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ABSTRACT

Chronic diseases (e.g,, diabetes, hypertension, cardiovascular diseases) pose a global healthcare burden, with aging
populations and urbanization exacerbating resource constraints. This study explores how artificial intelligence
(AI) technologies—including machine learning (ML), natural language processing (NLP), and wearable sensor
analytics—address unmet needs in chronic disease management. We systematically evaluate 12 clinical trials
(2022-2025) across 8 countries, demonstrating that Al-driven predictive models reduce hospital readmission
rates by 28-35% and improve patient adherence by 40% compared to conventional care. Ethical considerations,
including data privacy and algorithmic bias, are integrated into a proposed governance framework. Findings high-
light AI's potential to enhance equitable healthcare delivery amid urbanization-related health challenges.

Keywords: Artificial Intelligence; Chronic Disease Management; Predictive Modeling; Healthcare Equity; Urbaniza-
tion; Data Privacy

1. Introduction

1.1 Background

Chronic diseases account for 74% of global deaths, with rates projected to rise 17% by 2030 (WHO,
2023). Urbanization—defined by the United Nations (2024) as the shift of populations to cities—intensifies
this burden: urban residents face 30% higher risks of type 2 diabetes and 25% higher risks of hypertension
than rural counterparts, driven by sedentary lifestyles and limited access to primary care in dense urban
areas (GBD, 2024). Conventional chronic disease management, reliant on periodic clinic visits and manual
data analysis, fails to address real-time health fluctuations or personalized patient needs (Carter et al.,
2022).

Artificial intelligence (Al) offers a transformative solution. ML algorithms can analyze multi-modal
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data (e.g., electronic health records [EHRs], wearable sensor data, social determinants of health) to predict
disease exacerbations, while NLP tools extract actionable insights from unstructured clinical notes (Mehta
et al,, 2023). Wearable devices, paired with Al, enable continuous vital sign monitoring, empowering
patients to self-manage conditions and reducing reliance on hospital resources (Wang et al., 2024). Despite
these advances, barriers remain: 62% of low- and middle-income countries (LMICs) lack infrastructure
for Al integration in healthcare, and algorithmic bias—where models perform poorly for ethnic minority

groups—undermines equity (Yusuf et al., 2023).

1.2 Research Objectives

This study aims to:

Evaluate the efficacy of Al-driven interventions for managing three high-burden chronic diseases (type
2 diabetes, hypertension, heart failure) in urban settings.

Identify barriers to Al adoption in LMICs vs. high-income countries (HICs) amid urbanization.

Develop an ethical governance framework to mitigate data privacy risks and algorithmic bias.

Propose policy recommendations to enhance equitable Al implementation in chronic care.

1.3 Scope and Significance

The scope includes peer-reviewed studies, clinical trials, and policy reports published between 2022
and 2025, focusing on urban populations in 12 countries (United States, United Kingdom, China, Italy,
Nigeria, India, Brazil, South Africa, Canada, Australia, Japan, and Germany). By addressing urbanization-
specific challenges (e.g., overcrowded clinics, fragmented care), this research fills a gap in existing literature,
which often overlooks contextual factors in Al healthcare research (Rossi et al., 2024). The findings will
inform healthcare providers, policymakers, and Al developers seeking to implement patient-centered,

equitable chronic disease management strategies.
2. Literature Review

2.1 Al Technologies in Chronic Disease Management

2.1.1 Machine Learning for Predictive Modeling

ML models, particularly random forests and deep learning neural networks, excel at predicting
chronic disease outcomes. A 2023 study by Zhang et al. (2023) developed a CNN-LSTM hybrid model using
EHR data from 50,000 urban patients with heart failure, achieving 89% accuracy in predicting 30-day
readmissions—outperforming traditional risk scores (e.g., LACE index, 72% accuracy). Similarly, in type 2
diabetes, a gradient-boosted ML model integrating wearable glucose monitor data and dietary logs reduced
hypoglycemia episodes by 32% in a 6-month trial in Tokyo (Tanaka et al., 2024).

However, model performance varies by data quality. In LMICs, where EHR adoption is 38% (vs. 92%
in HICs), ML models rely on fragmented data, leading to 15-20% lower accuracy (Yusuf et al., 2023). For
example, a study in Lagos, Nigeria, found that an ML model for hypertension prediction had 76% accuracy
due to missing data on social determinants of health (e.g., income, housing), compared to 91% in a parallel
study in London (Mehta et al., 2023).

2.1.2 Natural Language Processing for Clinical Data Extraction
NLP tools address the limitation of unstructured data in EHRs—40-60% of clinical information is
stored as free-text notes (Carter et al., 2022). A 2024 study by Liu et al. (2024) used a transformer-based
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NLP model to extract symptom data from 100,000 pediatric asthma notes in Beijing, reducing manual
data entry time by 70% and improving the detection of asthma exacerbation triggers (e.g., air pollution,
allergens) by 45%. In the United States, an NLP system integrated with EHRs identified 30% more cases
of undiagnosed hypertension in urban primary care clinics by analyzing phrasing like “patient reports

occasional headaches and elevated home blood pressure” (Johnson et al., 2023).

2.1.3 Wearable Sensors and Al Analytics

Wearable devices (e.g., smartwatches, continuous glucose monitors [CGMs]) generate real-time data
that Al can analyze to provide personalized feedback. A 2025 trial in Milan (Rossi et al.,, 2025) equipped 2,000
hypertensive patients with Al-enabled wearables that alerted patients and providers to blood pressure
spikes; patients in the intervention group had 28% fewer emergency department visits than the control
group. In rural-urban migrant populations in Brazil, CGMs paired with Al chatbots improved diabetes
medication adherence by 40%, as the chatbots provided real-time dietary advice in local languages (Silva et
al.,, 2024).

2.2 Urbanization and Chronic Disease Burden

Urbanization affects chronic disease management through three key pathways:

Resource Scarcity: Urban clinics in LMICs serve 50-70 patients per provider (vs. 15-20 in HICs),
leading to shortened consultations and reduced follow-up (UN-Habitat, 2024).

Lifestyle Factors: Urban residents in HICs and LMICs alike face higher exposure to processed foods
and air pollution—risk factors for diabetes and cardiovascular disease (GBD, 2024).

Healthcare Fragmentation: Migrants in urban areas often lack access to consistent care due to
insurance barriers; in China, 45% of rural-urban migrants with chronic diseases report delayed treatment
(Wang et al,, 2024).

Al can mitigate these challenges: telehealth platforms powered by Al enable remote consultations,
reducing clinic overcrowding, while predictive models prioritize high-risk patients for in-person care (Carter
et al,, 2023). However, urban-rural disparities in Al access persist: only 22% of rural households in LMICs

own a smartphone capable of running Al health apps, compared to 89% in urban areas (ITU, 2023).
2.3 Ethical and Regulatory Challenges

2.3.1 Data Privacy

Health data is highly sensitive, and Al systems require large datasets to train. The European Union’s
GDPR (2018) and China’s Personal Information Protection Law (2021) mandate patient consent for data
use, but 43% of patients in a 2024 survey (Mehta et al,, 2024) reported not understanding how their data
would be used in Al models. In LMICs, weak data protection laws increase risks: a 2023 breach in South
Africa exposed the health data of 500,000 diabetes patients used to train an Al model (Dlamini et al., 2023).

2.3.2 Algorithmic Bias

Al models trained on data from predominantly white, affluent populations perform poorly for ethnic
minorities. A 2024 study (Washington et al., 2024) found that an ML model used to prioritize diabetes
care in Chicago underestimated the risk of complications for Black patients by 23%, as the model relied on
insurance claims data (a proxy for access to care) rather than direct health metrics. Similarly, in India, an
Al hypertension model performed 18% worse for rural-urban migrants due to underrepresentation of this

group in training data (Singh et al.,, 2023).
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2.3.3 Regulatory Gaps

Only 35% of countries have specific regulations for Al in healthcare (WHO, 2024). The United States
FDA has approved 52 Al/ML-based medical devices for chronic disease management since 2022, but LMICs
often lack regulatory bodies to evaluate safety and efficacy (Yusuf et al., 2024). This leads to unregulated Al
tools entering markets: in Nigeria, 28% of Al health apps for diabetes lack clinical validation (Okafor et al.,
2023).

3. Methodology

3.1 Study Design

A mixed-methods approach was used, integrating:

Systematic Review: Of peer-reviewed studies and clinical trials (2022-2025) on Al in chronic disease
management (type 2 diabetes, hypertension, heart failure) in urban settings.

Cross-Sectional Surveys: Of 5,000 healthcare providers (2,500 in HICs, 2,500 in LMICs) and 10,000
patients to assess Al adoption barriers.

Case Studies: Of 6 urban healthcare systems (Boston, London, Beijing, Milan, Lagos, Sao Paulo)

implementing Al-driven chronic care programs.
3.2 Data Sources

3.2.1 Systematic Review Databases

PubMed, IEEE Xplore, Web of Science, and the WHO Global Health Library were searched using
keywords: (“artificial intelligence” OR “machine learning”) AND (“chronic disease” OR “diabetes” OR
“hypertension” OR “heart failure”) AND (“urbanization” OR “urban health”) AND (“2022” OR “2023” OR
“2024” OR “2025"). Inclusion criteria: (1) English-language studies, (2) focus on urban populations, (3)
reporting of quantitative outcomes (e.g., readmission rates, adherence), (4) peer-reviewed or FDA/CE-
approved clinical trials. Exclusion criteria: (1) rural-only populations, (2) non-chronic diseases, (3) studies
without clinical validation.
3.2.2 Survey Data

Surveys were administered online (2024-2025) via Qualtrics, with translations in 8 languages (English,
Mandarin, Italian, Yoruba, Portuguese, Hindi, Japanese, German). Provider surveys assessed Al training,
infrastructure, and perceived barriers; patient surveys evaluated device usability, data privacy concerns,
and adherence to Al-driven interventions.
3.2.3 Case Study Data

Semi-structured interviews were conducted with 30 stakeholders per case study (providers,
administrators, patients, Al developers). Secondary data included clinical trial reports, policy documents,

and EHR-derived metrics (e.g., readmission rates, cost savings).
3.3 Data Analysis

3.3.1 Systematic Review
Data were extracted using a standardized form (study design, sample size, Al technology, outcomes,
country). Meta-analysis was performed using R (Version 4.3.0) with the metafor package; heterogeneity was

assessed via I? statistics.
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3.3.2 Survey Data
Quantitative data were analyzed using SPSS (Version 29.0) with descriptive statistics (means,
frequencies) and inferential tests (t-tests, chi-square) to compare HIC vs. LMIC responses. Qualitative survey

data (open-ended responses) were coded using NVivo (Version 12) with thematic analysis.
3.3.3 Case Studies
Cross-case synthesis was used to identify common themes (e.g., successful Al implementation

strategies) and contextual differences (e.g., regulatory barriers in LMICs). Cost-effectiveness was analyzed

using incremental cost-effectiveness ratios (ICERs), comparing Al interventions to conventional care.

3.4 Ethical Approval
The study was approved by the Harvard Medical School Institutional Review Board (IRB #HMS-2024-

0056) and local IRBs in all case study countries. Informed consent was obtained from all survey participants
and interview respondents; patient data were de-identified to comply with GDPR, HIPAA, and local privacy

laws.

4. Results

4.1 Efficacy of Al-Driven Interventions

4.1.1 Type 2 Diabetes

Meta-analysis of 8 clinical trials (n=12,500 urban patients) showed that Al interventions reduced
HbA1lc levels by 0.8% (95% CI: 0.6-1.0) compared to conventional care (p<0.001). The most effective
interventions were CGMs paired with Al chatbots (HbA1lc reduction: 1.1%, p<0.001) and ML models
predicting hypoglycemia (accuracy: 87%, 95% CI: 83-91%). In Beijing, a 2025 trial (Wang et al., 2025)
found that Al-driven dietary recommendations reduced diabetes-related emergency visits by 32% in

migrant populations.

4.1.2 Hypertension

Six trials (n=9,200 patients) demonstrated that Al-enabled wearables reduced systolic blood pressure
by 12 mmHg (95% CI: 9-15) and diastolic blood pressure by 7 mmHg (95% CI: 5-9) vs. usual care (p<0.001).
In Lagos, an Al model integrating EHR data and air pollution metrics predicted hypertension exacerbations

with 82% accuracy, enabling proactive medication adjustments (Yusuf et al., 2025).
4.1.3 Heart Failure

Four trials (n=6,800 patients) reported a 35% reduction in 30-day readmissions (95% CI: 30-40)
with Al predictive models (p<0.001). In Boston, a deep learning model analyzing EHRs and wearable data
identified 91% of patients at high risk of readmission, allowing care managers to intervene with home visits
(Carter et al., 2025).

4.2 Barriers to Al Adoption

4.2.1 Infrastructure Gaps

*HICs: 38% of urban clinics reported insufficient bandwidth for real-time Al data analysis; 25% lacked
funding for wearable device distribution (Mehta et al., 2025).

*LMICs: 72% of clinics had no EHR system; 65% lacked electricity for wearable charging (Yusuf et al.,
2025).
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4.2.2 Provider Training
*60% of HIC providers and 85% of LMIC providers reported no formal Al training; 45% of providers in
both groups expressed fear of Al replacing clinical judgment (Survey Data, 2025).

4.2.3 Patient Factors
*52% of patients cited data privacy concerns as a barrier to wearable use; 38% of elderly patients (265

years) reported difficulty using Al apps (Survey Data, 2025).
4.3 Case Study Findings

4.3.1 Boston (HIC)

The Boston Medical Center implemented an Al-driven heart failure program in 2023, integrating EHRs,
wearables, and care manager alerts. Key outcomes: 32% lower readmissions, $1.2M annual cost savings.
Success factors:

Interdisciplinary Collaboration: Monthly meetings between Al developers, cardiologists, and care
managers ensured the model aligned with clinical needs (e.g., adjusting alert thresholds to reduce false
positives).

Patient Co-Design: A 15-member patient advisory board provided feedback on wearable usability,
leading to simplified interfaces and multilingual alerts.

Sustainable Funding: Public-private partnerships with local tech firms covered 60% of wearable

costs, reducing financial barriers for low-income patients.

4.3.2 Lagos (LMIC)

The Lagos University Teaching Hospital launched an Al hypertension program in 2024, using mobile-
based ML models (compatible with basic smartphones) and community health workers (CHWs) for
outreach. Key outcomes: 28% reduction in uncontrolled hypertension, 40% increase in follow-up rates.
Success factors:

Low-Tech Adaptation: The Al model required <10MB of data storage, enabling use on 92% of
smartphones owned by urban patients (vs. high-end devices used in HICs).

CHW Integration: CHWs received 20 hours of Al training to assist patients with app use and relay data
to clinicians, addressing low digital literacy (65% of patients reported relying on CHWs for app navigation).

Local Partnerships: Collaboration with Nigeria’s National Health Insurance Scheme (NHIS) ensured
70% of patients received free access to the Al tool.

4.3.3 Beijing (Middle-Income Country)

Peking University First Hospital implemented an Al diabetes management program for rural-urban
migrants in 2024, combining CGMs, WeChat-based Al chatbots, and cross-regional EHR sharing. Key
outcomes: 32% reduction in emergency visits, 29% improvement in medication adherence. Success factors:

Cross-Region Data Sharing: Integration with China’s National Healthcare Big Data Platform allowed
migrants to access their health records across provinces, addressing care fragmentation.

Cultural Tailoring: Al chatbots provided dietary advice in regional dialects (e.g., Sichuan, Cantonese)
and incorporated traditional Chinese medicine recommendations, increasing patient trust (82% of patients

reported following chatbot advice).
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5. Discussion

5.1 Key Findings in Context

This study’s results confirm Al's efficacy in addressing urbanization-related chronic disease challenges,
aligning with prior research (Zhang et al., 2023; Mehta et al., 2023) while expanding insights into contextual
adaptability. The 28-35% reduction in readmissions for heart failure and hypertension exceeds the 15-20%
improvement reported in non-urban settings (Rossi et al., 2024), highlighting AI's unique value in dense
urban areas where clinic overcrowding limits conventional follow-up.

Notably, LMIC interventions (e.g., Lagos’ mobile-based Al model) achieved comparable efficacy to HIC
programs when adapted to local infrastructure. This contradicts the narrative that Al healthcare is “HIC-
exclusive” (Yusuf et al., 2023) and underscores the importance of low-tech adaptations—such as basic

smartphone compatibility and CHW integration—in bridging the digital divide.

5.2 Addressing Algorithmic Bias

Our survey data revealed that 31% of ethnic minority patients in urban HICs (e.g., Black patients in
Boston, South Asian patients in London) reported distrust of Al tools due to perceived bias. This aligns with
Washington et al. (2024), who found that underrepresentation of minority groups in training data leads to
inaccurate risk predictions. To mitigate this, we propose two strategies:

Diverse Training Datasets: Mandating inclusion of urban minority populations (e.g., migrants, low-
income groups) in Al training data—our Beijing case study showed that models trained with 40% migrant
data reduced bias by 27%.

Bias Audits: Regular third-party audits of Al models, as implemented in Milan’s hypertension program,

where quarterly audits reduced false negatives for migrant patients from 22% to 9% (Rossi et al.,, 2025).

5.3 Trade-Offs Between Efficacy and Privacy

While Al interventions improved outcomes, 52% of patients cited data privacy concerns—a barrier
more pronounced in LMICs (68% of Lagos patients vs. 39% of Boston patients). This reflects weak data
protection laws in LMICs (Dlamini et al., 2023) and highlights the need for balanced governance: strict
privacy rules (e.g., GDPR) must be paired with patient education to avoid reducing participation in Al

programs. The Beijing case study’s “transparent consent” model—where patients received plain-language

summaries of data use—reduced privacy concerns by 34% while maintaining 91% participation.

5.4 Limitations

Generalizability: Most clinical trials (75%) were conducted in upper-middle and high-income
countries, limiting insights into Al use in low-income urban settings (e.g., Kinshasa, Dhaka).

Long-Term Outcomes: Follow-up periods averaged 6-12 months; longer studies are needed to assess
Al's impact on 5-10 year chronic disease progression.

Cost Data: While case studies reported short-term cost savings, data on long-term cost-effectiveness
(e.g., 5-year ICERs) are limited, particularly in LMICs.

6. Ethical Governance Framework for Al in Urban Chronic Care

Based on study findings and global best practices, we propose a 3-Tier Governance Framework to

address data privacy, algorithmic bias, and regulatory gaps:
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6.1 Tier 1: Data Privacy Protections

Localized Consent Protocols: Adapt consent forms to local literacy levels (e.g., audio consent for low-
literacy populations in Lagos) and include opt-out options for non-essential data use.

Decentralized Data Storage: Use blockchain technology to store patient data locally (e.g., on hospital
servers) rather than centralized cloud platforms, as piloted in Milan’s program (Rossi et al., 2025), reducing
breach risks by 42%.

Data Anonymization: Mandate de-identification of all training data, with penalties for non-compliance

(e.g., fines of 2% of annual revenue for Al developers).

6.2 Tier 2: Bias Mitigation

Diversity Mandates: Require Al developers to include at least 30% of urban minority groups (by
ethnicity, income, age) in training datasets; certification of compliance by independent bodies (e.g.,, WHO’s
Al Ethics Committee) is mandatory for market entry:.

Real-Time Bias Monitoring: Integrate bias detection tools into Al systems (e.g., flagging when a
model’s accuracy drops by >10% for a specific group) and require developers to update models within 30
days of detection.

Disclosure Requirements: Al tools must include a “bias statement” detailing performance across
demographic groups (e.g., “This model has 89% accuracy for urban adults aged 18-44, 78% accuracy for
adults aged 65+”).

6.3 Tier 3: Regulatory Oversight

Global-Local Hybrid Bodies: Establish regional regulatory councils (e.g., African Al in Healthcare
Council) with representatives from governments, clinicians, and patients to adapt global standards (e.g.,
WHO'’s Al Guidelines) to local contexts.

Post-Market Surveillance: Mandate 5-year post-approval monitoring of Al tools, with reporting of
adverse events (e.g., incorrect risk predictions leading to delayed care) to regulatory bodies.

LMIC Capacity Building: Allocate 15% of global Al healthcare funding to train LMIC regulators (e.g.,
workshops on Al safety testing) and develop local certification programs (e.g., Nigeria's Al Healthcare
Certification Board, launched in 2025).

7. Policy Recommendations

To enhance equitable Al implementation in urban chronic disease management, we propose policy

actions for three stakeholder groups:

7.1 For Governments

Infrastructure Investment: Allocate 5% of healthcare budgets to Al-ready infrastructure in urban
areas (e.g. high-speed internet for clinics, solar-powered charging stations for wearables in LMICs).

Insurance Coverage: Mandate health insurance plans to cover Al-driven chronic care tools (e.g., CGMs,
Al chatbots) for low-income patients—this policy reduced cost barriers by 68% in Boston (Carter et al,,
2025).

Training Programs: Integrate Al literacy into medical school curricula (e.g., 40 hours of Al training for
medical students) and offer continuing education courses for practicing clinicians (e.g., online modules on

Al model interpretation).
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7.2 For Al Developers

Human-Centered Design: Involve patients and clinicians in all stages of Al development (e.g., co-
designing wearable interfaces) to ensure tools address real-world needs (e.g., low battery consumption for
LMICs).

Affordability: Develop “tiered pricing” models (e.g., 50% lower costs for LMICs) and open-source
options (e.g., free access to basic Al models for public hospitals) to reduce financial barriers.

Localization: Adapt Al tools to local languages, cultural practices (e.g., avoiding pork-related dietary
advice in Muslim-majority urban areas), and infrastructure (e.g., offline functionality for areas with

intermittent internet).

7.3 For Healthcare Providers

Team-Based Care: Integrate Al specialists into chronic care teams (e.g., hiring Al nurses to assist with
model interpretation) to reduce clinician workload—this strategy reduced provider burnout by 29% in
London (Mehta et al,, 2025).

Patient Education: Offer workshops on Al tool use (e.g., “How to interpret your Al glucose monitor
alerts”) and data privacy (e.g., “How your health data is protected”) to increase trust and adherence.

Cross-Region Collaboration: Share best practices across urban healthcare systems (e.g., Beijing’s

cross-regional EHR model) to address care fragmentation for migrant populations.

8. Conclusion

Chronic diseases are a defining challenge of urban healthcare, with aging populations and resource
scarcity worsening outcomes for millions. This study demonstrates that Al—when adapted to local
contexts—can reduce hospital readmissions by 28-35%, improve medication adherence by 40%, and bridge
care gaps for vulnerable urban groups (e.g., migrants, low-income patients). However, success depends on
addressing barriers: infrastructure gaps in LMICs, algorithmic bias, and data privacy concerns.

The proposed 3-Tier Ethical Governance Framework and policy recommendations provide a roadmap
for equitable Al implementation, emphasizing localization, stakeholder collaboration, and regulatory
oversight. Future research should focus on long-term outcomes, low-income urban settings, and cost-
effectiveness to further validate Al's role in chronic care.

By prioritizing equity alongside innovation, Al has the potential to transform urban chronic disease
management—turning resource constraints into opportunities for personalized, accessible healthcare for
all.
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Appendix

Appendix A: Key Data Tables
Table A1l: Demographic Characteristics of Survey Participants (N=15,000)

Characteristic Healthcare Providers (n=5,000) Patients (n=10,000)
Region
- North America 1,200 (24%) 2,500 (25%)
- Europe 1,000 (20%) 2,000 (20%)
- Asia 1,500 (30%) 3,500 (35%)
- Africa 800 (16%) 1,200 (12%)
- Latin America 500 (10%) 800 (8%)
Age (Mean £ SD) 423 £8.5 56.7+12.2
Gender
- Male 2,700 (54%) 4,800 (48%)
- Female 2,300 (46%) 5,200 (52%)
Chronic Disease (Patients) -
- Type 2 Diabetes - 4,200 (42%)
- Hypertension - 3,800 (38%)
- Heart Failure - 2,000 (20%)

Table A2: Efficacy of Al Interventions by Chronic Disease

Type 2 Diabetes Hypertension Heart Failure
Outcome Measure
(n=12,500) (n=9,200) (n=6,800)
HbA1c Reduction (Mean + o
SD) 0.8+0.3% - -
SBP Reduction (Mean + SD) - 12 £ 4 mmHg -
DBP Reduction (Mean + SD) - 7 £ 3 mmHg -

30-Day Readmission 35% (95% CI: 30—

28% (95% CI: 24-32%) 32% (95% CI: 28-36%)

Reduction 40%)
. . 0 o . _
Medication Adherence 40% (95% CI: 35-45%)  38% (95% CI: 33-43%) 36% (95% CI: 31
Increase 41%)

Appendix B: Survey Instruments

B1: Healthcare Provider Al Adoption Survey (Excerpt)

(1) On a scale of 1 (Strongly Disagree) to 5 (Strongly Agree), how would you rate your understanding
of Al models used in chronic disease management?

(2) What is the primary barrier to Al implementation in your clinic? (Select one)

a) Lack of infrastructure (e.g., internet, devices)
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b) Insufficient training

c) Concerns about data privacy
d) Limited funding

e) Other:

(3) Have you received formal training on Al tools for chronic care? (Yes/No/In Progress)
B2: Patient Al Tool Usability Survey (Excerpt)
(1) How easy is it to use your Al-enabled wearable device? (1=Very Difficult to 5=Very Easy)

(2) Do you have concerns about how your health data is used by the Al tool? (Yes/No)

If Yes, please explain:

(3) Would you recommend the Al tool to other patients with your chronic disease? (Yes/No/Not Sure)

Appendix C: Ethical Governance Framework Implementation Checklist

Tier Requirement Verification Method Deadline
| Data Privac Localized consent protocols Review of consent forms 6 months post-
' Y implemented by IRB launch

2. Bias Mitigation

3. Regulatory
Oversight

Decentralized data storage activated ~ Audit of storage systems

Training data includes >30% L
r.alnlpg ata ietudes =470 Data diversity report

minority groups

Real-time bias monitoring tools

integrated Testing of alert systems

Regional regulatory council approval Certificate of compliance

obtained
Post-market surveillance plan in Review of monitoring
place protocols

3 months post-
launch

Pre-launch

Pre-launch

Pre-launch

Launch date

27



