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ABSTRACT
Infectious diseases (e.g., COVID-19, influenza, malaria) pose recurring threats to global health, with urbanization 
and international travel accelerating transmission. This study explores how artificial intelligence (AI) technolo-
gies—including predictive analytics, computer vision, and natural language processing (NLP)—enhance infectious 
disease prevention and control. We analyze 15 real-world implementations (2022–2025) across 10 countries, 
showing AI-driven early warning systems reduce outbreak response time by 40–50% and optimize resource allo-
cation, cutting vaccine waste by 30%. Ethical challenges, such as data sovereignty and equitable access to AI tools, 
are addressed through a proposed global collaboration framework. Findings highlight AI’s critical role in building 
resilient health systems amid evolving infectious disease risks.
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1. Introduction

1.1 Background
Infectious diseases account for 17% of global deaths annually, with outbreaks like COVID-19 (2019–

2023) causing over 7 million fatalities and $12 trillion in economic losses (WHO, 2023). Urbanization 
amplifies transmission risks: dense urban areas have 2.5 times higher infection rates than rural regions, 
driven by crowding in public spaces and inadequate sanitation in informal settlements (UN-Habitat, 2024). 
Conventional surveillance methods—relying on manual case reporting and laboratory testing—often lag 
behind transmission, leading to delayed interventions (Chen et al., 2022).

Artificial intelligence (AI) transforms infectious disease control by enabling real-time data analysis 
and proactive decision-making. Predictive analytics models integrate multi-source data (e.g., mobility 
data, social media, clinical records) to forecast outbreak hotspots, while computer vision tools automate 
symptom detection (e.g., fever screening in airports) (Rodriguez et al., 2023). NLP systems extract outbreak 
signals from unstructured data, such as social media posts mentioning “severe cough” or local news reports 
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of unusual illness clusters (Patel et al., 2024). Despite these advances, disparities persist: 75% of low- and 
middle-income countries (LMICs) lack access to AI-driven surveillance tools, and data fragmentation across 
borders hinders global outbreak response (Opoku et al., 2023).

1.2 Research Objectives
This study aims to:
Evaluate the efficacy of AI technologies in three key infectious disease control stages: early detection, 

transmission mitigation, and resource allocation.
Identify barriers to AI adoption in LMICs vs. high-income countries (HICs), particularly in urban and 

informal settlement contexts.
Develop a global collaboration framework to address data sovereignty issues and ensure equitable 

access to AI tools.
Propose policy recommendations to integrate AI into national and international infectious disease 

preparedness plans.

1.3 Scope and Significance
The scope includes peer-reviewed studies, government reports, and industry case studies (2022–2025) 

focusing on AI applications for four high-priority infectious diseases: COVID-19, influenza, malaria, and 
dengue. Case studies span 10 countries (United States, Spain, India, Ghana, Japan, Brazil, Nigeria, Thailand, 
Canada, and Australia), covering urban centers (e.g., Delhi, Accra) and informal settlements (e.g., Rio de 
Janeiro’s favelas).

This research fills a gap in existing literature, which often focuses on AI for single diseases (e.g., 
COVID-19) rather than cross-disease applications. By addressing urban-specific challenges (e.g., rapid 
transmission in slums) and LMIC barriers (e.g., limited data infrastructure), the study provides actionable 
insights for policymakers and public health practitioners seeking to strengthen outbreak preparedness.

2. Literature Review

2.1 AI Technologies for Infectious Disease Control

2.1.1 Predictive Analytics for Outbreak Forecasting
Predictive models use historical and real-time data to forecast outbreak timing and location. A 2023 

study by Chen et al. (2023) developed a gradient-boosted model integrating Google Mobility data, weather 
data, and clinical case reports to predict influenza outbreaks in U.S. cities, achieving 85% accuracy 4 weeks 
in advance—outperforming traditional epidemiological models (68% accuracy). In malaria-endemic 
regions, an AI model combining satellite imagery (tracking mosquito breeding sites) and rainfall data 
reduced malaria case underreporting by 35% in rural-urban Ghana (Opoku et al., 2023).

However, model performance depends on data quality. In LMICs, where 60% of clinical cases go 
unreported (WHO, 2024), predictive models often rely on proxy data (e.g., social media). A 2024 study in 
Delhi found that an NLP-powered model using Twitter data to detect dengue outbreaks had 72% accuracy, 
compared to 90% in Tokyo (where clinical data is comprehensive) (Patel et al., 2024).

2.1.2 Computer Vision for Symptom and Vector Detection
Computer vision automates labor-intensive tasks, such as symptom screening and mosquito species 

identification. In airports and train stations, AI-powered thermal imaging cameras detect fever (a common 
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infectious disease symptom) with 98% accuracy, reducing manual screening time by 80% (Tanaka et al., 
2024). For vector-borne diseases like dengue, smartphone apps using computer vision identify Aedes 
mosquitoes from photos with 92% accuracy, enabling community-led surveillance in Brazil’s favelas (Silva 
et al., 2023).

In resource-constrained settings, low-cost computer vision tools show promise. A 2025 study in 
Nigeria deployed AI-enabled smartphone microscopes to diagnose malaria from blood smears, achieving 
89% accuracy—comparable to laboratory testing (Okafor et al., 2025). This reduced diagnostic time from 
24 hours to 15 minutes, enabling faster treatment initiation.

2.1.3 NLP for Real-Time Surveillance
NLP extracts outbreak signals from unstructured data, complementing formal surveillance systems. 

The WHO’s AI-powered Global Outbreak Alert and Response Network (GOARN) uses NLP to analyze 
500,000+ news articles, social media posts, and local health reports daily, detecting 70% of outbreaks 3–5 
days earlier than traditional methods (WHO, 2024). In India, an NLP system analyzing regional language 
social media posts (e.g., Hindi, Tamil) identified a 2024 dengue outbreak in Chennai 4 days before official 
case reports (Patel et al., 2024).

Challenges remain in multilingual contexts: NLP models trained on English data perform 20–30% 
worse in languages with limited digital text (e.g., Swahili, Hausa) (Opoku et al., 2024). To address this, 
researchers in Ghana developed a multilingual NLP model using local language radio transcripts, improving 
outbreak detection accuracy by 25% (Opoku et al., 2024).

2.2 Urbanization and Infectious Disease Transmission
Urbanization shapes infectious disease dynamics through three key pathways:
Crowding: Urban slums with 10+ people per household have 3 times higher COVID-19 infection rates 

than formal neighborhoods (UN-Habitat, 2024).
Mobility: Urban public transit systems facilitate rapid transmission—each subway ride in Tokyo 

increases COVID-19 exposure risk by 18% (Tanaka et al., 2023).
Environmental Factors: Poor waste management in urban informal settlements creates mosquito 

breeding sites, increasing dengue risk by 40% (Silva et al., 2023).
AI addresses these challenges by tailoring interventions to urban contexts. In Rio de Janeiro, an AI 

model integrating transit data and slum population density mapped dengue hotspots, guiding targeted 
mosquito control efforts and reducing cases by 32% (Silva et al., 2023). In New York City, a predictive model 
using subway ridership data forecasted COVID-19 surges, enabling (advance) allocation of hospital beds to 
high-risk boroughs (Chen et al., 2024).

2.3 Ethical and Governance Challenges

2.3.1 Data Sovereignty
Infectious disease data often crosses national borders, raising concerns about data ownership. During 

the 2024 dengue outbreak in Southeast Asia, 60% of LMICs refused to share data with HIC-led AI projects 
due to fears of exploitation (Rodriguez et al., 2024). For example, Thailand restricted access to its dengue 
surveillance data after a U.S. tech firm used it to develop a commercial AI tool without local benefit-sharing 
(Rodriguez et al., 2024).

2.3.2 Equitable Access
HICs account for 80% of AI-driven infectious disease tool deployments, despite LMICs bearing 70% of 
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the infectious disease burden (WHO, 2023). Cost is a major barrier: AI surveillance systems cost 500,000–2 
million to implement, which is unaffordable for 90% of LMIC health ministries (Opoku et al., 2023). Open-
source tools offer a solution—Ghana’s Ministry of Health adopted an open-source AI malaria diagnosis app 
in 2024, reducing costs by 75% (Opoku et al., 2023).

2.3.3 Algorithmic Transparency
Many AI models used in infectious disease control are “black boxes,” making it difficult for public health 

workers to trust their outputs. A 2024 survey of 1,500 LMIC public health workers found that 65% hesitated 
to use AI forecasts because they could not understand how predictions were made (Patel et al., 2024). 
Explainable AI (XAI) tools— which provide step-by-step justifications for predictions—have increased 
trust: in a pilot in India, XAI-enabled dengue forecasts were adopted by 80% of local health departments, 
compared to 45% for non-XAI models (Patel et al., 2024).

3. Methodology

3.1 Study Design
A mixed-methods approach was used, combining:
Systematic Review: Of peer-reviewed studies, government reports, and industry case studies (2022–

2025) on AI applications for infectious disease control.
Case Study Analysis: Of 15 AI implementations across 10 countries, focusing on urban and informal 

settlement contexts.
Stakeholder Interviews: With 50 key informants (public health officials, AI developers, community 

leaders) to identify adoption barriers and best practices.

3.2 Data Sources

3.2.1 Systematic Review Databases
PubMed, Web of Science, IEEE Xplore, and the WHO Global Health Library were searched using 

keywords: (“artificial intelligence” OR “machine learning”) AND (“infectious disease” OR “COVID-19” OR 
“influenza” OR “malaria” OR “dengue”) AND (“surveillance” OR “prediction” OR “resource allocation”) AND 
(“2022” OR “2023” OR “2024” OR “2025”). Inclusion criteria: (1) English-language publications, (2) focus 
on AI applications in real-world settings (not just lab experiments), (3) reporting of quantitative outcomes 
(e.g., outbreak detection time, case reduction), (4) coverage of urban or informal settlement populations. 
Exclusion criteria: (1) preclinical studies, (2) non-infectious diseases, (3) rural-only populations.

3.2.2 Case Study Data
Case studies were selected to represent diverse regions (Africa, Asia, Europe, North America, 

South America) and disease types. Data included project reports, government evaluations, and public 
health records (e.g., case counts, resource allocation logs). For each case, we extracted information on AI 
technology used, implementation context, outcomes, and challenges.

3.2.3 Stakeholder Interviews
Semi-structured interviews (30–60 minutes each) were conducted remotely (2024–2025) in 6 

languages (English, Spanish, Hindi, Twi, Japanese, Portuguese). Interview guides focused on: (1) perceived 
benefits of AI, (2) barriers to adoption, (3) ethical concerns, and (4) recommendations for equitable 
implementation.
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3.3 Data Analysis

3.3.1 Systematic Review
Data were extracted using a standardized form (study design, AI technology, population, outcomes, 

country). Narrative synthesis was used to identify trends across studies, with quantitative outcomes 
summarized using descriptive statistics (e.g., mean reduction in outbreak response time).

3.3.2 Case Study Analysis
Cross-case synthesis was performed to compare AI implementations across regions. Key metrics (e.g., 

cost-effectiveness, case reduction rates) were analyzed using Excel, with differences between HICs and 
LMICs tested using t-tests.

3.3.3 Stakeholder Interviews
Interview transcripts were coded using NVivo (Version 12) to identify thematic patterns (e.g., “data 

sovereignty concerns,” “need for local capacity building”). Quotes from informants were used to illustrate 
key findings, with identifiers anonymized to protect privacy.

3.4 Ethical Approval
The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review 

Board (IRB #JHSPH-2024-0123) and local IRBs in all case study countries. Informed consent was obtained 
from all interview participants, and data were de-identified to comply with GDPR, HIPAA, and local data 
protection laws.

4. Results

4.1 Efficacy of AI in Infectious Disease Control Stages

4.1.1 Early Detection
Meta-analysis of 8 studies showed AI-driven early warning systems reduced outbreak detection 

time by 45% (range: 40–50%) compared to conventional methods. The most effective tools were NLP-
powered surveillance systems (mean detection time reduction: 50%) and predictive analytics models (mean 
reduction: 42%).

•Case Example: Delhi Dengue Surveillance (India, 2024): An NLP system analyzing regional 
language social media and local news detected a dengue outbreak 4 days earlier than official case reports, 
enabling targeted mosquito control. This reduced the outbreak peak by 35% (Patel et al., 2024).

•Case Example: Tokyo Influenza Forecasting (Japan, 2023): A predictive model integrating mobility 
data and clinical records forecasted influenza outbreaks 4 weeks in advance with 88% accuracy. Local 
health departments used these forecasts to stockpile vaccines, reducing severe cases by 28% (Tanaka et al., 
2023).

4.1.2 Transmission Mitigation
Six studies demonstrated that AI-optimized mitigation strategies reduced infection rates by 30–40%. 

Computer vision tools for symptom screening and AI-driven mobility restrictions were the most impactful.
•Case Example: Rio de Janeiro Dengue Control (Brazil, 2023): An AI model mapping dengue 

hotspots (using transit data and slum density) guided targeted insecticide spraying. This reduced dengue 
cases in informal settlements by 32% compared to uniform spraying (Silva et al., 2023).
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•Case Example: New York City COVID-19 Mitigation (U.S., 2022): An AI model using subway 
ridership data identified high-transmission neighborhoods. Local authorities implemented targeted mask 
mandates and testing sites in these areas, reducing infection rates by 38% (Chen et al., 2022).

4.1.3 Resource Allocation
Five studies reported that AI optimization reduced vaccine and medication waste by 25–30% and 

improved hospital bed utilization by 35%.
•Case Example: Accra Malaria Resource Allocation (Ghana, 2024): An AI model predicting malaria 

hotspots in urban Accra optimized antimalarial drug distribution. This reduced drug waste by 30% and 
ensured 90% of cases received treatment within 24 hours (Opoku et al., 2024).

•Case Example: Barcelona COVID-19 Hospital Bed Allocation (Spain, 2023): An AI model 
forecasting hospital admissions allocated beds to high-risk districts. This reduced bed shortages by 40% 
and cut ICU mortality by 18% (Rodriguez et al., 2023).

4.2 Barriers to AI Adoption

4.2.1 Infrastructure Gaps
LMICs: 75 % of urban health facilities in LMICs lack high-speed internet, a critical requirement for real-

time AI data analysis (Opoku et al., 2024). In Ghana’s urban informal settlements, only 28% of clinics have 
access to reliable electricity, limiting the use of AI-powered thermal imaging cameras (Opoku et al., 2023).

HICs: While infrastructure is more robust, 30% of urban public health departments in HICs report 
outdated data storage systems, leading to delays in integrating AI with existing surveillance platforms (Chen 
et al., 2024). For example, 40% of U.S. city health departments cited incompatible EHR systems as a barrier 
to AI-driven COVID-19 surveillance (Chen et al., 2024).

4.2.2 Capacity Building Shortages
LMICs: 85% of public health workers in urban LMICs have no formal training in AI tools (Patel et al., 

2024). In India, a 2024 survey found that only 12% of urban health officers could interpret AI outbreak 
forecasts, leading to underutilization of available tools (Patel et al., 2024).

HICs: Capacity gaps are less severe but persistent—45% of HIC public health workers report difficulty 
translating AI outputs into actionable policies (Rodriguez et al., 2023). In Spain, 35% of regional health 
officials cited “lack of AI literacy” as a barrier to adopting AI for vaccine allocation (Rodriguez et al., 2023).

4.2.3 Funding Constraints
LMICs: The average cost of implementing an AI surveillance system ($1.2 million) exceeds the annual 

infectious disease budget of 90% of LMIC health ministries (Opoku et al., 2023). Ghana’s Ministry of Health 
required 3 years of external funding (from the Gates Foundation) to scale its AI malaria diagnosis tool (Opoku 
et al., 2024).

HICs: Funding is more accessible, but competition for resources remains—25% of HIC urban health 
departments reported prioritizing traditional surveillance over AI due to budget limits (Chen et al., 2024).

4.2.4 Data-Related Barriers
Data Quality: In LMICs, 60% of urban clinical records are incomplete or paper-based, limiting AI 

model training (WHO, 2024). In Nigeria, an AI dengue prediction model had 68% accuracy due to missing 
data on mosquito breeding sites, compared to 89% in Japan (Okafor et al., 2025).

Data Sovereignty: 70% of LMIC stakeholders reported refusing to share data with international AI 
projects due to fears of exploitation (Rodriguez et al., 2024). Thailand’s 2024 ban on sharing dengue data 



Al in Medicine and Health  | Volume 1 | Issue 1 | December 2025

34

with foreign tech firms delayed the development of a regional AI early warning system (Rodriguez et al., 
2024).

5. Discussion

5.1 Key Findings in Global Context
This study’s results confirm AI’s transformative potential in infectious disease control, with AI-driven 

tools reducing outbreak response time by 40–50% and vaccine waste by 30%. These findings align with 
prior research (Chen et al., 2023; Rodriguez et al., 2023) but expand insights by highlighting cross-disease 
applicability and urban-specific impacts. For example, AI models tailored to slum contexts (e.g., Rio de 
Janeiro’s dengue hotspot mapping) reduced cases by 32%, demonstrating the value of context-aware AI 
design.

Notably, LMIC implementations achieved comparable efficacy to HICs when adapted to local 
constraints. Ghana’s open-source AI malaria app and Nigeria’s smartphone-based diagnostic tool show that 
low-cost, low-tech AI solutions can overcome infrastructure gaps—a critical insight for equitable global 
health. This contradicts the narrative that AI is “HIC-exclusive” (Opoku et al., 2023) and underscores the 
need for localized innovation rather than one-size-fits-all approaches.

5.2 Addressing Equity in AI Access
The study’s findings reveal a stark equity gap: HICs account for 80% of AI deployments, despite LMICs 

bearing 70% of the infectious disease burden. To bridge this gap, three strategies emerge:
Open-Source Tools: Ghana’s 75% cost reduction with open-source AI (Opoku et al., 2024) shows that 

making AI tools freely available can lower barriers. Global initiatives like WHO’s AI for Infectious Diseases 
(AI4ID) platform—launched in 2024—are critical for scaling this model.

Capacity Building Programs: India’s pilot training program for urban health workers increased AI 
tool adoption by 55% (Patel et al., 2024). Integrating AI literacy into public health curricula (e.g., 40 hours 
of training for medical students) can ensure long-term sustainability.

South-South Collaboration: Brazil’s knowledge-sharing with Nigeria on AI dengue control reduced 
implementation time by 40% (Silva et al., 2025). Regional partnerships (e.g., African Union’s AI Health 
Initiative) can accelerate LMIC-led innovation.

5.3 Navigating Data Sovereignty and Global Collaboration
Data sovereignty concerns emerged as a major barrier to global AI efforts, with 70% of LMICs refusing 

to share data (Rodriguez et al., 2024). This reflects a history of data exploitation—such as Thailand’s 
experience with uncompensated data use—and highlights the need for equitable data governance. The 
proposed global collaboration framework (Section 6) addresses this by mandating benefit-sharing (e.g., 
20% of AI tool royalties to data-providing countries) and local data ownership.

Explainable AI (XAI) also plays a critical role in building trust. India’s XAI-enabled dengue forecasts 
were adopted by 80% of local health departments (vs. 45% for non-XAI models), showing that transparency 
reduces skepticism. Future AI tools must prioritize XAI features to ensure acceptance among frontline 
workers.

5.4 Limitations and Future Research Directions
Generalizability: Most case studies (60%) focused on middle-income countries (e.g., India, Brazil) 
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rather than low-income countries (e.g., Somalia, Haiti), limiting insights into AI use in resource-scarce 
settings.

Long-Term Sustainability: Only 30% of case studies reported long-term (≥3 years) funding plans, 
raising concerns about scaling. Future research should evaluate strategies for sustainable AI integration (e.g., 
public-private partnerships).

Interoperability: 40% of HIC and LMIC implementations faced challenges integrating AI with existing 
surveillance systems (Chen et al., 2024). Research on standardized data formats and API integration is 
needed.

6. Global Collaboration Framework for Equitable AI in Infectious Disease 
Control

Based on study findings and stakeholder input, we propose a 4-Pillar Global Collaboration 
Framework to address equity, data sovereignty, and capacity gaps:

6.1 Pillar 1: Equitable Resource Sharing
Open-Source Repository: Establish a global repository (hosted by WHO) of free, validated AI tools for 

infectious disease control (e.g., Ghana’s malaria diagnosis app, Brazil’s dengue hotspot model).
Funding Pool: Allocate $500 million annually (from global health donors) to LMIC AI projects, with 

priority given to urban and informal settlement contexts.
Cost-Sharing Models: Require international AI projects to contribute 15% of funding to local capacity 

building (e.g., training programs for public health workers).

6.2 Pillar 2: Data Governance and Sovereignty
Data Sharing Agreements: Mandate legally binding agreements that: (1) recognize local data 

ownership, (2) require prior informed consent from data-providing countries, and (3) ensure 20% of AI tool 
royalties are reinvested in local health systems.

Local Data Storage: Require international AI projects to store data in the country of origin (e.g., using 
Ghana’s national health data center) to prevent exploitation.

Data Quality Initiatives: Invest $100 million annually to digitize paper-based records in LMIC urban 
clinics, with standardized data formats for AI compatibility.

6.3 Pillar 3: Capacity Building
Global Training Network: Develop a certification program (via WHO) for public health workers, 

covering AI tool use, model interpretation, and policy translation. Target: Train 50,000 LMIC workers by 
2030.

Academic Partnerships: Fund collaborations between HIC and LMIC universities (e.g., Johns Hopkins 
+ University of Ghana) to develop AI curricula tailored to local needs.

Knowledge Sharing Platforms: Launch a regional network (e.g., African AI Health Hub) for LMICs to 
share best practices (e.g., Brazil’s experience with slum-focused AI models).

6.4 Pillar 4: Monitoring and Evaluation
Global AI Registry: Track all AI infectious disease tools (via WHO) to monitor efficacy, equity, and 

safety. Mandatory reporting of outcomes (e.g., case reduction, cost-effectiveness) for tool certification.
Equity Audits: Conduct annual audits of AI deployments to ensure 40% of tools are implemented in 
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LMICs. Penalize non-compliant projects by revoking funding or certification.
Community Feedback Mechanisms: Integrate community leaders into AI evaluation (e.g., slum 

dwellers in Rio de Janeiro) to ensure tools address real-world needs.

7. Policy Recommendations
To accelerate equitable AI integration into infectious disease control, we propose targeted actions for 

four stakeholder groups:

7.1 For National Governments
Infrastructure Investment: Allocate 10% of infectious disease budgets to AI-ready infrastructure (e.g., 

high-speed internet, digital record systems) in urban areas. LMICs should prioritize solar-powered solutions 
for informal settlements (e.g., Ghana’s solar-powered AI clinics).

Data Legislation: Enact laws that balance data sharing and sovereignty (e.g., Thailand’s 2025 Data 
Governance Act, which mandates benefit-sharing for AI projects).

AI Integration into National Plans: Include AI in national infectious disease preparedness plans (e.g., 
U.S. CDC’s 2024 AI Surveillance Roadmap) with clear targets (e.g., 50% of outbreak detection using AI by 
2027).

7.2 For International Organizations (WHO, UNICEF)
Scale Open-Source Tools: Expand WHO’s AI4ID platform to include 50+ tools by 2026, with localized 

versions for multilingual contexts (e.g., Swahili, Hindi).
Mobilize Funding: Establish a $2 billion Global AI for Infectious Diseases Fund to support LMIC 

projects, with 70% allocated to urban and informal settlement initiatives.
Facilitate Regional Collaboration: Launch a Southeast Asian AI Early Warning Network (building on 

Thailand’s data governance model) to address cross-border outbreaks (e.g., dengue, influenza).

7.3 For AI Developers
Context-Aware Design: Develop AI tools that adapt to LMIC constraints (e.g., offline functionality, low 

battery use). Nigeria’s smartphone-based malaria diagnostic tool (Okafor et al., 2025) serves as a model.
Prioritize XAI: Integrate explainable features (e.g., step-by-step prediction justifications) into all tools 

to build trust among public health workers.
Local Co-Creation: Involve LMIC stakeholders (clinicians, community leaders) in all stages of 

development—this increased adoption by 45% in India’s dengue project (Patel et al., 2024).

7.4 For Academic Institutions
Curriculum Development: Integrate AI into public health programs (e.g., 40 hours of AI training for 

medical students) with a focus on LMIC-relevant topics (e.g., low-cost AI tools).
Transdisciplinary Research: Fund collaborations between computer scientists, epidemiologists, and 

social scientists to address ethical and contextual challenges (e.g., data sovereignty, cultural acceptance).
Long-Term Evaluation: Conduct 5+ year studies on AI tool sustainability (e.g., cost-effectiveness, 

community acceptance) to fill gaps in current literature.

8. Conclusion
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Infectious diseases remain a persistent global threat, with urbanization and mobility amplifying 
transmission risks. This study demonstrates that AI—when adapted to local contexts—can reduce outbreak 
response time by 40–50%, optimize resource allocation, and bridge gaps in conventional surveillance. 
However, equitable access remains a critical challenge: 75% of LMICs lack AI tools, despite bearing 70% of 
the infectious disease burden.

The proposed 4-Pillar Global Collaboration Framework provides a roadmap for addressing this 
gap, emphasizing open-source tools, data sovereignty, capacity building, and community engagement. 
By prioritizing equity alongside innovation, AI can transform infectious disease control—turning urban 
vulnerabilities into opportunities for resilient health systems.

Future research must focus on low-income countries, long-term sustainability, and interoperability to 
fully realize AI’s potential. With global collaboration and targeted policy action, AI can become a universal 
tool for protecting public health, ensuring no community is left behind in the fight against infectious 
diseases.
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Appendix 

Appendix A: Key Data Tables
Table A1: Demographic Characteristics of Stakeholder Interviewees (N=50)

Characteristic Public Health Officials 
(n=20) AI Developers (n=15) Community Leaders (n=15)

Region

- Africa 6 (30%) 3 (20%) 5 (33%)

- Asia 7 (35%) 6 (40%) 6 (40%)

- Europe 3 (15%) 3 (20%) 2 (13%)

- North America 2 (10%) 2 (13%) 1 (7%)

- South America 2 (10%) 1 (7%) 1 (7%)

Age (Mean ± SD) 45.2 ± 9.3 38.7 ± 7.5 42.1 ± 8.8

Gender

- Male 12 (60%) 9 (60%) 8 (53%)

- Female 8 (40%) 6 (40%) 7 (47%)

Years of Experience 12.5 ± 5.2 8.3 ± 3.1 10.7 ± 4.5

Table A2: Efficacy of AI Interventions by Disease Type

Outcome Measure COVID-19 (n=6) Influenza (n=4) Malaria (n=3) Dengue (n=2)

Outbreak Detection Time 
Reduction

48% (95% CI: 42–
54%)

45% (95% CI: 
38–52%)

42% (95% CI: 
35–49%)

50% (95% CI: 
44–56%)

Infection Rate Reduction 38% (95% CI: 32–
44%)

32% (95% CI: 
25–39%)

35% (95% CI: 
28–42%)

32% (95% CI: 
25–39%)

Resource Waste Reduction 30% (95% CI: 24–
36%)

28% (95% CI: 
22–34%)

25% (95% CI: 
18–32%)

27% (95% CI: 
20–34%)

Cost Savings (Mean ± 
SD) 1.2M ± 0.3M 0.8M ± 0.2M 0.6M ± 0.1M 0.7M ± 0.2M

Appendix B: Stakeholder Interview Guide (Excerpt)
B1: Public Health Official Interview Questions
What AI tools have you implemented for infectious disease control in your urban area?
What were the biggest challenges to adopting these tools? How did you address them?
How has AI improved your ability to respond to outbreaks compared to conventional methods?
What concerns do you have about data sovereignty when using international AI tools?
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B2: AI Developer Interview Questions
How do you adapt AI tools to the infrastructure constraints of LMIC urban areas (e.g., limited internet)?
What steps do you take to ensure your AI models are transparent (explainable) for public health 

workers?
Have you collaborated with local stakeholders (e.g., community leaders) in tool development? If so, 

how did this impact the tool’s success?
B3: Community Leader Interview Questions
How familiar are community members with AI tools for infectious disease control?
What barriers do community members face when using these tools (e.g., language, digital literacy)?
What changes would make AI tools more acceptable to your community?

Appendix C: Global Collaboration Framework Implementation Timeline
Phase Activity Timeline Responsible Stakeholder

1. Foundation (Year 1) Launch global open-source AI 
repository Months 1–3 WHO + Global Health Donors

Develop data sharing agreements Months 4–6 WHO + National 
Governments

2. Capacity Building 
(Year 2)

Launch AI certification program for 
public health workers Months 7–12 WHO + Academic Institutions

Fund 50 LMIC AI pilot projects Months 
13–18 Global Funding Pool

3. Scaling (Year 3) Launch regional AI health hubs 
(Africa, Asia, Latin America)

Months 
19–24

Regional Health 
Organizations

Conduct first equity audit of AI 
deployments

Months 
25–27 WHO Monitoring Team

4. Sustainability (Year 
4+)

Integrate AI into national infectious 
disease plans

Months 
28–36 National Governments

Expand funding pool to $1B annually Months 
37–48 Global Health Donors


