowding: Urban slums with 10+ people per household have 3 times higher COVID-19 infection rates
than formal neighborhoods (UN-Habitat, 2024).

Mobility: Urban public transit systems facilitate rapid transmission—each subway ride in Tokyo
increases COVID-19 exposure risk by 18% (Tanaka et al., 2023).

Environmental Factors: Poor waste management in urban informal settlements creates mosquito
breeding sites, increasing dengue risk by 40% (Silva et al., 2023).

Al addresses these challenges by tailoring interventions to urban contexts. In Rio de Janeiro, an Al
model integrating transit data and slum population density mapped dengue hotspots, guiding targeted
mosquito control efforts and reducing cases by 32% (Silva et al., 2023). In New York City, a predictive model
using subway ridership data forecasted COVID-19 surges, enabling (advance) allocation of hospital beds to
high-risk boroughs (Chen et al.,, 2024).

2.3 Ethical and Governance Challenges

2.3.1 Data Sovereignty

Infectious disease data often crosses national borders, raising concerns about data ownership. During
the 2024 dengue outbreak in Southeast Asia, 60% of LMICs refused to share data with HIC-led Al projects
due to fears of exploitation (Rodriguez et al., 2024). For example, Thailand restricted access to its dengue
surveillance data after a U.S. tech firm used it to develop a commercial Al tool without local benefit-sharing
(Rodriguez et al., 2024).
2.3.2 Equitable Access

HICs account for 80% of Al-driven infectious disease tool deployments, despite LMICs bearing 70% of
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the infectious disease burden (WHO, 2023). Cost is a major barrier: Al surveillance systems cost 500,000-2
million to implement, which is unaffordable for 90% of LMIC health ministries (Opoku et al., 2023). Open-
source tools offer a solution—Ghana’s Ministry of Health adopted an open-source Al malaria diagnosis app
in 2024, reducing costs by 75% (Opoku et al., 2023).
2.3.3 Algorithmic Transparency

Many Al models used in infectious disease control are “black boxes,” making it difficult for public health
workers to trust their outputs. A 2024 survey of 1,500 LMIC public health workers found that 65% hesitated
to use Al forecasts because they could not understand how predictions were made (Patel et al., 2024).
Explainable Al (XAI) tools— which provide step-by-step justifications for predictions—have increased
trust: in a pilot in India, XAl-enabled dengue forecasts were adopted by 80% of local health departments,
compared to 45% for non-XAl models (Patel et al., 2024).

3. Methodology

3.1 Study Design

A mixed-methods approach was used, combining:

Systematic Review: Of peer-reviewed studies, government reports, and industry case studies (2022-
2025) on Al applications for infectious disease control.

Case Study Analysis: Of 15 Al implementations across 10 countries, focusing on urban and informal
settlement contexts.

Stakeholder Interviews: With 50 key informants (public health officials, Al developers, community

leaders) to identify adoption barriers and best practices.
3.2 Data Sources

3.2.1 Systematic Review Databases

PubMed, Web of Science, IEEE Xplore, and the WHO Global Health Library were searched using
keywords: (“artificial intelligence” OR “machine learning”) AND (“infectious disease” OR “COVID-19” OR
“influenza” OR “malaria” OR “dengue”) AND (“surveillance” OR “prediction” OR “resource allocation”) AND
(“2022” OR “2023” OR “2024” OR “2025"). Inclusion criteria: (1) English-language publications, (2) focus
on Al applications in real-world settings (not just lab experiments), (3) reporting of quantitative outcomes
(e.g., outbreak detection time, case reduction), (4) coverage of urban or informal settlement populations.
Exclusion criteria: (1) preclinical studies, (2) non-infectious diseases, (3) rural-only populations.
3.2.2 Case Study Data

Case studies were selected to represent diverse regions (Africa, Asia, Europe, North America,
South America) and disease types. Data included project reports, government evaluations, and public
health records (e.g., case counts, resource allocation logs). For each case, we extracted information on Al

technology used, implementation context, outcomes, and challenges.
3.2.3 Stakeholder Interviews

Semi-structured interviews (30-60 minutes each) were conducted remotely (2024-2025) in 6
languages (English, Spanish, Hindi, Twi, Japanese, Portuguese). Interview guides focused on: (1) perceived
benefits of Al, (2) barriers to adoption, (3) ethical concerns, and (4) recommendations for equitable

implementation.
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3.3 Data Analysis

3.3.1 Systematic Review
Data were extracted using a standardized form (study design, Al technology, population, outcomes,
country). Narrative synthesis was used to identify trends across studies, with quantitative outcomes

summarized using descriptive statistics (e.g.,, mean reduction in outbreak response time).

3.3.2 Case Study Analysis

Cross-case synthesis was performed to compare Al implementations across regions. Key metrics (e.g.,
cost-effectiveness, case reduction rates) were analyzed using Excel, with differences between HICs and
LMICs tested using t-tests.

3.3.3 Stakeholder Interviews
Interview transcripts were coded using NVivo (Version 12) to identify thematic patterns (e.g., “data

» o«

sovereignty concerns,” “need for local capacity building”). Quotes from informants were used to illustrate

key findings, with identifiers anonymized to protect privacy.

3.4 Ethical Approval

The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review
Board (IRB #JHSPH-2024-0123) and local IRBs in all case study countries. Informed consent was obtained
from all interview participants, and data were de-identified to comply with GDPR, HIPAA, and local data

protection laws.

4. Results

4.1 Efficacy of Al in Infectious Disease Control Stages

4.1.1 Early Detection

Meta-analysis of 8 studies showed Al-driven early warning systems reduced outbreak detection
time by 45% (range: 40-50%) compared to conventional methods. The most effective tools were NLP-
powered surveillance systems (mean detection time reduction: 50%) and predictive analytics models (mean
reduction: 42%).

eCase Example: Delhi Dengue Surveillance (India, 2024): An NLP system analyzing regional
language social media and local news detected a dengue outbreak 4 days earlier than official case reports,
enabling targeted mosquito control. This reduced the outbreak peak by 35% (Patel et al., 2024).

eCase Example: Tokyo Influenza Forecasting (Japan, 2023): A predictive model integrating mobility
data and clinical records forecasted influenza outbreaks 4 weeks in advance with 88% accuracy. Local
health departments used these forecasts to stockpile vaccines, reducing severe cases by 28% (Tanaka et al.,
2023).

4.1.2 Transmission Mitigation
Six studies demonstrated that Al-optimized mitigation strategies reduced infection rates by 30-40%.
Computer vision tools for symptom screening and Al-driven mobility restrictions were the most impactful.
eCase Example: Rio de Janeiro Dengue Control (Brazil, 2023): An Al model mapping dengue
hotspots (using transit data and slum density) guided targeted insecticide spraying. This reduced dengue

cases in informal settlements by 32% compared to uniform spraying (Silva et al,, 2023).
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eCase Example: New York City COVID-19 Mitigation (U.S., 2022): An Al model using subway
ridership data identified high-transmission neighborhoods. Local authorities implemented targeted mask
mandates and testing sites in these areas, reducing infection rates by 38% (Chen et al,, 2022).
4.1.3 Resource Allocation

Five studies reported that Al optimization reduced vaccine and medication waste by 25-30% and
improved hospital bed utilization by 35%.

eCase Example: Accra Malaria Resource Allocation (Ghana, 2024): An Al model predicting malaria
hotspots in urban Accra optimized antimalarial drug distribution. This reduced drug waste by 30% and
ensured 90% of cases received treatment within 24 hours (Opoku et al,, 2024).

eCase Example: Barcelona COVID-19 Hospital Bed Allocation (Spain, 2023): An Al model
forecasting hospital admissions allocated beds to high-risk districts. This reduced bed shortages by 40%
and cut ICU mortality by 18% (Rodriguez et al., 2023).

4.2 Barriers to Al Adoption

4.2.1 Infrastructure Gaps

LMICs: 75 % of urban health facilities in LMICs lack high-speed internet, a critical requirement for real-
time Al data analysis (Opoku et al., 2024). In Ghana’s urban informal settlements, only 28% of clinics have
access to reliable electricity, limiting the use of Al-powered thermal imaging cameras (Opoku et al., 2023).

HICs: While infrastructure is more robust, 30% of urban public health departments in HICs report
outdated data storage systems, leading to delays in integrating Al with existing surveillance platforms (Chen
etal, 2024). For example, 40% of U.S. city health departments cited incompatible EHR systems as a barrier
to Al-driven COVID-19 surveillance (Chen et al., 2024).

4.2.2 Capacity Building Shortages

LMICs: 85% of public health workers in urban LMICs have no formal training in Al tools (Patel et al,,
2024). In India, a 2024 survey found that only 12% of urban health officers could interpret Al outbreak
forecasts, leading to underutilization of available tools (Patel et al., 2024).

HICs: Capacity gaps are less severe but persistent—45% of HIC public health workers report difficulty
translating Al outputs into actionable policies (Rodriguez et al., 2023). In Spain, 35% of regional health

officials cited “lack of Al literacy” as a barrier to adopting Al for vaccine allocation (Rodriguez et al., 2023).

4.2.3 Funding Constraints

LMICs: The average cost of implementing an Al surveillance system ($1.2 million) exceeds the annual
infectious disease budget of 90% of LMIC health ministries (Opoku et al.,, 2023). Ghana’s Ministry of Health
required 3 years of external funding (from the Gates Foundation) to scale its Al malaria diagnosis tool (Opoku
etal, 2024).

HICs: Funding is more accessible, but competition for resources remains—25% of HIC urban health
departments reported prioritizing traditional surveillance over Al due to budget limits (Chen et al., 2024).
4.2.4 Data-Related Barriers

Data Quality: In LMICs, 60% of urban clinical records are incomplete or paper-based, limiting Al
model training (WHO, 2024). In Nigeria, an Al dengue prediction model had 68% accuracy due to missing
data on mosquito breeding sites, compared to 89% in Japan (Okafor et al., 2025).

Data Sovereignty: 70% of LMIC stakeholders reported refusing to share data with international Al
projects due to fears of exploitation (Rodriguez et al., 2024). Thailand’s 2024 ban on sharing dengue data
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with foreign tech firms delayed the development of a regional Al early warning system (Rodriguez et al.,
2024).

5. Discussion

5.1 Key Findings in Global Context

This study’s results confirm Al's transformative potential in infectious disease control, with Al-driven
tools reducing outbreak response time by 40-50% and vaccine waste by 30%. These findings align with
prior research (Chen et al,, 2023; Rodriguez et al,, 2023) but expand insights by highlighting cross-disease
applicability and urban-specific impacts. For example, Al models tailored to slum contexts (e.g., Rio de
Janeiro’s dengue hotspot mapping) reduced cases by 32%, demonstrating the value of context-aware Al
design.

Notably, LMIC implementations achieved comparable efficacy to HICs when adapted to local
constraints. Ghana’s open-source Al malaria app and Nigeria’s smartphone-based diagnostic tool show that
low-cost, low-tech Al solutions can overcome infrastructure gaps—a critical insight for equitable global
health. This contradicts the narrative that Al is “HIC-exclusive” (Opoku et al., 2023) and underscores the

need for localized innovation rather than one-size-fits-all approaches.

5.2 Addressing Equity in Al Access

The study’s findings reveal a stark equity gap: HICs account for 80% of Al deployments, despite LMICs
bearing 70% of the infectious disease burden. To bridge this gap, three strategies emerge:

Open-Source Tools: Ghana's 75% cost reduction with open-source Al (Opoku et al., 2024) shows that
making Al tools freely available can lower barriers. Global initiatives like WHO’s Al for Infectious Diseases
(AI4ID) platform—Ilaunched in 2024—are critical for scaling this model.

Capacity Building Programs: India’s pilot training program for urban health workers increased Al
tool adoption by 55% (Patel et al., 2024). Integrating Al literacy into public health curricula (e.g., 40 hours
of training for medical students) can ensure long-term sustainability.

South-South Collaboration: Brazil’s knowledge-sharing with Nigeria on Al dengue control reduced
implementation time by 40% (Silva et al,, 2025). Regional partnerships (e.g., African Union’s Al Health
Initiative) can accelerate LMIC-led innovation.

5.3 Navigating Data Sovereignty and Global Collaboration

Data sovereignty concerns emerged as a major barrier to global Al efforts, with 70% of LMICs refusing
to share data (Rodriguez et al., 2024). This reflects a history of data exploitation—such as Thailand’s
experience with uncompensated data use—and highlights the need for equitable data governance. The
proposed global collaboration framework (Section 6) addresses this by mandating benefit-sharing (e.g.,
20% of Al tool royalties to data-providing countries) and local data ownership.

Explainable Al (XAI) also plays a critical role in building trust. India’s XAl-enabled dengue forecasts
were adopted by 80% of local health departments (vs. 45% for non-XAI models), showing that transparency
reduces skepticism. Future Al tools must prioritize XAl features to ensure acceptance among frontline

workers.

5.4 Limitations and Future Research Directions

Generalizability: Most case studies (60%) focused on middle-income countries (e.g., India, Brazil)
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rather than low-income countries (e.g., Somalia, Haiti), limiting insights into Al use in resource-scarce
settings.

Long-Term Sustainability: Only 30% of case studies reported long-term (=3 years) funding plans,
raising concerns about scaling. Future research should evaluate strategies for sustainable Al integration (e.g.,
public-private partnerships).

Interoperability: 40% of HIC and LMIC implementations faced challenges integrating Al with existing
surveillance systems (Chen et al., 2024). Research on standardized data formats and API integration is

needed.

6. Global Collaboration Framework for Equitable Al in Infectious Disease
Control

Based on study findings and stakeholder input, we propose a 4-Pillar Global Collaboration
Framework to address equity, data sovereignty, and capacity gaps:

6.1 Pillar 1: Equitable Resource Sharing
Open-Source Repository: Establish a global repository (hosted by WHO) of free, validated Al tools for

infectious disease control (e.g., Ghana’s malaria diagnosis app, Brazil’s dengue hotspot model).

Funding Pool: Allocate $500 million annually (from global health donors) to LMIC Al projects, with
priority given to urban and informal settlement contexts.

Cost-Sharing Models: Require international Al projects to contribute 15% of funding to local capacity

building (e.g., training programs for public health workers).

6.2 Pillar 2: Data Governance and Sovereignty

Data Sharing Agreements: Mandate legally binding agreements that: (1) recognize local data
ownership, (2) require prior informed consent from data-providing countries, and (3) ensure 20% of Al tool
royalties are reinvested in local health systems.

Local Data Storage: Require international Al projects to store data in the country of origin (e.g., using
Ghana’s national health data center) to prevent exploitation.

Data Quality Initiatives: Invest $100 million annually to digitize paper-based records in LMIC urban

clinics, with standardized data formats for Al compatibility.

6.3 Pillar 3: Capacity Building

Global Training Network: Develop a certification program (via WHO) for public health workers,
covering Al tool use, model interpretation, and policy translation. Target: Train 50,000 LMIC workers by
2030.

Academic Partnerships: Fund collaborations between HIC and LMIC universities (e.g., Johns Hopkins
+ University of Ghana) to develop Al curricula tailored to local needs.

Knowledge Sharing Platforms: Launch a regional network (e.g., African Al Health Hub) for LMICs to

share best practices (e.g., Brazil's experience with slum-focused Al models).

6.4 Pillar 4: Monitoring and Evaluation

Global AI Registry: Track all Al infectious disease tools (via WHO) to monitor efficacy, equity, and
safety. Mandatory reporting of outcomes (e.g., case reduction, cost-effectiveness) for tool certification.

Equity Audits: Conduct annual audits of Al deployments to ensure 40% of tools are implemented in

35



Al in Medicine and Health | Volume 1 | Issue 1 | December 2025

LMICs. Penalize non-compliant projects by revoking funding or certification.
Community Feedback Mechanisms: Integrate community leaders into Al evaluation (e.g., slum

dwellers in Rio de Janeiro) to ensure tools address real-world needs.

7. Policy Recommendations

To accelerate equitable Al integration into infectious disease control, we propose targeted actions for

four stakeholder groups:

7.1 For National Governments

Infrastructure Investment: Allocate 10% of infectious disease budgets to Al-ready infrastructure (e.g.,
high-speed internet, digital record systems) in urban areas. LMICs should prioritize solar-powered solutions
for informal settlements (e.g., Ghana’s solar-powered Al clinics).

Data Legislation: Enact laws that balance data sharing and sovereignty (e.g., Thailand’s 2025 Data
Governance Act, which mandates benefit-sharing for Al projects).

Al Integration into National Plans: Include Al in national infectious disease preparedness plans (e.g.,
U.S. CDC’s 2024 Al Surveillance Roadmap) with clear targets (e.g., 50% of outbreak detection using Al by
2027).

7.2 For International Organizations (WHO, UNICEF)

Scale Open-Source Tools: Expand WHO’s AI4ID platform to include 50+ tools by 2026, with localized
versions for multilingual contexts (e.g., Swahili, Hindi).

Mobilize Funding: Establish a $2 billion Global Al for Infectious Diseases Fund to support LMIC
projects, with 70% allocated to urban and informal settlement initiatives.

Facilitate Regional Collaboration: Launch a Southeast Asian Al Early Warning Network (building on

Thailand’s data governance model) to address cross-border outbreaks (e.g., dengue, influenza).

7.3 For Al Developers

Context-Aware Design: Develop Al tools that adapt to LMIC constraints (e.g., offline functionality, low
battery use). Nigeria’s smartphone-based malaria diagnostic tool (Okafor et al., 2025) serves as a model.

Prioritize XAI: Integrate explainable features (e.g., step-by-step prediction justifications) into all tools
to build trust among public health workers.

Local Co-Creation: Involve LMIC stakeholders (clinicians, community leaders) in all stages of

development—this increased adoption by 45% in India’s dengue project (Patel et al.,, 2024).

7.4 For Academic Institutions

Curriculum Development: Integrate Al into public health programs (e.g., 40 hours of Al training for
medical students) with a focus on LMIC-relevant topics (e.g., low-cost Al tools).

Transdisciplinary Research: Fund collaborations between computer scientists, epidemiologists, and
social scientists to address ethical and contextual challenges (e.g., data sovereignty, cultural acceptance).

Long-Term Evaluation: Conduct 5+ year studies on Al tool sustainability (e.g., cost-effectiveness,

community acceptance) to fill gaps in current literature.

8. Conclusion
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Infectious diseases remain a persistent global threat, with urbanization and mobility amplifying
transmission risks. This study demonstrates that Al—when adapted to local contexts—can reduce outbreak
response time by 40-50%, optimize resource allocation, and bridge gaps in conventional surveillance.
However, equitable access remains a critical challenge: 75% of LMICs lack Al tools, despite bearing 70% of
the infectious disease burden.

The proposed 4-Pillar Global Collaboration Framework provides a roadmap for addressing this
gap, emphasizing open-source tools, data sovereignty, capacity building, and community engagement.
By prioritizing equity alongside innovation, Al can transform infectious disease control—turning urban
vulnerabilities into opportunities for resilient health systems.

Future research must focus on low-income countries, long-term sustainability, and interoperability to
fully realize Al's potential. With global collaboration and targeted policy action, Al can become a universal
tool for protecting public health, ensuring no community is left behind in the fight against infectious

diseases.
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Appendix

Appendix A: Key Data Tables

Table A1l: Demographic Characteristics of Stakeholder Interviewees (N=50)

Characteristic Public I-zlelil;l(;)Ofﬁcials Al Developers (n=15) Community Leaders (n=15)
Region
- Africa 6 (30%) 3 (20%) 5(33%)
- Asia 7 (35%) 6 (40%) 6 (40%)
- Europe 3 (15%) 3 (20%) 2 (13%)
- North America 2 (10%) 2 (13%) 1 (7%)
- South America 2 (10%) 1 (7%) 1 (7%)
Age (Mean = SD) 452+9.3 38775 42.1+8.8
Gender
- Male 12 (60%) 9 (60%) 8 (53%)
- Female 8 (40%) 6 (40%) 7 (47%)
Years of Experience 125+£5.2 83+3.1 10.7+4.5

Table A2: Efficacy of Al Interventions by Disease Type

Outcome Measure COVID-19 (n=6) Influenza (n=4) Malaria (n=3) Dengue (n=2)

Outbreak Detection Time 48% (95% CI: 42— 45% (95% CI: 42% (95% CI: 50% (95% CI:
Reduction 54%) 38-52%) 35-49%) 44-56%)
Infection Rate Reduction 38% (9532511 327 3202/(3;9359(;//(;5 ; 3502/;352(:)//(:,)(: g 2 (2955—0?95/(})
Resource Waste Reduction 30% (93560@51: 24- 2802/02£932(;//Z)C & 2501%;;9352(;/2; & 27% (2905_0? 4?/3
Cost Savings (Mean * 1.2M £ 0.3M 0.8M = 0.2M 0.6M = 0.1M 0.7M £ 0.2M

SD)

Appendix B: Stakeholder Interview Guide (Excerpt)

B1: Public Health Official Interview Questions

What Al tools have you implemented for infectious disease control in your urban area?

What were the biggest challenges to adopting these tools? How did you address them?

How has Al improved your ability to respond to outbreaks compared to conventional methods?

What concerns do you have about data sovereignty when using international Al tools?
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B2: Al Developer Interview Questions

How do you adapt Al tools to the infrastructure constraints of LMIC urban areas (e.g., limited internet)?

What steps do you take to ensure your Al models are transparent (explainable) for public health
workers?

Have you collaborated with local stakeholders (e.g., community leaders) in tool development? If so,
how did this impact the tool’s success?

B3: Community Leader Interview Questions

How familiar are community members with Al tools for infectious disease control?

What barriers do community members face when using these tools (e.g., language, digital literacy)?

What changes would make Al tools more acceptable to your community?

Appendix C: Global Collaboration Framework Implementation Timeline

Phase Activity Timeline Responsible Stakeholder

Launch global open-source Al

. Months 1-3 WHO + Global Health Donors
repository

1. Foundation (Year 1)

WHO + National

Develop data sharing agreements Months 4-6 Governments

2. Capacity Building Launch Al certification program for Months 7—12 WHO + Academic Institutions

(Year 2) public health workers
Fund 50 LMIC Al pilot projects hfgfilés Global Funding Pool
. Launch regional Al health hubs Months Regional Health
3. Scaling (Year 3) (Africa, Asia, Latin America) 1924 Organizations
Conduct first equity audit of Al Months I
deployments 2597 WHO Monitoring Team
4. Sustainability (Year Integrate Al into national infectious Months .
. National Governments
4+) disease plans 28-36
. Months
Expand funding pool to $1B annually 37.48 Global Health Donors
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