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Abstract: Head and neck cancers (HNCs) include malignancies of the oral cavity, salivary glands, thyroid, orophar‑
ynx, and nasopharynx, with risk factors such as tobacco use, alcohol consumption, viral infections, and environmen‑
tal exposures contributing to over half a million global cases annually. Despite treatment advances, poor prognosis
underscores the need for accurate diagnosis and continuous monitoring. Medical imaging plays a critical role in
HNC evaluation but is often limited by the complexity of anatomy and tumor biology. Recent advances in artiϐicial
intelligence (AI), particularly deep learning, offer opportunities to enhance diagnostic accuracy and optimize treat‑
ment strategies. This study reviews the application of deep learning in HNC imaging, evaluating different architec‑
tures and addressing challenges like limited annotated datasets, high computational demands, and ethical concerns.
Overcoming these challenges will revolutionize HNC diagnostics, redeϐine precision oncology, and improve patient
care. The future integration of explainable AI models and multimodal data will be crucial in advancing diagnostic
precision, ensuring clinical applicability, and addressing ethical and resource challenges. As AI progresses, its ef‑
fective integration into clinical workϐlows will not only enhance healthcare delivery but also reduce inequalities,
accelerating signiϐicant advancements in HNC management and transforming patient outcomes.

Keywords: Deep Learning; Head and Neck Cancer; Histopathology Images; AttentionMechanisms; ImagingModal‑
ities; Survival Prediction; Healthcare Decision‑Making

1. Introduction
Head and neck cancers (HNCs) originate from a variety of anatomical sites, including the craniofacial bones,

soft tissues, and mucosal linings of the oral cavity, salivary glands, thyroid, oropharynx, and nasopharynx. Key
risk factors include tobacco use, heavy alcohol consumption, areca (betel) nut, paan masala (Gutkha), exposure to
gamma and ultraviolet radiation, prolonged sunlight exposure, a family history of cancer, and increasing age. Addi‑
tionally, human papillomavirus (HPV) and Epstein–Barr virus (EBV) are strongly associated with the development
of squamous cell carcinoma (SCC) in the oropharynx and nasopharynx. Globally, the incidence of HNCs is rising,
withmore than 500,000 cases reported annually and around 12,000 new cases each year in the UK alone, reϐlecting
a 20% increase over the past decade. The prognosis remains poor, with 5‑year survival rates ranging from 28% to
67%, depending on the stage of diagnosis [1]. In contrast, cancers such as breast and prostate cancer demonstrate
signiϐicantly better outcomes, with ϐive‑year survival rates of approximately 91.2% [2] and 98% [3], respectively.
Similarly, thyroid cancer has a ϐive‑year survival rate of around 98.4% [4], while testicular cancer boasts a rate
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of about 95% [5]. Even melanoma, a form of skin cancer, shows an overall survival rate of approximately 92%,
particularly high for localized cases [6]. These comparisons underscore the critical need for early detection and
effective treatment strategies to improve survival rates for HNC patients. Medical imaging (MI) modalities, includ‑
ing radiological imaging, endoscopic and clinical imaging, hyperspectral imaging, multimodal optical imaging, and
histopathology whole‑slide imaging, are crucial for evaluating HNCs. However, interpreting these images is chal‑
lenging due to the intricate anatomy, varied tumor biology, and similarities between malignant and benign lesions.
In addition, traditional imaging methods often rely on human expertise, which can be subjective and prone to in‑
consistency. As a result, there is a growing need for advanced technologies and tools to improve the diagnosis and
management of HNCs.

Advancements in artiϐicial intelligence (AI) have revolutionized various ϐields, including computer vision [7],
natural language processing [8], genomics [9] and robotics [10]. AI has shown promising results inmedical domain
such as lungdisease detection [11], breast cancer detection [12], brain strokeprediction [13], brain tumordetection
[14] and identifying surgical actions [15] by utilizing various image modalities. This research explores the applica‑
tion of deep learning (DL) techniques for detecting and analyzinghead andneck cancer (HNC)usingdiverse imaging
modalities. The study critically examines various deep learning architectures, assessing their effectiveness across
different imaging contexts. A comprehensive literature review captures the current state of the ϐield and includes
a detailed analysis of the datasets commonly used in this area. The ϐindings notably reveal a signiϐicant research
gap in fully exploring the potential of histopathology imaging techniques for HNC. Speciϐically, there is a distinct
lack of studies investigating the use of histopathology imaging for survival prediction in Head and Neck Squamous
Cell Carcinoma (HNSCC), highlighting an untapped opportunity for further research and advancements in this ϐield.
Consequently, this research investigates the use of histopathology images to predict patient survival outcomes, un‑
derscoring how these advanced methods can enhance personalized treatment strategies. Predicting survival after
hospitalization is crucial for both healthcare providers and patients. For doctors, it helps assess the severity of the
condition and plan appropriate treatments, allowing them to prioritize patients based on the seriousness of their
condition. For patients and their families, it offers critical time to make necessary arrangements, facilitates timely
prevention and treatment, and helps avoid poor decisions, such as overtreatment or delayed supportive care. The
structure of this paper is as follows: Section 1 presents the research background, the motivation behind it, and its
objectives. Section 2 explores the deep learning architectures employed for diagnosing HNC. Section 3 provides
an extensive literature review on the use of various imaging modalities in HNC, along with their corresponding
datasets. Section 4 discusses the challenges encountered in implementing deep learning models. In Section 5, we
identify critical gaps in the ϐield, ongoing debates, and potential future innovations. Section 6 presents the exper‑
imental results related to survival prediction using histopathology images. Finally, Sections 7 and 8 examine and
interpret the results, highlighting the key insights and the signiϐicance of the research ϐindings.

2. Deep Learning Architectures for Head and Neck Cancer Diagnosis
2.1. Convolutional Autoencoders for Image Enhancement and Feature Learning

Convolutional autoencoders (CAEs) are advanced deep‑learning models designed for tasks such as image en‑
hancement, feature extraction, anddata compression. By combining anencoder,which compresseshigh‑dimensional
input images into compact latent representations, and a decoder, which reconstructs the images, CAEs have be‑
come a valuable tool in medical imaging. Their architecture effectively addresses challenges such as noise, low con‑
trast, and artifacts in imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET). These challenges are particularly pronounced in the diagnosis and staging of
Head and Neck Squamous Cell Carcinoma (HNSCC), where precise imaging is critical for detecting tumor margins,
assessing lymph node involvement, and planning radiation therapy. CAEs have been successfully used to enhance
image quality, reduce noise, and extract features crucial for tasks such as tumor segmentation, low‑dose imaging,
and artifact removal, thereby contributing to more accurate and personalized treatment planning [16, 17].

2.1.1. Encoder Architecture

The encoder is responsible for transforming input images into a low‑dimensional latent representation while
preserving critical diagnostic features. Its components and associated applications are as follows:
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• Convolutional Layers: These layers detect spatial features such as edges, textures, and anatomical structures.
In HNC imaging, they capture tumor boundaries, tissue heterogeneity, and structural abnormalities, supporting
tasks like tumor segmentation and classiϐication.

• Pooling Layers: By reducing the spatial resolution of feature maps, pooling layers improve computational efϐi‑
ciency and invariance to small transformations. This ensures robust feature extraction, even from noisy images,
aiding in noise reduction and artifact removal.

• Latent Representation: The compressed representation encodes essential features of the input image in a low‑
dimensional format. This step is crucial for applications such as low‑dose imaging, where CAEs reconstruct
high‑quality images from reduced data, minimizing radiation exposure without sacriϐicing diagnostic detail.

2.1.2. Decoder Architecture

The decoder complements the encoder by reconstructing the original image from the latent representation,
reϐining its quality and ensuring the preservation of critical features. Its components and their impact include:
• Upsampling Layers: These layers restore the spatial dimensions of the latent representation. Techniques like
transpose convolution areparticularly effective for learning the reconstructionprocess, enabling artifact removal
and resolution enhancement. This is essential in tasks requiring high‑ϐidelity imaging, such as the visualization
of intricate anatomical structures.

• Convolutional Layers: These layers reϐine the upsampled featuremaps, ensuring the reconstructed images retain
ϐine details and closely match the original input. This capability is critical for applications like tumor margin
delineation, image deblurring, and enhancing low resolution images, improving the interpretability of medical
scans.
CAEs excel at addressing the challenges inherent inHNC imagingbyenhancing image clarity, removing artifacts,

and optimizing features for diagnostic and therapeutic applications. Their ability to preprocess data, extract critical
features, and reconstruct high‑quality imageshas established themas a cornerstone in oncological imaging. As such,
CAEs contribute signiϐicantly to improving diagnostic accuracy, treatment planning, and patient outcomes.

2.2. Adversarial Networks for High‑Resolution Image Generation
Generative Adversarial Networks (GANs) are an advanced deep learning framework composed of two interde‑

pendentmodels: a generator and a discriminator. The generator creates synthetic images from latent vectors, while
the discriminator evaluates these images to determine whether they are real or artiϐicially generated. Through this
adversarial training process, GANs iteratively reϐine their outputs, making them highly effective for generating high‑
resolution medical images and addressing challenges in imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and histopathology slides [18].

In the context of Head and Neck Cancer (HNC), GANs have demonstrated signiϐicant potential by enhancing
the resolution of CT and MRI scans, enabling more accurate visualization of tumor margins and critical anatomical
features. This improved resolution supports better tumor detection and segmentation, leading to enhanced diag‑
nostic accuracy [19]. Furthermore, GANs effectively remove imaging artifacts caused by noise, motion, or hardware
limitations, resulting in cleaner and more reliable diagnostic images. These capabilities are particularly beneϐicial
when artifacts obscure subtle pathological features essential for treatment planning [20]. Beyond resolution en‑
hancement, GANs have been employed to generate high‑resolution synthetic histopathology slides, aiding in the
training of diagnostic models and providing pathologists with detailed visualizations of malignant features [21].

How GANsWork

Generative Adversarial Networks (GANs) are a type of deep learning framework that harnesses the interplay
between two neural networks: the generator and the discriminator as shown in Figure 1. These networks are
trained simultaneously in an adversarial setup, where each tries to outperform the other in their respective tasks.
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Figure 1. Adopted from the reference [22].

The generator starts by creating synthetic data, such as images, based on a random input vector sampled from
a latent space. This vector, often drawn from a Gaussian distribution, serves as the seed for generating data. The
generator processes this input through its layers, which typically include dense and convolutional layers, transform‑
ing the vector into structured outputs. The generator’s goal is to produce synthetic samples thatmimic the real data
in the original dataset, aiming to “fool” the discriminator into believing that the generated samples are real. On the
other side, the discriminator acts as a binary classiϐier, evaluating whether the input data is real (from the actual
dataset) or fake (produced by the generator). It processes both real and synthetic samples through its network
layers, extracting features and assigning a probability score indicating the authenticity of each input. The discrimi‑
nator’s objective is to correctly classify real and fake samples, becomingmore effective at identifying synthetic data
as training progresses.

The adversarial training process involves a continuous feedback loop. The discriminator provides feedback
to the generator, highlighting areas where the synthetic data deviates from the real data. In response, the gener‑
ator adjusts its parameters to create more convincing outputs. Meanwhile, the discriminator improves its ability
to distinguish between real and fake data. This competitive interaction continues iteratively, with the generator
and discriminator driving each other to perform better. The training reaches equilibrium when the generator pro‑
duces synthetic data that the discriminator can no longer reliably distinguish from real data. At this point, the GAN
achieves its goal of generating highly realistic synthetic data, making it a powerful tool for applications such as
image generation, super‑resolution, and data augmentation.

2.3. Vision Transformers
Vision Transformers (ViTs) represent a paradigm shift in deep learning models for image analysis, offering an

alternative to traditional convolutional neural networks (CNNs). Unlike CNNs, which rely on convolutional layers
for localized feature extraction, ViTs treat images as sequences of patches, enabling the model to capture both local
and global spatial relationships. By leveraging transformer architectures originally designed for natural language
processing, ViTs process visual data with remarkable effectiveness, making them particularly suited for complex
medical imaging tasks as shown in Figure 2. In the domain of Head and Neck Cancer (HNC), ViTs have shown
signiϐicant potential by addressing challenges inherent in imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and histopathology slides. These modalities demand precise analysis of intri‑
cate textures, high‑resolution requirements, and global spatial dependencies, all of which ViTs handle effectively
through their global self‑attention mechanisms. This capability allows ViTs to excel in tasks like tumor detection,
segmentation, classiϐication, and multi‑modal image analysis, revolutionizing the approach to medical image pro‑
cessing [23, 24].
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Figure 2. Adopted from the reference [25].

ViTs enable highly accurate tumor detection and localization by analyzing spatial relationships across patches,
identifying subtle abnormalities in CT, MRI, and histopathology slides. Their ability to capture both local and global
contextual information makes them exceptional for delineating tumor boundaries, a critical step in treatment plan‑
ning such as radiation therapy. In histopathology, ViTs process high‑resolution slides to detect cancerous regions,
classify tissue types, and identify cellular structures indicative ofmalignancy. Furthermore, ViTs integrate data from
multiple imaging modalities, such as CT, MRI, and PET, providing a comprehensive view of tumor characteristics
and improving diagnostic accuracy. Another signiϐicant advantage of ViTs lies in their ability to perform risk stratiϐi‑
cation and staging. By analyzing features associatedwith tumor growth, spread, and lymph node involvement, they
support accurate cancer staging and facilitate risk assessment. Additionally, ViTs monitor treatment response by
comparing pre‑ and post‑treatment images, tracking changes in tumor size and morphology, and offering insights
into treatment efϐicacy, thereby guiding adaptive therapy. Their global self‑attention mechanisms enable aware‑
ness of spatial relationships across entire images, which is particularly useful for analyzing large, high‑resolution
medical datasets. Unlike CNNs, which rely on hierarchical feature extraction, ViTs preserve ϐine details necessary
for diagnostics, processing high‑resolution images effectively. This ϐlexibility makes them suitable for multi‑modal
analysis, enabling seamless adaptation to diverse imagingmodalities and cross‑domain applications. These unique
capabilities, combined with their adaptability and precision, position ViTs as transformative tools in the diagnosis
andmanagement of HNC. By improving diagnostic precision, enhancing treatment planning, and facilitating patient
outcome monitoring, Vision Transformers are poised to revolutionize medical image analysis.

ViT Architecture

The architecture of Vision Transformers processes images differently from traditional CNNs. The key compo‑
nents include:
• Patch Embedding Layer: Input images are divided into ϐixed‑size, non‑overlapping patches, akin to words in a
sentence for natural language processing. Each patch is ϐlattened and passed through a linear projection layer to
generate a patch embedding, which represents the feature vector of that patch.

• Positional Encodings: To retain spatial information, positional encodings are added to the patch embeddings.
These encodings allow the model to understand the relative positions of patches within the image.

• Transformer Encoder: The sequence of patch embeddings, augmented with positional encodings, is fed into a
transformer encoder. The encoder uses multi‑head self‑attention mechanisms to capture relationships between
patches and identify patterns across the entire image. By leveraging global self‑attention, ViTs excel at captur‑
ing long‑range dependencies and spatial relationships, making them particularly effective for high‑resolution
medical imaging tasks.
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• Classiϐication or Feature Extraction: The output embeddings are processed by a classiϐication head or used for
downstream tasks like segmentation or feature extraction, depending on the application.

2.4. Pre‑Trained Models
Pre‑trainedmodels are a foundational component ofmoderndeep learning, offering a highly efϐicient approach

to tackling complex tasks in computer vision. These neural networks, pre‑trained on large benchmark datasets such
as ImageNet, are ϐine‑tuned for specialized applications, signiϐicantly reducing the need for extensive data and com‑
putational resources. By leveraging the rich feature representations learned during pre‑training, researchers can
adapt these models to new domains with remarkable efϐiciency and accuracy. In medical imaging, particularly for
Head and Neck Cancer (HNC), pre‑trained models have demonstrated exceptional promise. Their ability to gener‑
alize from pre‑learned features enables them to excel in critical tasks such as tumor detection, segmentation, and
classiϐication. Fine‑tuning pre‑trained models on HNC‑speciϐic datasets allows researchers to extract meaningful
features from imaging modalities like CT, MRI, and histopathology slides with high precision, even in low‑data sce‑
narios [26]. For instance, pre‑trained models like VGG19 have achieved notable success in HNC diagnostics, with
studies reporting up to 76% accuracy in distinguishing between normal tissue, precancerous lesions, and malig‑
nancies [27].

Pre‑trainedmodels excel at identifying tumors in medical images by leveraging hierarchical feature extraction
to detect patterns in complex textures and structures. This capability supports precise tumor localization and seg‑
mentation, which are critical for radiation therapy and treatment planning. Furthermore, these models process
high‑resolution histopathology slides to identify cancerous regions and classify tissue types, aiding pathologists in
diagnosing malignancies. Their versatility extends to multi‑modality analysis, where they integrate and analyze
data frommultiple imaging sources, such as CT and MRI, providing comprehensive assessments that enhance diag‑
nostic accuracy. One of themost signiϐicant advantages of pre‑trainedmodels lies in their effectiveness in scenarios
with limited labeled data. By generalizing frompre‑ learned features, thesemodelsmaintain high performance even
in low‑data conditions, a common challenge in medical imaging. Additionally, pre‑trained models accelerate devel‑
opment workϐlows by reducing the time and computational resources required for training. This efϐiciency allows
researchers to focus on domain‑speciϐic ϐine‑tuning, enabling rapid advancements in HNC diagnostics andmanage‑
ment. The adaptability and performance of pre‑trained models have made them transformative tools in medical
imaging. In HNC diagnosis and management, they have proven invaluable for improving diagnostic precision, opti‑
mizing treatment planning, and enhancing patient outcomes. By reducing computational costs and addressing the
challenges of limited data, pre‑trainedmodels are driving innovation in medical image analysis and paving the way
for future advancements.

Pre‑Trained Model Architecture

Pre‑trained models utilize a structured approach to extract and process features from images, enabling them
to generalize effectively across domains. Key architectural components include:
• Convolutional Layers: These layers detect low‑level features such as edges and textures, progressively building
toward higher‑level abstractions like shapes and patterns. This hierarchical feature extraction is foundational to
pre‑trained models’ success.

• Transfer Learning Capabilities: Pre‑trained models can be ϐine‑tuned by freezing some layers while updating
others to adapt to speciϐic tasks. This process allows themodel to leverage existing knowledgewhile specializing
in new domains.

• ClassiϐicationHead: The ϐinal layers of a pre‑trainedmodel are tailored to the speciϐic task at hand, such as tumor
classiϐication or segmentation. This modularity makes pre‑trained models highly adaptable.

2.5. Siamese Neural Networks
Siamese neural networks (SNNs) are a unique deep learning architecture designed to compare pairs of inputs

and determine their similarity or dissimilarity. This architecture consists of two identical subnetworks that share
the same structure and weights, ensuring consistent feature extraction from the input pairs. Each subnetwork
processes one input, and their outputs are combined using a similarity function, such as Euclidean distance or
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cosine similarity, to generate a similarity score.
In the context ofmedical imaging, particularly for Head andNeck Cancer (HNC), Siamese neural networks have

proven to be highly effective for tasks involving small datasets and image comparison. These networks are partic‑
ularly useful in scenarios where obtaining large amounts of labeled data is challenging, as they learn to identify
relationships between image pairs rather than relying solely on absolute classiϐication. For example, in vocal cord
leukoplakia classiϐication, a study demonstrated the ability of Siamese networks to handle limited sample sizes
while achieving accurate classiϐication results by comparing vocal cord images [28].

Architecture andWorking of Siamese Neural Networks

The architecture of Siamese neural networks is structured to compare and analyze the relationships between
pairs of inputs. The key components and their functionalities are as follows:
• Input Pairs and Processing: In an SNN, the input consists of pairs of data points. Each pair is processed indepen‑
dently by two identical subnetworks, which are designed to extract meaningful features from the inputs. The
inputs can be images, text, or other types of data, depending on the application.

• Feature Extraction: The identical subnetworks, often referred to as twin networks, are responsible for feature
extraction. These subnetworks typically consist of convolutional layers (for images) or recurrent layers (for
sequential data), followed by fully connected layers. The extracted features are represented as high‑dimensional
vectors, or embeddings, that capture the essential characteristics of the inputs.

• Comparison Using Similarity Functions: After feature extraction, the SNN compares the embeddings using a
similarity function. This function quantiϐies how similar or dissimilar the inputs are, based on their feature
representations.

2.6. Graph Neural Networks
Graph Neural Networks (GNNs) are specialized deep learning models designed to process and analyze graph‑

structured data. Unlike traditional neural networks, which operate on Euclidean data such as grids or sequences,
GNNs excel at handling non‑Euclidean data, where relationships between entities are explicitly represented as
edges connecting nodes. This ϐlexibility allows GNNs to model complex relationships and dependencies, making
them particularly well‑suited for advanced tasks in medical imaging and oncology, including Head and Neck Can‑
cer (HNC). In the context of HNC, GNNs have demonstrated substantial potential by integrating diverse data types
and capturing intricate relationships critical for advanced diagnostic and prognostic tasks. For instance, multi‑level
data fusion is one of themost impactful applications of GNNs. By integratingmulti‑modal imaging data, such as PET
and CT scans, with clinical features, GNNs provide a comprehensive analysis of patient health. A notable example is
the Multi‑Level Fusion Graph Neural Network (MLF‑GNN), which combines PET and CT imaging data for risk strati‑
ϐication in HNC patients. This approach enhances prognosis prediction by capturing interactions between imaging
features and clinical attributes, thereby facilitating improved decision‑making in cancer treatment [29].

GNNs also play a pivotal role in risk stratiϐication and prognosis prediction by analyzing relationships between
imaging biomarkers, clinical data, and patient outcomes. This capability enables the stratiϐication of patients into
risk groups, aiding clinicians in predicting disease progression and optimizing treatment strategies. Additionally,
GNNs can process genomic and molecular interaction networks, uncovering biomarkers associated with HNC and
supporting targeted therapies by identifying keymolecular pathways. Beyond individual‑level analysis, GNNs offer
insights into tumor‑environment interactions by modeling the tumor microenvironment as a graph. This allows
the analysis of relationships between cancer cells, immune cells, and surrounding tissues, providing valuable infor‑
mation on tumor progression and potential therapeutic targets.

The core mechanism of GNNs is message passing, where nodes iteratively update their representations by ag‑
gregating information from their neighbors. This process enables GNNs to capture both local and global structures
within a graph, allowing effective inference on complex relationships between entities. Common tasks addressed
by GNNs include node classiϐication, link prediction, and graph classiϐication. Popular GNN architectures include:
• GraphConvolutionalNetworks (GCNs): Extend theprinciples of convolutional neural networks to graph‑structured
data, enabling the extraction of localized features.
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• Graph Attention Networks (GATs): Introduce attention mechanisms to prioritize information from the most rel‑
evant neighbors during message passing.

2.7. Attention Mechanism
The attention mechanism is a transformative concept in deep learning, enabling models to dynamically focus

on speciϐic regions of input datawhile disregarding irrelevant parts. Originally developed for sequence‑to‑sequence
(Seq2Seq) tasks in natural language processing, such as machine translation, attention has since been adapted to
diverse domains, including image captioning, object detection, and medical image analysis. By assigning varying
levels of importance (weights) to different input elements, attention mechanisms enhance feature extraction, con‑
textual understanding, and model interpretability, making them particularly effective for tasks requiring precise
localization and integration of complex data. In medical imaging, particularly for Head and Neck Cancer (HNC) di‑
agnostics, attention mechanisms have demonstrated signiϐicant utility. For example, attention is widely used to
integrate multi‑modal imaging data, such as PET and CT scans. In 18FDG PET‑CT imaging, attention mechanisms
enhance tumor segmentation by focusing on complementary features across modalities, improving diagnostic ac‑
curacy. Additionally, attention aids in accurate tumor segmentation by directing the model’s focus to key regions
within the imaging data, ensuring precise delineation of tumor boundaries. This is critical for effective treatment
planning, such as radiation therapy.

Another major advantage of attentionmechanisms in HNC diagnostics is their ability to analyze feature impor‑
tance. By visualizing attention weights, such as heatmaps, clinicians gain insights into which regions of an image
contributemost signiϐicantly tomodel predictions, thereby increasing the interpretability and trustworthiness ofAI‑
driven results. In cases where large and complex medical datasets are involved, attention mechanisms also reduce
computational complexity by prioritizing signiϐicant features, allowing models to process data efϐiciently without
sacriϐicing performance. Attentionmechanisms also excel in dynamically adapting their focus during various stages
of processing, enhancing contextual understanding and accuracy. This dynamic focus is particularly beneϐicial for
the fusion of multi‑modal data, where complementary information from modalities like PET and CT can be seam‑
lessly integrated to provide a holistic view of tumor characteristics. The ability of attention mechanisms to process
longer sequences by considering all encoder states dynamically further enhances their application in longitudinal
imaging studies or time‑series medical data. The adoption of attention mechanisms in medical imaging has revolu‑
tionized how models process, interpret, and extract valuable insights from complex datasets. In HNC diagnostics,
thesemechanisms empowermodels to deliver precise and interpretable predictions, improve tumor segmentation
accuracy, and facilitate multi‑modal data integration. As attention‑based models continue to evolve, their potential
to advance diagnostic precision and treatment planning in oncology is becoming increasingly evident.

How AttentionWorks

The central idea behind attention is to dynamically compute context vectors by considering the relevance of
each input element at different stages of processing. This mechanism enhances the limitations of traditional ϐixed‑
length representations, especially for longer or more complex inputs. The key steps include:
• Score Computation: A scoring function evaluates the relevance of each input element to the current processing
state. For example, in an encoder‑decodermodel, scores are calculated for all encoder states based on the current
decoder state.

• Attention Weights: Scores are normalized using a softmax function to produce attention weights, which sum to
1 and represent the relative importance of each input element.

• Context Vector: A weighted sum of all input elements, based on the attention weights, is computed. This context
vector dynamically represents the most relevant information for the current task.

• Integration: The context vector is concatenatedwith the decoder’s previous output and used to generate the next
prediction in the sequence.
This process is repeated at each time step, allowing themodel to focus on different parts of the input as needed.
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3. Literature Review
HNC is diagnosed using various imagingmodalities, such as radiological imaging, endoscopic/clinical imaging,

hyperspectral imaging, multimodal optical imaging and histology whole‑slide imaging. Figure 3 illustrates the
investigations conducted in the ϐield of HNC detection, employing diverse imaging modalities. Remarkably, the
ϐindings reveal an evident research gap in fully exploring the potential of histopathology imaging techniques for
HNC. Notably, there is a distinct absence of studies that speciϐically investigate the use of histopathology imaging
for survival prediction in HNSCC, highlighting an untapped avenue for further research and potential advancements
in this ϐield. In the following sections, wewill discuss each of thesemodalities in detail, highlighting their strengths,
limitations, and clinical applications in head and neck imaging.

3.1. Radiological Imaging
Radiological imaging is a medical specialty that employs various imaging techniques to visualize and diagnose

internal structures of the body. These techniques include computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), and ultrasound. Different research studies used different radiological
imaging techniques for the evaluation of HNC.

Figure 3. Related work.

Al Ajmi et al. [30] created a machine learning method that utilized spectral dual‑energy CT (DECT) informa‑
tion from multi‑energy virtual monochromatic image datasets to detect the energy‑dependent variations in tissue
attenuation for categorizing typical benignparotid gland tumors (Warthin tumor andpleomorphic adenoma). Their
method achieved an accuracy of 92%. In a study, the authors Ranjbar et al. [31] conducted research to evaluate the
potential of computed tomography (CT)‑based texture analysis in determining the human papillomavirus (HPV)
status of oropharyngeal squamous cell carcinoma (OPSCC) with an accuracy of 75.7%. In another research study
[32], both morphologic and functional information has been utilized for automatic detection and classiϐication of
nasopharyngeal carcinoma (NPC) on PET/CT using support vector classiϐier. Their system was validated with 25
PET/CT examinations from 10 NPC patients, and results showed 99.3% sensitivity in identifying hypermetabolic
lesions larger than 1 cm in size and excluding normal physiological uptake.
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An ultrasound‑based CAD system has been proposed by Siebers et al. [33] for the differential diagnosis of
parotid gland lesions based on supervised classiϐication using tissue‑describing features derived from ultrasound
radio‑frequency (RF) echo signals and image data. Their proposed system aims at automating the differentiation
between malignant and benign cases with an AUC of 0.91.

The researchersHuang et al. [34] aimed to investigate the application ofMRI features on a deep learning‑based
image super‑resolution reconstruction algorithm, the optimized convolutional neural network (OPCNN) algorithm,
for the diagnosis of nasopharyngeal carcinoma (NPC). Their study included 54 patients with NPC, and their MRI
images were processed using the traditional CNNmodel, U‑net network model, and the OPCNN algorithm and con‑
cluded that the OPCNN algorithm can improve the quality of MRI images, and its effect is better than the traditional
deep learning models. By integrating various MRI modalities such as DCE‑MRI, T2WI, and DWI, the diagnostic
accuracy can be signiϐicantly enhanced, resulting in an impressive accuracy rate of 93.2%. Ramkuma et al. [35] ex‑
plore the potential ofMR imaging–based texture analysis to differentiate between sinonasal inverted papilloma and
squamous cell carcinoma, and to compare the classiϐication performance of the machine learning algorithm with
the neuroradiologist’s review. A total of 46 adult patients who had inverted papilloma or squamous cell carcinoma
resected were included in the study. The results showed that the machine learning algorithm achieved similar ac‑
curacies of 89.1% for both the training and validation datasets, while the accuracy of the algorithmwas better than
that of the neuroradiologist’s ROI review but not signiϐicantly different from the neuroradiologist’s review of the
tumors or entire images.

Figure 4 provides an overview of how deep learning is utilized in the analysis of radiological images.

Figure 4. Deep learning framework for radiological image analysis.

Radiological imaging provides detailed, high‑resolution images that can be used to diagnose and monitor a
wide range of diseases and conditions, making it an essential tool inmedical image analysis with numerous applica‑
tions. However, radiological imaging can be expensive, expose patients to radiation, produce large amounts of data,
and be affected by factors such as patient motion and image artifacts, which can affect the accuracy and reliability
of deep learning models.

3.1.1. Radiological Datasets

• Head‑Neck‑PET‑CT: This dataset consists of FDG‑PET/CT and radiotherapy planning CT imaging data from 298
patients diagnosed with histologically conϐirmed HNC. These patients, treated at four different institutions in
Québec, underwent pre‑treatment FDG‑PET/CT scans between April 2006 and November 2014, with scans con‑
ducted a median of 18 days (range: 6–66 days) before treatment1.

• Head‑Neck Cetuximab: The Head‑Neck Cetuximab collection includes CT, PT, RTSTRUCT, RTPLAN, and RTDOSE
images from 945 patients, all gathered as part of the RTOG 0522 trial2.

• HaN‑Seg: This publicly available dataset is designed for the segmentation of organs‑at‑risk (OARs) in the head
and neck region using both computed tomography (CT) and magnetic resonance (MR) imaging. It aims to en‑
hance segmentation accuracy for radiotherapy planning by combining CT and MR images to improve the visibil‑
1 https://www.cancerimagingarchive.net/collection/head‑neck‑pet‑ct/
2 https://www.cancerimagingarchive.net/collection/head‑neck‑cetuximab/
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ity of OARs less discernible in CT scans. The dataset includes images from 56 patients, each with both CT and
T1‑weighted MR images, as well as manually segmented binary masks for 30 OARs. It is intended for research
and development in medical imaging, particularly for improving radiotherapy treatment planning by accurately
delineating target volumes and OARs3.

• HNSCC‑3DCT‑RT: This dataset is a collection of high‑resolution three‑dimensional computed tomography (CT)
images from31 patients diagnosedwith HNSCC. It includes CT scans taken during pre‑treatment, mid‑treatment,
and post‑treatment phases, allowing researchers to visualize changes in tumor characteristics throughout the ra‑
diotherapy process. The dataset also provides additional clinical information, such as tumor volume, treatment‑
related toxicities, and patient demographics, which can aid in the study of treatment outcomes and the develop‑
ment of predictive models4.

• Hyper‑ScaleMultimodal Imaging Dataset: This dataset comprises 4.5million images collected from variousmed‑
ical imaging modalities including CT, MRI, PET, and X‑ray. It was created by combining 102 medical imaging
datasets and aims to classify these images by their modality type. This dataset is particularly valuable for train‑
ing deep learning models and improving diagnostic outcomes in clinical settings 5.

3.2. Endoscopic‑Clinical Imaging
Endoscopic‑clinical imaging is a diagnostic technique that combines endoscopy and imaging technology to ex‑

amine the internal organs and tissues of the body. Several studies have utilized clinical data from endoscopic imag‑
ing to detect cancer in the head and neck. In a research study [36], the authors used CNN (Inception V3) to detect
nasopharyngeal malignancies on endoscopic images of the nasopharynx with 28,966 endoscopic images in a train‑
ing set and 1,430 endoscopic images in a testing set and achieved an accuracy of 88.7% on the test set. The authors
of reference [37] proposed a novel approach for the early detection of oral cancer using an optimized computational
model. The authors combined Echo State Neural Networks (ESNNs) and Gravitational Search Algorithm (GSA) for
oral cancer detection by optimizing the ESNN parameters using GSA. The results of the experiments demonstrate
that the proposedmodel achieves an accuracy of 98.47%on clinical X‑rays images and outperformed other state‑of‑
the‑art approaches for oral cancer detection. The authors of reference [38] proposed a texture‑basedmachine learn‑
ing approach using local binary patterns and statistical analysis for the classiϐication of laryngeal tissue (normal vs.
malignant) in endoscopic images, which can aid in the early diagnosis of laryngeal cancer. The authors reported
an overall classiϐication accuracy of 94.8%. A DL based system has been proposed for auto automatic classiϐication
of oral dysplasia and malignancy tissue images captured using a dual‑modality smartphone‑based imaging system
[39]. The system achieved an overall accuracy of 87.6% in classifying oral dysplasia and malignancy images, with
high sensitivity and speciϐicity in detecting oral malignancy.

Figure 5 provides an overview of how deep learning is utilized in the detection, segmentation, and classiϐica‑
tion of endoscopic images.

Endoscopic‑clinical imaging in deep learning has several advantages as a diagnostic tool, as it provides high‑
resolution real‑time images of the gastrointestinal tract, allowing for accurate diagnosis and treatment planning.
However, this technique requires a high level of technical skill and expensive equipment, which can limit its ac‑
cessibility in certain areas. Additionally, the risk of infection and potential complications such as bleeding and
perforation of the organ being examined may cause concern for some patients. The limited view provided by this
technique may also make it difϐicult to diagnose certain conditions.

Endoscopic Datasets

Narrow Band Imaging (CE‑NBI): This dataset includes 11,144 images from 210 adult patients with vocal fold
conditions. The CE‑NBI technique enhances vascular pattern visualization, aiding in the differentiation between
benign and malignant lesions. Various machine learning methods applied to this dataset have achieved high diag‑
nostic accuracy and reliability. The complete dataset, including all images and labels, is available in the Zenodo
Repository 6.

3 https://han‑seg2023.grand‑challenge.org
4 https://www.cancerimagingarchive.net/collection/hnscc‑3dct‑rt/
5 https://research‑portal.st‑andrews.ac.uk/en/publications/classification‑of‑hyper‑scale‑multimodal‑imaging‑datasets/datasets
6 https://zenodo.org/
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Figure 5. Deep learning framework for endoscopic image analysis.

3.3. Multimodal Optical Imaging
Multimodal optical imaging is an advanced imaging technique that combines different optical imaging modali‑

ties to obtain amore comprehensive view of biological structures and processes. It typically involves using a combi‑
nation of techniques such as ϐluorescence imaging, confocal microscopy, and optical coherence tomography (OCT).
In research [40], the authors utilized multispectral wide‑ϐield optical imaging, such as white‑light reϐlectance, aut‑
oϐluorescence, narrow‑band reϐlectance, and cross‑polarized imaging, to distinguish between oral cancer and non‑
cancerous mucosa by evaluating the contrast in the images. The results indicated that autoϐluorescence imaging
using a 405 nm excitation wavelength produced the highest contrast images. The red‑to‑green ϐluorescence inten‑
sity ratio calculated from these images was the best indicator for identifying cancer versus non‑cancerous tissue
with a sensitivity of 100% and speciϐicity of 85%. However, the method accurately identiϐiedmalignant tissue from
non‑cancerous tissue but had some limitations in identifying precancerous lesions. In another research study [41],
the authors detected Oral Neoplasia in “Vivo” aimed to evaluate the performance of a multimodal optical imaging
approach for the detection of oral squamous cell carcinoma (OSCC). This approach involved using autoϐluorescence
imaging to identify high‑risk regions within the oral cavity, followed by high‑resolutionmicroendoscopy to conϐirm
or rule out the presence of neoplasia. This study included data from92 sites to develop algorithms for the automatic
identiϐication of OSCC in vivo, which were then prospectively evaluated using images from 114 sites. Diagnostic ac‑
curacy was assessed based on conϐirmed histological diagnoses from biopsies or surgical specimens. The study
found that the multimodal imaging approach was highly accurate in detecting benign lesions, with a 100% classi‑
ϐication accuracy, and an 85% accuracy in detecting cancerous lesions. In cases where a surgical specimen was
available, the imaging approach correctly classiϐied 100% of benign sites and 61% of neoplastic sites. Figure 6
presents how deep learning is utilized to diagnose retinal diseases.

The above studies suggest that multimodal optical imaging with automated image analysis could potentially
improve the accuracy and efϐiciency of oral cancer screening. Furthermore, this imaging technique can improve the
accuracy and speciϐicity of image analysis tasks, such as identifying and tracking speciϐic cell types or molecules.
Multimodal imaging can also help to reduce the impact of imaging artifacts and noise, leading to clearer and more
accurate images. However, there are some challenges associated with multimodal imaging. For one, integrating
data frommultiple modalities can be technically complex, requiring specialized equipment and software. Addition‑
ally, multimodal imaging can be more time‑consuming and resource‑intensive, as data from each modality must be
acquired and processed separately before being combined.
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Figure 6. Adopted from the reference [42].

Another potential limitation is that different modalities may have different limitations and biases, which can
affect the overall accuracy and reliability of the results.

Multimodal Optical Datasets

• MEMO Dataset: The MEMO dataset includes multimodal retinal images, speciϐically pairs of Enhanced Depth
Imaging (EMA) and OCTA images. While the exact number of images is not speciϐied, it is designed for studying
multimodal retinal image registration and includes labeled matched points for research purposes. The MEMO
dataset contains 30 pairs of EMA and OCTA images. For each image pair, 6 corresponding point pairs were man‑
ually annotated. In addition, each EMA image comes with a carefully annotated vessel segmentation mask7.

• CF‑FA Dataset: The CF‑FA dataset comprises 59 pairs of images, including color fundus (720 × 576, RGB) and
ϐluorescein angiography (720 × 576, grayscale) images. Of these, 29 pairs are from healthy individuals, while the
remaining 30 pairs are from patients diagnosed with retinopathy8.

3.4. Hyperspectral Imaging
Hyperspectral Imaging is a powerful technology that combines imaging and spectroscopy to capture and an‑

alyze data from across the electromagnetic spectrum. A novel method proposed by Halicek [43] employed Hyper‑
spectral imaging (HSI) to performreal‑timeoptical biopsies of ex‑vivo surgical specimens collected from21patients
undergoing surgical cancer resection. The method shows promising results in distinguishing squamous cell carci‑
noma (SCC) from normal tissues with an accuracy of 81% using CNN, as well as sub‑classifying normal oral tissues
into epithelium, muscle, and glandular mucosa using a decision treemethod, with an accuracy of 90%. The authors
also developed a CNN architecture for differentiating between thyroid carcinoma and normal thyroid and achieved
an accuracy of 81% . Partitioned Deep CNNs offer away to enhance efϐiciency and scalability, making themuseful in
resource‑constraint environments. A similar architecture has been proposed by Jeyaraj and Samuel Nadar [44] to
classify and label regions of interest in multidimensional hyperspectral images. The algorithm achieved a classiϐi‑
cation accuracy of 91.4% for a 100‑image training dataset for the classiϐication of malignant and benign cancer, and
a classiϐication accuracy of 94.5% for 500 training patterns for the classiϐication of malignant cancer and normal
tissue. Figure 7 represents the deep learning method for cancer detection with hyperspectral imaging. Although
Hyperspectral imaging is a promising approach for image analysis in deep learning, the complexity and high dimen‑

7 https://chiaoyiwang0424.github.io/MEMO/
8 https://chiaoyiwang0424.github.io/MEMO/
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sionality of the hyperspectral data can make it challenging to train deep learning models effectively. Additionally,
the large amounts of data generated by hyperspectral imaging require signiϐicant computational resources and
specialized expertise for processing and analysis. Obtaining high‑quality hyperspectral data also presents a great
challenge for training deep learning models.

Figure 7. Adopted from reference [45].

3.5. HistopathologyWhole‑Slide Imaging
In the realm of deep learning, histopathology images stand out as a highly advantageous modality. Their high‑

resolution and standardized imaging protocols allow for accurate visualization of tissue structures, while their sta‑
tus as the gold standard for the diagnosis of many diseases provides a reliable reference point for training deep
learning models. The relative ease of collection makes histopathology images a practical choice for developing ac‑
curate and robust deep‑learning algorithms. Together, these advantages make histopathology images a valuable
tool for advancing our understanding of disease and improving diagnostic accuracy.

In a study conducted by Halicek [46], the authors recognized the potential of histopathology images and em‑
ployed a convolutional neural network (CNN) to differentiate betweennormal and abnormal histopathology images
of HNSCC. The CNNwas trained using a dataset comprising 381 images from 156 patients, achieving an impressive
accuracy of 95%. However, during the experiment, the researchers discovered limitations of the algorithm caused
by artifacts originating from whole‑slide images. These artifacts included out‑of‑focus regions, tissue folding, and
tearing, which were identiϐied after the completion of the study. Unfortunately, these artifacts signiϐicantly affected
the classiϐication accuracy, particularly in the case of the squamous cell carcinoma (SCC) testing dataset.

Another research study conducted by He et al. [47] utilized a deep CNN (InceptionV3) model for the diagnosis
of laryngeal squamous cell carcinoma (LSCC) based on Narrow‑Band Imaging (NBI) endoscopy and pathological
images. Themodelwas trained, tested and validated using 4,591 patient laryngeal NBI scans and3,458pathological
images in the ratio of 70:15:15. Remarkably, the deep learning model achieved high accuracy in diagnosing LSCC
on the test set, with an area under the curve (AUC) of 0.87 and 0.98 for NBI and pathology groups, respectively.

By employing shape, texture, and color features from whole slide images, the authors [48] successfully distin‑
guished normal and malignant Oral Squamous Cell Carcinoma (OSCC) utilizing 42 original whole slides. Remark‑
ably, their approach achieved an impressive accuracy, speciϐicity, sensitivity, and precision of over 99%.

The researchers in the study conducted by Rahman et al. [49] successfully categorized microscopic images of
oral squamous cell carcinoma into benign and malignant categories using histological slides. They employed tex‑
ture features extracted from the images using GLCM (Gray‑Level Co‑occurrence Matrix) and histogram techniques.
The classiϐication was performed using a linear Support Vector Machine (SVM), and the results showcased the re‑
markable effectiveness of this approach, achieving a perfect accuracy rate of 100%.
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The authors Rodner et al. [50] utilized a CNN to differentiate between cancer, normal epithelium, background
stroma, and other tissue types in 114 images from 12 patients, for the diagnosis of HNSCC. The study achieved
average and overall recognition rates of 88.9% and 86.7%, respectively, for the four classes.

Researchers Tang et al. [51] used convolution neural network‑based algorithms for the detection of lymph
nodemetastasis in HNSCCwith an accuracy of 86%. However, there are some limitations in this study. The training
sample size consists of only 20 patients (collected from only one institution); further, the test set consists of only a
few patients, thus the results are not reliable.

Histological Datasets

Histopathology OSCC Dataset: comprises H&E whole slide images of the normal oral cavity epithelium and
images depicting Oral Squamous Cell Carcinoma (OSCC). This dataset comprises a total of 1,224 histopathological
images. These images are categorized into two sets, eachwith different resolutions. The ϐirst set contains 89 images
showing the normal oral cavity epithelium and 439 images depicting OSCC, all captured at 100xmagniϐication. The
second set includes 201 images of the normal oral cavity epithelium and 495 images of OSCC,with each image taken
at 400x magniϐication [8].

OSCCHistopathology Dataset: This dataset comprises H&Ewhole slide images of the normal oral cavity epithe‑
liumand images depictingOral Squamous Cell Carcinoma (OSCC). These images are available at 100x and400xmag‑
niϐication levels, providing a comprehensive and detailed view for our analysis and experimentation. This dataset
has three subsets: training, validation, and test sets. Each of these subsets serves a crucial role in our research study,
contributing to the training and evaluation of our models for detecting Oral Squamous Cell Carcinoma (OSCC). Fig‑
ure 2 depicts the distribution of the dataset, where the training set comprises 2,435 samples of normal cases and
2,511 samples of oral squamous cell carcinoma. The validation set has 28 normal cases and 92 squamous cell car‑
cinoma cases, while the test set includes 31 normal cases and 95 cases of oral squamous carcinoma 9.

In this study, Table 1 provides a detailed summary of the studies focused on medical imaging (MI) techniques
for head and neck cancer (HNC).

Table 1. Studies of Medical Imaging Techniques for Head and Neck Cancer.

RelatedWork Imaging Technique Work Accomplished Methods Output Performance

[30] CT Classiϐication of benign parotid gland
tumors into Pleomorphic adenoma and
Warthin tumor

Random Forest Accuracy 92%

[31] CT Detection of human papillomavirus of
oropharyngeal squamous cell
carcinoma

Quadratic discriminant
analysis

Accuracy 75.7%

[32] PET/CT Classiϐication of nasopharyngeal
squamous cell carcinoma

Support Vector Machine Sensitivity 99.3%

[33] Ultrasound radio frequency
echo data

Differentiating between malignant and
benign parotid gland lesions

Texture feature‑based
maximum likelihood
classiϐier

AUC 91%

[34] MRI Diagnosis of Nasopharyngeal
Carcinoma

Optimized convolutional
neural network

Accuracy 93.2%

[35] Endoscopic images Differentiate between sinonasal
inverted papilloma and squamous cell
carcinoma

Support Vector Machines Accuracy 89.1%

[36] MRI Detect nasopharyngeal malignancies Convolutional neural
network (inception)

Accuracy 88.7%

[37] X‑Rays Detect Oral Cancer Gravitational search
optimized echo state neural
networks

Accuracy 98.47%

[38] Endoscopic images Classiϐication of laryngeal tissue
(normal vs. malignant)

Support Vector Machine Accuracy 94.8%

[39] Endoscopic images Oral cancer classiϐication of dysplasia
and malignancy tissue from normal
ones

Convolutional Neural
Network Architecture

Accuracy 87.6%

[40] Narrowband reϐlectance,
autoϐluorescence, and
polarized reϐlectance images

Identiϐication of malignant tissue from
non‑cancerous tissue

Linear Classiϐier, Decision
Tree

Sensitivity 100%

[41] Multimodal optical images Detection of oral squamous cell
carcinoma

Linear Discriminate Analysis Accuracy 85%

[43] Hyperspectral images Distinguishing squamous cell
carcinoma from normal tissues

Convolutional Neural
Network

Accuracy 81%

9 https://www.kaggle.com/datasets/ashenafifasilkebede/dataset
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In this research study, Table 2 provides a comprehensive summary of studies conducted on medical imaging
(MI) techniques for head and neck cancer (HNC).

Table 2. Studies of medical imaging techniques for head and neck cancer.

Related
Work

Imaging Technique Work Accomplished Methods Output
Performance

[44] Multi‑dimensional
hyperspectral images

Classiϐication of malignant and
benign cancer

Convolutional Neural Accuracy: 91.4%

[46] Histopathology images Distinguish between normal and
abnormal histopathology images

Convolutional Neural Network Accuracy: 95%

[47] Histopathology images Diagnosis of laryngeal squamous cell
carcinoma

Deep convolutional neural
network (inceptionV3

AUC: 87%

[48] Histopathology images Distinguish normal and malignant
Oral Squamous Cell Carcinoma

Decision Tree Classiϐier, SVM,
and Logistic regression

Accuracy: 100%

[49] Histopathology images Diagnosisoϐlaryngeal squamous cell
carcinoma

Deep convolutional neural
network (inceptionV3)

AUC: 87%

[50] Histopathology images Classiϐication of oral squamous cell
carcinoma into benign and
malignant

Linear SVM Accuracy: 100%

[51] Histopathology images Classiϐication between cancer,
normal epithelium, background
stroma in head and neck carcinoma

Fully Convolutional Neural
Network

Accuracy: 88.9%

4. Challenges in Implementing Deep LearningModels for Head and Neck Cancer Imaging
4.1. Annotation Practices in Medical Imaging

The annotation of HNC images obtained from primary or secondary sources presents a substantial challenge
for researchers in the ϐield of medical imaging. The involvement of medical professionals in both the collection and
annotation processes is crucial for establishing a well‑organized dataset. Nevertheless, inconsistencies frequently
arise, asmedical expertsmay annotate images based on their individual experiences and varying levels of expertise.
In instances where multiple regions exhibiting structural abnormalities are present within a single medical image,
experts may prioritize labeling the most conspicuous abnormality, potentially overlooking others. This variabil‑
ity in annotation practices can lead to mislabeling, which adversely affects classiϐication outcomes and results in
increased rates of false positives and false negatives.

4.2. Role of Dataset Size in Imaging Studies
Due to the lack of publicly available benchmark imaging datasets for head and neck cancer, many researchers

have resorted to compiling their own datasets, which are often small or incomplete. Several studies [52, 53] have
reported that the limited amount of training data has hindered the effective training of their models, resulting in
unreliable outcomes when tested with real‑world data. Furthermore, researchers in studies countered signiϐicant
obstacles during data collection, including issues related to missing data, patient non‑consent due to privacy con‑
cerns, and the denial of private hospitals to share their data, citing conϐidentiality regulations.

4.3. Data Quality Challenges
The effectiveness of deep learningmodels in HNC imaging is signiϐicantly inϐluenced by the quality of the train‑

ing data. Ensuring high data quality presents considerable challenges across various imaging modalities, including
CT, MRI, PET, ultrasound, and histopathology. Each modality has its own unique issues. For instance, factors such
as patient movement, machine calibration problems, and environmental conditions can introduce noise and arti‑
facts in images from CT, MRI, PET, and ultrasound. In histopathology, additional challenges such as inconsistent
staining, variations in lighting during slide examination, and differences in operator expertise further compromise
data quality.
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4.4. Requirements for Computational Power
Deep learning models, particularly those used in complex ϐields such as medical imaging, require extensive

computational power toprocess largedatasets andperform intricate calculations. Graphics processingunits (GPUs)
are essential for accelerating the training of these models, as they can handle parallel processing tasks much more
efϐiciently than traditional central processing units (CPUs). Specialized hardware, such as tensor processing units
(TPUs) or ϐield‑programmable gate arrays (FPGAs), can further enhance performance by optimizing speciϐic tasks
related to deep learning. However, the substantial computational requirements associatedwith training anddeploy‑
ing these models can present signiϐicant challenges for smaller clinical centers and individual researchers. Many of
these institutions may lack the ϐinancial resources to invest in high‑performance computing infrastructure, which
can limit their ability to develop and implement advanced deep learning solutions. As a result, they may miss out
on the potential beneϐits of these technologies, which could improve diagnostic accuracy, treatment planning, and
patient outcomes.

4.5. Accessing Unpublished Datasets
A key issue identiϐied in this review is that researchers tend to achieve better results when using publicly

available datasets, as compared to when they utilize their own private or unpublished datasets. One reason for
this disparity is that public datasets are often well‑preprocessed, reϐined, and balanced, leading to more robust
outcomes. In contrast, unpublished or private datasets often lack sufϐicient preprocessing and data balance, which
can negatively impact results. Several studies [54, 55] have relied on unpublished datasets. While authors have
compared their results with other similar methods to validate their ϐindings, the authenticity of private datasets
remains uncertain until they are tested by multiple researchers using different classiϐication techniques.

4.6. Class Imbalance
Head and neck cancer (HNC) imaging datasets often suffer from class imbalance, where certain cancer types

or stages are underrepresented compared to others. This lack of balance in the distribution of classes can signiϐi‑
cantly impact the performance of deep learning models trained on these datasets. The problem of class imbalance
manifests differently across various HNC imaging modalities. In CT and MRI scans, early‑stage cancers may be less
prevalent in the dataset, leading to an underrepresentation of these classes. PET imaging can exhibit an imbalance
due to varying metabolic activity patterns among HNC subtypes. Ultrasound datasets may be skewed by anatom‑
ical variations and tumor accessibility, while histopathology samples can be biased towards speciϐic subtypes or
stages based on biopsy practices or referral patterns. This class imbalance can have serious consequences on the
predictive capabilities of deep learningmodels. Models tend to learnmore from themajority classes, which arewell‑
represented in the dataset. As a result, they may develop a bias towards predicting the majority classes, even when
minority classes are present. This leads to reduced sensitivity for detecting rare HNC subtypes or early‑stage can‑
cers, resulting in higher false‑negative rates. In extreme cases, models may completely ignore the minority classes
and focus solely on predicting the majority classes, leading to overϐitting and poor generalization. Moreover, im‑
balanced datasets can skew performance metrics like accuracy, making the model appear to perform well overall
while masking poor performance in the minority classes. This can give a false sense of conϐidence in the model’s
capabilities and lead to misleading conclusions about its effectiveness in clinical settings.

4.7. Ethical Considerations
The use of deep learning models in medical imaging, particularly in HNC imaging, raises critical ethical con‑

cerns that must be addressed. Data privacy is a primary issue, as these models rely heavily on sensitive patient
information, necessitating robust security measures to prevent unauthorized access and breaches that could lead
to identity theft and privacy violations. Additionally, algorithmic fairness is a signiϐicant concern. Biases in train‑
ing datasets can result in disparities in diagnostic accuracy and treatment outcomes, particularly for marginalized
populations. Therefore, it is essential to use diverse datasets and implement continuous monitoring to identify
and mitigate these biases. Lastly, accountability poses challenges due to the opaque nature of many deep learning
algorithms, making it difϐicult to determine responsibility when errors occur.
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5. Critical Gaps, Ongoing Debates, and Future Innovations
5.1. Standardization and Benchmarking: The Need for a Common Framework Across Imaging

Modalities
Asigniϐicant challenge in applyingdeep learning toHNC, particularly across imagingmodalities suchashistopathol‑

ogy, radiology (CT,MRI, PET), andmolecular imaging, is the lack of standardization and benchmarking. Researchers
employ a wide variety of datasets, image preprocessing methods, and training strategies, making direct compar‑
isons between models difϐicult. The lack of uniformity in data acquisition, model architectures, and performance
metrics has led to fragmented progress, with inconsistent results across studies and institutions. This variation pre‑
vents a comprehensive assessment ofmodels’ clinical effectiveness, ultimately slowing their integration into routine
practice. In histopathology, differences in slide preparation, staining protocols, and digitization techniques often
result in images of varying quality. Similarly, in radiology and molecular imaging, disparities in scanner settings,
image resolutions, and noise reduction techniques complicatemodel development and evaluation. These variations
in imaging practices make it challenging to produce models that are both generalizable and clinically viable. More‑
over, inconsistent reporting of critical performance metrics such as accuracy, sensitivity, speciϐicity, and survival
predictions, further hampers the ability to compare results across studies and determine the best‑performingmod‑
els. To address these issues, future research must prioritize the establishment of a common framework that spans
all imagingmodalities. Publicly available, well‑annotated, and standardizeddatasets for eachmodality are essential.
In histopathology, this involves standardizing staining protocols, slide digitization resolutions, and preprocessing
techniques, such as patch extraction, stain normalization and image augmentation. In radiology, the focus should
be on harmonizing scanning protocols and ensuring uniform image resolutions to minimize the variability intro‑
duced by different scanners. These datasets should be representative of diverse populations and clinical settings
to ensure that models trained on them are broadly applicable.

5.2. Comprehensive Data Fusion
Most deep learning studies in HNC imaging have traditionally focused on single‑modality data, such as MRI,

CT, or PET scans. While these modalities offer valuable insights into tumor characteristics, relying solely on one
type of imaging can limit the scope and accuracy of model predictions. Integrating multimodal data such as com‑
bining anatomical (CT or MRI) with functional (PET) imaging has the potential to enhance model performance
by providing a more holistic understanding of tumor biology. This multimodal approach allows models to leverage
complementary information, improving the precision of tumor detection, characterization, and treatment response
prediction. Histopathology images, a crucialmodality in cancer diagnosis and prognosis, offer detailed insights into
the microscopic structure of tumor tissues. Incorporating histopathological data alongside radiological images can
provide a deeper understanding of tumor aggressiveness, heterogeneity, and response to treatment. For exam‑
ple, combining high‑resolution histopathology images with radiological scans can improve survival prediction and
guide personalized treatment plans by offering insights into both the macroscopic and microscopic features of the
tumor. In addition to multi‑modal imaging, integrating temporal information from longitudinal imaging datasets
can further improve model performance. Analyzing changes in tumor characteristics over time—such as those
captured in sequential MRI or PET scans—enables models to predict tumor progression, recurrence, or response
to therapy more accurately. Temporal data can highlight subtle changes in tumor size, shape, or metabolic activ‑
ity that may not be apparent in single‑time point imaging, offering more nuanced predictions of patient outcomes.
Furthermore, the inclusion of clinical information, such as patient demographics, tumor histology, treatment pro‑
tocols, and comorbidities, can signiϐicantly enhance the predictive power of deep learning models. For instance,
integrating patient‑speciϐic factors like age, gender, tumor stage, and histopathological grade with imaging data al‑
lows models to deliver more personalized prognostications. This holistic approach aligns with the growing trend
toward precision oncology, where treatment strategies are tailored to the unique characteristics of each patient’s
disease. Future research should focus on the development of deep learning models that can seamlessly integrate
multimodal imaging (including histopathology), temporal data, and clinical information. Such models would of‑
fer a comprehensive framework for personalised treatment planning, prognostication, and follow‑up care in HNC
management. By combining diverse data sources, these models have the potential to improve diagnostic accuracy,
reϐine treatment response predictions, and ultimately enhance patient outcomes.
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5.3. Explainability, Interpretability, and Authenticity
Deep learning models, particularly CNNs, have demonstrated remarkable performance in various medical

imaging tasks, including HNC diagnosis and prognosis. However, these models are frequently regarded as “black
boxes” due to their intricate architectures and the lack of transparency in their decision‑making processes. This
lack of clarity can hinder the adoption of deep learning methods in clinical settings, as clinicians may be cautious
about trusting a model’s predictions without understanding the reasoning behind them.

Explainability: To address this challenge, researchers havebeen focusing ondeveloping explainable deep learn‑
ing models. Explainability refers to the ability to provide clear and understandable explanations for a model’s
predictions. By incorporating explainability into the design of DL models for HNC imaging, researchers can help
clinicians understand the reasoning behind a model’s decisions. This can be achieved through techniques such as
attention mechanisms, which highlight the regions of an image that are most important for a particular prediction,
and layer‑wise relevance propagation, which traces the contribution of each feature to the ϐinal prediction.

Interpretability: Bridging the Gap between AI and Clinical Practice In addition to explainability, interpretabil‑
ity is another crucial aspect of building trust in deep learning models. Interpretability refers to the ability to un‑
derstand the internal workings of a model and the relationships between its inputs and outputs. By developing
interpretable deep learning models for HNC imaging, researchers can provide clinicians with a clear understand‑
ing of how the model arrives at its predictions. This can be achieved through techniques such as visualization of
feature maps, which allow clinicians to see the features that the model has learned to recognize, and sensitivity
analysis, which helps identify the most important features for a particular prediction.

Authenticity: Ensuring Trustworthiness and Robustness While explainability and interpretability are impor‑
tant for building trust in deep learning models, it is also crucial to ensure that these models are authentic and
reliable. Authenticity refers to the ability of a model to perform consistently and accurately in real‑world clinical
settings. To ensure the authenticity of deep learning models for HNC imaging, researchers should focus on devel‑
oping methods to assess the trustworthiness and robustness of these models in the face of noisy, incomplete, or
adversarial data. This can be achieved through techniques such as uncertainty quantiϐication, which helps identify
the regions of an image where the model is most uncertain about its predictions, and adversarial training, which
helps improve the model’s robustness to adversarial attacks.

6. Experimentation Results
In this section, we present the results obtained from the proposed survival prediction system. The experimen‑

tation process is divided into two key stages: (1) Dataset Description and Data Preprocessing, where we describe
the characteristics of the dataset and the steps undertaken to prepare the data for model training, and (2) Model
Training and Evaluation, where we provide detailed performance metrics and an analysis of the model’s outcomes.

6.1. Dataset Description and Data Preprocessing
The Cancer Genome Atlas Head and Neck Squamous Cell Carcinoma (TCGA‑HNSC) cohort includes diagnostic

slides from 200 subjects, which are used in the experimental setup. These diagnostic slides, offering detailed in‑
sights into tissue phenotypic heterogeneity [56], are speciϐically chosen for their critical role in histologic analysis.
Each whole slide image (WSI) is labeled as either Survival or Not Survival, with a label of 0 assigned to Survival
and 1 to Not Survival. To ensure a robust and effective analysis, the dataset is divided into two parts: 80% of the
data is used for training, while the remaining 20% is reserved for testing the models. Gigapixel histopathology im‑
ages, which are too large for direct deep learning (DL)model training, are effectively processed using the OpenSlide
library [57]. This specialized tool reads and divides these large images into smaller, manageable tiles at 20X mag‑
niϐication, making them suitable for DL training while preserving the necessary detail for accurate analysis. During
preprocessing, between 5,000 and 30,000 tiles are typically extracted from each gigapixel image. To avoid introduc‑
ing noise, tiles that are blank, black, or blurry are rigorously ϐiltered out based on average pixel values. Tiles with
average pixel values above 220 (overly white) or below 60 (mostly black) are discarded, and a manual inspection
further removes tiles with visual artifacts or other anomalies, ensuring high‑quality data for DL training.
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6.2. Model Training and Evaluation

In this study, we extracted features from all tileswithin eachwhole slide image (WSI) using a pre‑trained Incep‑
tion v3model, generating a 2048‑dimensional feature vector for each tile. This process resulted in a feature matrix
of size N × 2048 for each subject, where N represents the number of tumor tiles in the WSI, varying signiϐicantly
between samples. The feature vectors from all tiles of the same patient were then averaged into a single 2048‑
dimensional vector, which served as the input for an attention‑based CNN aimed at predicting survival outcomes.

The architecture of the attention‑based CNNmodel consists of a series of convolutional blocks designed to ex‑
tract increasingly complex and abstract features from the input data. The initial block applies a convolutional layer
with 32 ϐilters and a 3 × 3 kernel size, followed by batch normalization to stabilize and accelerate the training pro‑
cess. A LeakyReLU activation function is employed to introduce non‑linearity, and the block concludes with a Max‑
Pooling layer that downsamples the spatial dimensions, thereby reducing the computational load for subsequent
layers. This pattern is repeated across two additional convolutional blocks, with the number of ϐilters increasing
to 64 and 128, respectively. These blocks follow the same structure: convolution, batch normalization, LeakyReLU
activation, andMaxPooling. The increasing ϐilter sizes enable the network to capturemore sophisticated features as
the data progresses through the layers. Following the convolutional blocks, the output is ϐlattened into a 1D vector,
which is then passed through a dropout layer with a 50%dropout rate. This dropout layer helps prevent overϐitting
by randomly deactivating neurons during training, ensuring that the network does not become overly reliant on
speciϐic features. The ϐlattened vector is then fed into a custom attention layer, which enhances the model’s focus
on the most relevant features by assigning different weights to various parts of the input data. This prioritization
allows the model to effectively concentrate on critical information for the task at hand. The attention‑enhanced
features are subsequently passed through a fully connected layer with 128 units, followed by batch normalization
and another LeakyReLU activation. A second dropout layer is applied at this stage to further mitigate the risk of
overϐitting. The model also includes an additional dense layer with 64 units, batch normalization, and LeakyReLU
activation, adding another level of feature processing. The architecture concludes with an output layer consisting
of a single dense unit with a sigmoid activation function, producing the ϐinal prediction as a probability, making
the model suitable for binary classiϐication tasks. Overall, this architecture combines the powerful feature extrac‑
tion capabilities of CNNs with an attention mechanism that reϐines the focus on the most pertinent data, while also
employing regularization techniques to enhance the model’s generalization to new data. The attention‑based CNN
model exhibited balanced performance in distinguishing between “Survival” and “Not Survival” WSIs, as shown in
the confusion matrix of Figure 8. The precision for the “Survival” class was 0.74, meaning 74% of the predictions
were correct. For “Not Survival”, the precision was slightly higher at 0.76. The recall was 0.78 for “Survival” and
0.72 for “Not Survival”, indicating the model correctly identiϐied 78% of actual survival cases and 72% of actual
non‑survival cases. The F1‑scores were 0.76 for “Survival” and 0.74 for “Not Survival”, reϐlecting strong overall
performance. The model’s overall accuracy was 0.75, correctly classifying 75% of the WSIs. The confusion matrix
further illustrates the model’s effectiveness: it correctly identiϐied 14 out of 18 survival cases but misclassiϐied 4 as
non‑survival, and it correctly predicted 13 out of 18 non‑survival cases, with 5 being mislabeled as survival. These
results emphasize themodel’s balanced performance, crucial in clinical settingswhere both false positives and false
negatives can have signiϐicant consequences.

The consistency in precision and recall values highlights the model’s robustness and reliability as a predictive
tool for survival outcomes in HNC patients.
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Figure 8. Confusion matrix of survival prediction model.

7. Discussion
The integration of various imaging modalities and advanced artiϐicial intelligence (AI) techniques has shown

great promise in enhancing the diagnosis and treatment ofHNSCC. This review comprehensively examined the roles
of radiological, endoscopic, multimodal optical, hyperspectral, and histopathological imaging techniques, while
highlighting the growing impact of deep learning methods across these imaging modalities. Despite these advance‑
ments, several critical challenges remain that must be addressed to fully utilize the potential of AI in improving
clinical outcomes for HNSC patients. The role of imaging in HNSC diagnosis and monitoring cannot be underesti‑
mated, as it offers essential insights into tumor characteristics, disease progression, and patient outcomes. Radio‑
logical imaging modalities such as CT, MRI, and PET provide detailed anatomical and functional information that
assists in the identiϐication and staging of tumors. The ϐindings of this review underscore that endoscopic imaging,
particularly with deep learning models like CNNs, has demonstrated high accuracy in detecting nasopharyngeal
malignancies with accuracies approaching 89%. Similarly, multimodal optical imaging has shown promise in early
cancer detection by combining different techniques like autoϐluorescence and narrow‑band reϐlectance imaging.
Hyperspectral imaging, although still in its early stages for HNSC, offers potential due to its ability to capture a
wide range of spectral data, which helps distinguish cancerous from non‑cancerous tissues. Studies included in
this review demonstrate accuracies as high as 91% when using convolutional neural networks (CNNs) for tissue
classiϐication. Furthermore, histopathology whole‑slide imaging (WSI) has been a critical modality for diagnosing
HNSC at the cellular level. Employing deep learning methods, such as InceptionV3 models, has enabled effective
classiϐication of histopathological images, with accuracy rates as high as 95%.

AI, and speciϐically deep learning, has revolutionized the analysis of medical images, particularly in ϐields like
oncologywhere accurate and timely diagnosis can signiϐicantly impact treatment outcomes. InHNSC, deep learning
models such as convolutional autoencoders (CAEs) and Vision Transformers (ViTs) have proven highly effective for
tasks ranging from image enhancement and noise reduction to tumor detection and classiϐication. CAEs, in partic‑
ular, excel in extracting meaningful features from noisy images, improving downstream tasks like tumor segmen‑
tation. One of the most signiϐicant ϐindings from the review is the application of Generative Adversarial Networks
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(GANs) for high‑resolution image generation. GANs ability to convert low‑resolution images into high‑resolution
ones enhances the visibility of tumor features, which is particularly valuable in radiological imaging. This advance‑
ment could lead tomore precise tumor detection, better segmentation, and improved clinical decision‑making. The
adaptation of Transformermodels, originally developed for natural language processing, to medical image analysis
has opened new doors. Vision Transformers (ViTs), by segmenting images into patches, capture long‑range de‑
pendencies and spatial relationships that traditional CNNs often neglect. This method, which showed competitive
results in medical imaging tasks, particularly in HNSC histopathology, positions ViTs as viable alternatives to CNNs.

Despite these advances, several challenges remain in the application of AI to HNSC imaging. A key issue is
the lack of standardized datasets and uniform imaging protocols, particularly for histopathology and radiological
images. The variety of data sources, differences in image acquisitionmethods, and the absence of consistent bench‑
markdatasets lead to inconsistent progress. This reviewhighlighted that somedatasets are often incomplete, which
results in models being trained on non‑representative or imbalanced samples, thus limiting their generalizability
to real‑world clinical settings. Another critical challenge lies in the quality of the data itself. Imaging data can
be affected by noise, artifacts, and patient movement, especially in radiological modalities such as CT and MRI.
Histopathology images, though highly informative, suffer from artifacts such as tissue folding, tearing, or out‑of‑
focus regions, which can degrade model performance. These limitations call for the development of robust prepro‑
cessing techniques to ϐilter out artifacts and ensure that only high‑quality data is fed into

deep learning models. Additionally, class imbalance remains a persistent issue across several studies in HNSC
imaging. In many datasets, the minority classes, such as early‑stage cancers or speciϐic subtypes, are underrepre‑
sented, leading to biased model training. Addressing this issue requires class balancing techniques, such as over‑
sampling of minority classes or the development of custom loss functions that penalize misclassiϐications of rare
classes. AI’s growing role in healthcare raises important ethical concerns, particularly around data privacy and al‑
gorithmic fairness. Patient data used to train AI models must be handled with extreme care, ensuring compliance
with privacy regulations such as HIPAA and GDPR. Additionally, there is a need to ensure algorithmic transparency
and fairness, as biases in training datasets can lead to unequal diagnostic outcomes, particularly for underrepre‑
sented populations. From a technical perspective, the computational power required for training deep learning
models on medical images is substantial. Graphics processing units (GPUs) and tensor processing units (TPUs) are
often necessary to handle the parallel computations required for large‑scale datasets. However, not all institutions,
particularly those in low‑resource settings, have access to such high‑end infrastructure. This raises concerns about
the global applicability of AI solutions, as the models may not be feasible for smaller clinical centres without the
necessary computational resources.

To fully capitalize on AI’s potential in HNSC imaging, several steps must be taken. First, the standardization
of imaging datasets is crucial. Future research should focus on creating publicly available, well‑annotated, and
balanced datasets that cover a wide range of cancer subtypes, stages, and treatment outcomes. These datasets
should be representative of diverse patient populations to ensure that AI models generalize well to all clinical envi‑
ronments. In histopathology, standardizing slide preparation, staining protocols, and digitization techniques will
help mitigate variability in image quality and improve the performance of deep‑learning models. The use of multi‑
modal data fusion is another promising avenue. Integrating data frommultiple imagingmodalities (e.g., combining
radiological with histopathological images) along with clinical data (e.g., demographics, treatment history) could
signiϐicantly enhancemodel performance. Such a holistic approachwould provide a deeper understanding of tumor
biology, improving both diagnostic accuracy and personalized treatment planning. Finally, developing explainable
AI models will be critical to bridging the gap between AI and clinical practice. Models that can provide transparent
reasoning for their predictions will foster greater trust among clinicians and lead to wider adoption of AI in health‑
care. Techniques like attentionmechanisms and visualization toolswill enablemodels to highlight key features that
inϐluence their decisions, allowing clinicians to make more informed choices.

The experimentation using the TCGA‑HNSC cohort involved processing gigapixel histopathology images into
smaller tiles, whichwere then analyzed using a pre‑trained Inception v3model to extract 2048‑dimensional feature
vectors. These vectors were averaged for each patient and input into an attention‑based CNN model for survival
prediction. The model achieved a precision of 0.74 for “Survival” and 0.76 for “Not Survival”, with recalls of 0.78
and 0.72, respectively. The F1‑scores were 0.76 for “Survival” and 0.74 for “Not Survival”, and the overall accuracy
was 0.75. The importance
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of histopathology images lies in their detailed microscopic level of tissue analysis, which provides critical in‑
sights into the phenotypic heterogeneity and cellular characteristics of tumors. Unlike other imaging techniques,
such as CT orMRI, which offer broader structural views, histopathology images provide the underlying cellular and
molecular features essential for accurate diagnosis and prognosis. This detailed information is pivotal for predict‑
ing patient survival and tailoring personalized treatment plans, ultimately enhancing clinical decision‑making and
patient outcomes.

8. Conclusions
This study highlights the transformative potential of deep learning and advanced imaging modalities in the

diagnosis, analysis, and treatment of head and neck cancers. The integration of radiological, endoscopic, multi‑
modal optical, hyperspectral, and histopathological imaging techniques, coupled with AI, has shown signiϐicant
promise in improving diagnostic accuracy and enabling personalized treatment strategies. Deep learning models
have demonstrated high precision in predicting patient outcomes, particularly through histopathology images that
provide critical microscopic insights into tumor heterogeneity. The experimental ϐindings on survival prediction
underscore AI’s potential to personalize care by identifying high‑risk patients and adapting treatments accordingly.
However, challenges remain, such as the need for standardized, well‑annotated datasets, computational resources,
and addressing ethical concerns around data privacy and algorithmic fairness. The global applicability of AI solu‑
tions also poses concerns, particularly in low‑resource settings. Moving forward, developing explainable AImodels
and integrating multimodal data to improve diagnostic accuracy will be crucial for fostering clinical trust andmaxi‑
mizing the potential of AI in healthcare. By overcoming these challenges, AI has the potential to revolutionize HNC
treatment, improve survival rates, and enhance patient outcomes.
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