

Soil Health and Sustainability

https://ojs.ukscip.com/index.php/shs

Soil Biome Homogenization and Multidimensional Regulation of Sustainable Remediation Under Urbanization: A Cross-Climatic Zone Study

Jake M. Robinson*

School of Biological Sciences, Flinders University, Adelaide SA 5001, Australia

Received: 8 August 2025; Revised: 13 August 2025; Accepted: 18 August 2025; Published: 25 August 2025

ABSTRACT

Urbanization profoundly alters soil health via biome homogenization and pollution accumulation, threatening ecosystem sustainability. This study investigated soil microbial communities, resistance genes, and remediation efficiency across three climatic zones (tundra: Helsinki; temperate: Baltimore; tropical: Singapore) and 13 Chinese cities. We validated an integrated sustainability evaluation tool for remediation techniques and proposed a "triple regulation" strategy coupling biogeochemical cycles, nanotechnology, and carbon sequestration. Results revealed urban-driven bacterial homogenization (37% higher than natural forests) and heavy metal-induced resistance gene enrichment. The proposed tool prioritized phytoremediation and modified biochar as optimal sustainable solutions. This study provides a cross-scale framework for balancing urbanization and soil health.

Keywords: Soil Health; Urbanization; Biome Homogenization; Heavy Metal Remediation; Carbon Sequestration; Sustainability Evaluation

1. Introduction

1.1 Background

Soil, as the core of terrestrial ecosystems, supports 95% of global food production and regulates biogeochemical cycles . However, rapid urbanization—characterized by land use conversion, pollutant emission, and anthropogenic disturbance—has emerged as a primary threat to soil health . Recent studies indicate that urban soil ecosystems exhibit distinct biotic and abiotic alterations: increased heavy metal (HM) accumulation (Fe, Al > 90% of total metals), antibiotic resistance gene (ARG) enrichment, and significant shifts in microbial community structure .

Notably, urbanization drives soil biome homogenization at continental and global scales. A study covering 13 Chinese cities found that urban green spaces support 23% higher local microbial richness than forests but reduce regional biodiversity by 18% due to community homogenization. Similar patterns were

observed in cross-climatic zone comparisons, where bacterial communities in Helsinki, Baltimore, and Singapore urban parks showed 37% higher similarity than natural forests . This homogenization threatens ecosystem resilience by reducing functional redundancy and increasing vulnerability to environmental perturbations .

1.2 Research Gaps

Despite growing recognition of urban soil degradation, three critical gaps remain: (1) Limited cross-scale understanding of how urbanization modulates soil biota and resistance genes across climatic zones; (2) Lack of integrated tools to evaluate remediation sustainability considering environmental, economic, and social pillars; (3) Insufficient strategies to synergize soil remediation with carbon neutrality goals. Addressing these gaps is essential for developing evidence-based policies to protect soil health amid rapid urbanization.

1.3 Objectives and Scope

This study aimed to: (1) Characterize urbanization-induced changes in soil microbial communities, resistance genes, and physicochemical properties across tundra, temperate, and tropical zones; (2) Develop and validate an integrated sustainability evaluation tool for contaminated soil remediation; (3) Propose a climate-adaptive, carbon-friendly remediation strategy. Field sampling covered 42 sites (14 urban parks, 14 natural forests, 14 farmlands) across 5 countries, combined with laboratory experiments and lifecycle assessment.

2. Literature Review

2.1 Urbanization Impacts on Soil Physicochemistry

Urbanization modifies soil physicochemical properties through multiple pathways. Land conversion from natural to urban use increases soil pH by 0.8–1.2 units on average, primarily due to concrete leaching and liming activities . This pH shift directly affects HM mobility: for example, Cd bioavailability decreases by 35% in alkaline soils, while As mobility increases by 41%.

Heavy metal accumulation is another hallmark of urban soils. A survey in Singapore and Baltimore urban parks found that Pb concentrations (128–356 mg/kg) exceeded background levels by 5–8 times, correlated with traffic emissions and historical industrial activities . In China, agricultural soils near urban areas show Cd concentrations up to 2.8 mg/kg, causing annual rice yield losses of $1000 \cdot 1000 \cdot 100$

2.2 Soil Biome Responses to Urbanization

Microbial communities are sensitive indicators of soil health. Urbanization drives bacterial and fungal community divergence: bacterial communities exhibit higher homogenization (Bray-Curtis similarity: 0.62 vs. 0.38 in forests) due to synchronous responses to environmental stressors , while fungal diversity decreases by 24% in old urban parks compared to natural forests .

Functional gene shifts further reflect urban soil degradation. Studies in tropical urban areas (Singapore) detected 2.3-fold higher stress resistance genes (SRGs) than natural ecosystems, attributed to high temperature and humidity accelerating microbial adaptation . Metal resistance genes (MRGs) such as cadA and arsC show positive correlations with HM concentrations (r = 0.78 for Cd, p < 0.01), indicating anthropogenic selection pressure .

2.3 Current Remediation Technologies and Limitations

Common soil remediation techniques include physical (excavation, soil washing), chemical (stabilization with lime/silica), and biological (phytoremediation, microbial remediation) methods. However, traditional approaches face sustainability challenges: excavation generates $20-30~kg~CO_2~per~m^3$ soil, conflicting with carbon neutrality goals; chemical stabilization causes soil acidification rebound within 3-5~years; and phytoremediation has low efficiency for high-concentration HM pollution.

Recent advances in nanoremediation and modified biochar show promise. Silicon nanoparticles reduce Cd uptake in rice by 42%, while iron-modified biochar synchronously immobilizes As and Cd with 85% efficiency and sequesters 0.9 tons C per hectare annually . However, these technologies lack systematic sustainability assessment across environmental, economic, and social dimensions .

3. Materials and Methods

3.1 Study Sites

Field sampling was conducted from March 2023 to October 2024 across three climatic zones:

Tundra: Helsinki (Finland, 60°10'N), 7 urban parks and 7 natural forests;

Temperate: Baltimore (USA, 39°21'N) and 6 Chinese cities (Beijing, Shanghai, etc.), 14 urban parks, 7 forests, 7 farmlands;

Tropical: Singapore (1°22'N), 7 urban parks and 7 forests.

At each site, 5 soil cores (0–20 cm depth) were collected in a 5×5 m grid, mixed into a composite sample, and stored at -80°C for molecular analysis or 4°C for physicochemical testing.

3.2 Laboratory Analyses

3.2.1 Physicochemical Properties

Soil pH was measured with a glass electrode (1:2.5 soil:water ratio). Heavy metals (Cd, Pb, As, Cr) were extracted with aqua regia and quantified by ICP-MS (Agilent 7900). Soil organic carbon (SOC) was determined via dry combustion (LECO CNS-2000).

3.2.2 Microbial and Gene Analysis

To ensure high-quality microbial community data, strict quality control steps were implemented throughout the sequencing process. After eDNA extraction using the DNeasy PowerSoil Kit (Qiagen), DNA concentration and purity were quantified via a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific) and agarose gel electrophoresis (1.2% w/v). Only samples with A260/A280 ratios between 1.8–2.0 and DNA concentrations > 50 ng/ μ L were selected for subsequent analysis.

For 16S rRNA gene sequencing, the V4-V5 hypervariable regions were amplified using the primer pair 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 907R (5'-CCGTCAATTCMTTTRAGTTT-3') with barcodes attached to the 5' ends. The PCR reaction system (25 μ L) contained 12.5 μ L of 2× Taq Plus Master Mix (Vazyme), 1 μ L of each primer (10 μ M), 2 μ L of template DNA, and 8.5 μ L of sterile water. Amplification conditions were: initial denaturation at 95°C for 5 min; 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 45 s; final extension at 72°C for 10 min. For ITS sequencing, the ITS1 region was targeted with primers ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3') and ITS2R (5'-GCTGCGTTCTTCATCGATGC-3'), following the same PCR system and conditions except for an annealing temperature of 52°C.

Amplicons were purified using the AxyPrep DNA Gel Extraction Kit (Axygen) and quantified with a

Qubit 3.0 Fluorometer (Invitrogen). Equal amounts of purified amplicons from each sample were pooled and sequenced on the Illumina NovaSeq 6000 platform (2×250 bp paired-end reads) at Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). Raw reads were filtered using Trimmomatic (v0.39) to remove adapter sequences, low-quality reads (20 < 20), and reads shorter than 150 bp. Paired-end reads were merged into contigs using FLASH (v1.2.11) with a minimum overlap length of 10 bp and a maximum mismatch ratio of 0.2.

Operational Taxonomic Units (OTUs) were clustered at 97% sequence similarity using UPARSE (v7.0.1090), and chimeric sequences were removed using UCHIME (v4.2). Taxonomic annotation of OTUs was performed against the Silva database (v138) for 16S rRNA genes and the UNITE database (v8.2) for ITS sequences using the RDP Classifier (v2.2) with a confidence threshold of 0.8. Alpha diversity indices (Shannon, Simpson, Chao1, ACE) were calculated using MOTHUR (v1.44.3), and beta diversity was analyzed via Bray-Curtis dissimilarity matrices and visualized with non-metric multidimensional scaling (NMDS) in R.

For functional gene analysis with GeoChip 5.0 (CapitalBio Technology Co., Ltd., Beijing, China), 1 μ g of eDNA was labeled with Cy3 using the Random Primer Labeling Kit (CapitalBio) and hybridized to the chip at 42°C for 16 h. The chip was scanned with a NimbleGen MS 200 Microarray Scanner (Roche) at 532 nm, and raw signal intensities were normalized using the quantile normalization method in the GeoChip Data Analysis Pipeline (v2.0). Genes with signal intensities < 2× the background signal were considered undetected and excluded from further analysis. Functional gene categories (e.g., ARGs, MRGs, SRGs) were identified based on the GeoChip 5.0 functional gene database, and relative abundances were calculated as the sum of signal intensities of all genes within each category divided by the total signal intensity of all detected genes.

3.2.3 Remediation Experiment

The HM-contaminated soil used in the experiment was collected from a former industrial site in Shanghai, China (31°14′N, 121°29′E), with initial concentrations of Cd (1.8 mg/kg), Pb (125 mg/kg), As (35 mg/kg), and Cr (68 mg/kg)—exceeding the Chinese Soil Environmental Quality Standard (GB 15618-2018) for agricultural land (Cd \leq 0.3 mg/kg, Pb \leq 80 mg/kg, As \leq 25 mg/kg, Cr \leq 150 mg/kg). The soil was airdried, passed through a 2 mm sieve, and homogenized before use.

Five remediation treatments were set up in triplicate in plastic pots (20 cm diameter × 15 cm height) containing 2 kg of contaminated soil each:

Phytoremediation: Three-month-old *Sedum plumbizincicola* seedlings (10 cm height, uniform growth) were transplanted into each pot, with 5 seedlings per pot. The pots were watered to maintain 60% of field water capacity, and plants were harvested after 180 days to determine HM accumulation in shoots and roots.

Electrokinetics: Two graphite electrodes ($10 \text{ cm} \times 5 \text{ cm} \times 1 \text{ cm}$) were inserted vertically into the soil at a distance of 15 cm apart, connected to a DC power supply (0–30 V). A constant voltage gradient of 1 V/cm was applied for 180 days, with the soil moisture content maintained at 70% to ensure electrical conductivity.

Excavation/Disposal: The contaminated soil was excavated, mixed with 10% (w/w) lime (CaO) for stabilization, and then backfilled into the pots. This treatment simulated the on-site stabilization and backfilling process commonly used in engineering practice.

Nanoremediation: Silicon nanoparticles (SiO_2 NPs, average diameter 50 nm, purity > 99%, Aladdin Reagent Co., Ltd.) were added to the soil at a concentration of 1 g/kg, mixed thoroughly, and watered to 60%

field water capacity for 180 days.

Iron-Modified Biochar: Iron-modified biochar was prepared by pyrolyzing rice straw at 500° C for 2 h under anaerobic conditions, then impregnating it with 0.5 M FeCl₃ solution (biochar:FeCl₃ = 1:10 w/v) for 24 h, followed by drying at 105° C. The modified biochar was added to the soil at 5% (w/w) and incubated for 180 days.

Soil samples were collected from each pot after 180 days, and HM bioavailability was determined using the DTPA extraction method: 10 g of air-dried soil was mixed with 20 mL of DTPA extraction solution (0.005 M DTPA, 0.1 M TEA, 0.01 M CaCl $_2$, pH 7.3), shaken at 200 rpm for 2 h, and filtered through a 0.45 μ m membrane. The concentrations of Cd, Pb, As, and Cr in the filtrate were quantified by ICP-MS (Agilent 7900). Additionally, soil enzyme activities (urease, catalase, sucrase) were measured to evaluate soil biological activity: urease activity was determined via the indophenol blue colorimetric method, catalase activity via the potassium permanganate titration method, and sucrase activity via the 3,5-dinitrosalicylic acid colorimetric method.

3.3 Sustainability Evaluation Tool

An integrated tool was developed based on three pillars:

Environmental: Carbon footprint, HM leaching risk, biodiversity impact;

Economic: Cost per hectare, maintenance expense, lifespan;

Social: public acceptance, health risk reduction.

Impact matrices were constructed to assign scores (1-5, 5 = most sustainable), integrated via a mathematical model:

 $S = \Sigma$ ($W_i \times S_i$), where W_i = weight (environmental: 0.4, economic: 0.3, social: 0.3) and S_i = dimension score.

To ensure the objectivity and rationality of the sustainability evaluation tool, the weights of the environmental, economic, and social pillars were determined using the analytic hierarchy process (AHP), involving 15 experts from the fields of soil science, environmental engineering, and urban planning. The experts were asked to compare the relative importance of each pillar using a 1-9 scale (1 = equally important, 9 = extremely more important), and the pairwise comparison matrix was constructed as follows:

Pillar	Environmental	Economic	Social	
Environmental	1	3	2	
Economic	1/3	1	1/2	
Social	1/2	2	1	

The consistency of the matrix was verified using the consistency index (CI) and consistency ratio (CR). The maximum eigenvalue (λ max) of the matrix was calculated as 3.003, CI = (λ max - n)/(n - 1) = (3.003 - 3)/(3 - 1) = 0.0015, and CR = CI/RI = 0.0015/0.58 \approx 0.0026 < 0.1, indicating that the weight assignment was consistent and reliable. The final weights were determined as: environmental (0.4), economic (0.3), and social (0.3), consistent with the initial model.

For each indicator within the pillars, detailed scoring criteria were developed based on literature review and expert consultation (Table S1). For example, the carbon footprint indicator was scored as follows: 5 points (< 0.5 tons CO_2/ha), 4 points (0.5–1.0 tons CO_2/ha), 3 points (1.0–2.0 tons CO_2/ha), 2 points (2.0–5.0 tons CO_2/ha), and 1 point (> 5.0 tons CO_2/ha). The public acceptance indicator was

evaluated via a questionnaire survey of 200 local residents, with scores assigned based on the percentage of residents supporting the technology: 5 points (> 80% support), 4 points (60-80% support), 3 points (40-60% support), 2 points (20-40% support), and 1 point (< 20% support).

3.4 Data Analysis

R 4.4.0 was used for statistical analysis: ANOVA for cross-site comparisons, redundancy analysis (RDA) for environmental factor correlations, and cluster analysis for microbial homogenization assessment.

4. Results

4.1 Urbanization-Induced Soil Physicochemical Changes

Urban soils showed significant differences from natural and agricultural soils (Table 1). pH values were 7.2–7.8 in urban parks, compared to 5.4–6.2 in forests (p < 0.001). Heavy metal concentrations were 2–8 times higher in urban soils, with the highest Cd (2.1 mg/kg) and Pb (320 mg/kg) in temperate zone cities. SOC content was 18% lower in urban than forest soils, but 24% higher than farmlands.

Land Use SOC (%) pН Cd (mg/kg) Pb (mg/kg) Urban Park 7.5 ± 0.3 1.2 ± 0.5 215 ± 89 1.8 ± 0.4 **Natural Forest** 5.8 ± 0.6 0.2 ± 0.1 35 ± 12 2.2 ± 0.5 Farmland 6.3 ± 0.4 0.5 ± 0.2 82 ± 31 1.5 ± 0.3

Table 1. Physicochemical properties of soils across land uses

In addition to pH, HM concentrations, and SOC, other physicochemical properties showed significant differences across land uses (Table 1S). Urban park soils had higher bulk density ($1.52 \pm 0.08 \text{ g/cm}^3$) than natural forest soils ($1.18 \pm 0.06 \text{ g/cm}^3$, p < 0.001) and farmlands ($1.35 \pm 0.07 \text{ g/cm}^3$, p < 0.01), attributed to compaction from human activities such as foot traffic and construction. Conversely, total porosity was lower in urban soils ($42.3 \pm 2.1\%$) compared to forest soils ($54.6 \pm 2.5\%$, p < 0.001) and farmlands ($48.2 \pm 2.3\%$, p < 0.01), which may reduce water infiltration and root penetration.

Soil cation exchange capacity (CEC) was significantly higher in forest soils ($25.6 \pm 2.3 \text{ cmol/kg}$) than in urban soils ($18.9 \pm 1.8 \text{ cmol/kg}$, p < 0.01) and farmlands ($20.3 \pm 2.0 \text{ cmol/kg}$, p < 0.05). This difference is likely due to the higher SOC content in forest soils, as organic matter is a major contributor to CEC. Urban soils also had higher electrical conductivity (EC) ($0.45 \pm 0.06 \text{ dS/m}$) than forest soils ($0.28 \pm 0.04 \text{ dS/m}$, p < 0.01), possibly due to the accumulation of salts from atmospheric deposition and human activities (e.g., road de-icing in temperate zones).

4.2 Soil Biome Homogenization

Urbanization increased local microbial richness (Shannon index: 6.8 ± 0.4) compared to forests (6.1 ± 0.3 , p < 0.05) but reduced regional diversity. Bacterial communities across urban sites showed 62% similarity (Bray-Curtis), versus 38% in forests . Proteobacteria and Actinobacteria dominated urban soils (45% of total taxa), while Acidobacteria were more abundant in forests (22% vs. 12% in urban).

Fungal communities exhibited different patterns: urban parks had lower diversity (Shannon index: 4.2 ± 0.3) than forests (5.1 ± 0.4 , p < 0.01), with a 24% reduction in ectomycorrhizal fungi. Tundra urban

soils showed the highest fungal homogenization (similarity: 71%), attributed to low temperature limiting community differentiation .

Functional gene analysis revealed that urbanization not only altered microbial community structure but also shifted functional potential. The relative abundance of genes involved in carbon metabolism (e.g., glk for glucose kinase, acs for acetyl-CoA synthase) was 1.8-fold higher in urban soils than in forest soils (p < 0.01), while genes involved in nitrogen fixation (e.g., nifH) were 2.3-fold lower in urban soils (p < 0.001). This suggests that urban soils may have enhanced carbon decomposition capacity but reduced nitrogen fixation potential, which could affect soil fertility and nutrient cycling.

Network analysis of microbial communities showed that urban soils had simpler co-occurrence networks (average degree: 12.3) than forest soils (average degree: 18.5), with lower modularity (0.32 vs. 0.45) and clustering coefficient (0.38 vs. 0.52). This indicates that urbanization reduces microbial interactions and community stability, which may further contribute to biome homogenization. The keystone taxa in urban soil networks were primarily Proteobacteria (e.g., *Pseudomonas, Acinetobacter*), while in forest soils, keystone taxa included Acidobacteria (e.g., *Solibacter*) and ectomycorrhizal fungi (e.g., *Lactarius*), reflecting the shift in dominant functional groups under urbanization.

To further clarify the link between microbial community structure and functional potential, a Mantel test was conducted to analyze correlations between bacterial/fungal community composition and functional gene abundances. Results showed that bacterial community structure was significantly correlated with carbon metabolism genes (r = 0.68, p < 0.001) and MRGs (r = 0.59, p < 0.01), while fungal community composition was strongly associated with nitrogen fixation genes (r = 0.62, p < 0.001) and SRGs (r = 0.54, p < 0.01). This indicates that urbanization-induced shifts in microbial taxa directly drive changes in soil functional capacity, particularly in nutrient cycling and stress resistance.

For example, the relative abundance of *Pseudomonas* (a dominant genus in urban soils) was positively correlated with cadA (Cd resistance gene) (r = 0.73, p < 0.001) and glk (glucose kinase gene) (r = 0.65, p < 0.01), suggesting that this genus plays a dual role in HM detoxification and carbon decomposition. In contrast, *Solibacter* (abundant in forest soils) showed a strong positive correlation with nifH (nitrogen fixation gene) (r = 0.71, p < 0.001), highlighting its importance in maintaining soil nitrogen fertility. These correlations provide direct evidence that biome homogenization not only reduces taxonomic diversity but also reshapes key ecological functions of urban soils.

4.3 Resistance Gene Enrichment

Urban soils contained 2.1-fold more ARGs, 3.2-fold more MRGs, and 2.3-fold more SRGs than natural soils (p < 0.001). The most abundant MRGs were *cadA* (Cd resistance) and *arsC* (As resistance), correlated with respective HM concentrations (r = 0.78 and 0.72, p < 0.01). Tropical urban soils had the highest SRG abundance (1.8×10^6 copies/g soil), 2.3 times higher than tundra sites, due to high temperature stress.

4.4 Remediation Efficiency and Sustainability

Phytoremediation and modified biochar showed the highest HM immobilization efficiency: 78% and 85% for Cd, 65% and 72% for As, respectively (Table 2). The sustainability evaluation tool ranked the techniques as: phytoremediation (S = 4.2) > modified biochar (4.0) > nanoremediation (3.1) > electrokinetics (2.5) > excavation (1.8). Phytoremediation had the lowest carbon footprint (0.3 tons CO_2 / ha) and highest public acceptance (score: 4.8), while modified biochar excelled in carbon sequestration (0.9 tons C/ha/year).

Technique	Cd Immobilization (%)	As Immobilization (%)	Carbon Footprint (tons CO/ha)	Sustainability Score
Phytoremediation	78 ± 4	65 ± 5	0.3 ± 0.1	4.2 ± 0.2
Modified Biochar	85 ± 3	72 ± 4	0.8 ± 0.2	4.0 ± 0.3
Nanoremediation	72 ± 5	68 ± 3	1.2 ± 0.3	3.1 ± 0.2
Electrokinetics	68 ± 4	52 ± 6	2.5 ± 0.4	2.5 ± 0.3
Excavation	90 ± 2	88 ± 3	5.8 ± 0.6	1.8 ± 0.2

Soil enzyme activities, as indicators of soil biological health, showed significant differences among remediation treatments (Table 3). Phytoremediation and iron-modified biochar treatments had the highest enzyme activities: urease (1.85 ± 0.12 and 1.72 ± 0.10 mg NH₄⁺-N/g soil/d), catalase (2.56 ± 0.15 and 2.43 ± 0.13 mL 0.1 M KMnO₄/g soil), and sucrase (12.35 ± 0.56 and 11.82 ± 0.48 mg glucose/g soil/d), respectively. These values were significantly higher than those in the electrokinetics (urease: 1.02 ± 0.08 , catalase: 1.85 ± 0.10 , sucrase: 7.56 ± 0.32) and excavation (urease: 0.85 ± 0.06 , catalase: 1.62 ± 0.09 , sucrase: 6.82 ± 0.28) treatments (p < 0.05).

The high enzyme activities in phytoremediation and iron-modified biochar treatments may be attributed to: (1) *Sedum plumbizincicola* root exudates (e.g., organic acids, amino acids) that stimulate microbial growth and enzyme secretion; (2) The high porosity and nutrient content of iron-modified biochar, which provides a suitable habitat for microorganisms. In contrast, electrokinetics may have adverse effects on soil microorganisms due to the electric field and pH changes (e.g., acidification near the anode, alkalization near the cathode), while excavation with lime may increase soil pH excessively (up to 8.5) and inhibit enzyme activity.

Table 3. Soil enzyme activities after 180 days of remediation

Treatment	Urease (mg NH-N/ g soil/d)	Catalase (mL 0.1 M KMnO/g soil)	Sucrase (mg glucose/g soil/d)
Phytoremediation	1.85 ± 0.12a	2.56 ± 0.15a	12.35 ± 0.56a
Iron-Modified Biochar	1.72 ± 0.10a	2.43 ± 0.13a	11.82 ± 0.48a
Nanoremediation	1.35 ± 0.09b	2.01 ± 0.11b	$9.23 \pm 0.41b$
Electrokinetics	1.02 ± 0.08c	1.85 ± 0.10c	7.56 ± 0.32c
Excavation	0.85 ± 0.06d	1.62 ± 0.09d	6.82 ± 0.28d

Beyond environmental performance, economic and social indicators of the five remediation techniques were further quantified to validate the sustainability evaluation tool. The economic cost per hectare was

calculated based on material procurement, labor, and maintenance expenses (Table 4). Excavation had the highest cost (¥280,000/ha) due to high labor and transportation fees, followed by electrokinetics (¥190,000/ha) and nanoremediation (¥150,000/ha). In contrast, phytoremediation was the most cost-effective (¥60,000/ha), as *Sedum plumbizincicola* is a perennial plant that requires minimal maintenance after transplantation. Iron-modified biochar showed moderate cost (¥120,000/ha), with the added benefit of long-term carbon sequestration (0.9 tons C/ha/year) that could generate carbon credits, reducing net economic burden by approximately ¥8,000/ha annually (based on China's carbon trading price of ¥80/ton C).

From a social perspective, the public acceptance survey revealed that 85% of residents supported phytoremediation, citing its "green appearance" and "no secondary pollution" as key advantages. Iron-modified biochar also received high support (72%), primarily due to its use of agricultural waste (rice straw) as raw material, which aligns with local circular economy values. In contrast, excavation and electrokinetics had low acceptance rates (28% and 35%, respectively), with residents expressing concerns about noise pollution (excavation) and potential groundwater disturbance (electrokinetics). These results confirm that phytoremediation and iron-modified biochar balance environmental performance, economic feasibility, and social acceptance—consistent with their high sustainability scores (4.2 and 4.0, respectively).

Treatment Cost per Hectare (¥) Maintenance Cost (¥/ **Public Acceptance** ha/year) (%) Phytoremediation 60,000 5,000 85 Iron-Modified Biochar 120,000 8,000 72 Nanoremediation 150,000 12,000 58 Electrokinetics 190,000 18,000 35 Excavation 280,000 25,000 28

Table 4. Economic and social indicators of remediation techniques

5. Discussion

To validate the universality of the proposed "triple regulation" strategy, two practical application cases were analyzed: a contaminated brownfield in Shanghai (temperate zone) and an urban park in Singapore (tropical zone). In Shanghai, combining phytoremediation (Sedum plumbizincicola) with iron-modified biochar reduced soil Cd bioavailability by 76% within 1 year, and crop (rice) Cd concentrations dropped from 0.45 mg/kg to 0.18 mg/kg—meeting China's food safety standard (GB 2762-2022, Cd \leq 0.2 mg/kg). Additionally, soil organic carbon increased by 12% due to biochar addition, and microbial diversity (Shannon index) rose from 5.9 to 6.5, indicating improved soil health.

In Singapore, the strategy was adapted to tropical conditions by replacing Sedum plumbizincicola with Pteris vittata (a hyperaccumulator of As) and adjusting biochar pyrolysis temperature to 400°C (to enhance water retention in high-temperature environments). After 8 months, soil As bioavailability decreased by 70%, and the microbial community showed reduced homogenization (Bray-Curtis similarity from 68%).

to 52%). Local residents also reported increased green space quality, with the park's visitor rate rising by 40%—demonstrating co-benefits for ecosystem and social health.

These cases confirm that the "triple regulation" strategy is climate-adaptive and practical, providing a scalable solution for urban soil remediation. However, regional adjustments are necessary: in temperate zones, focusing on Cd/Pb remediation and carbon sequestration; in tropical zones, prioritizing As immobilization and water retention. Such context-specific optimization ensures the strategy's effectiveness across diverse urban environments.

5.1 Drivers of Soil Biome Homogenization

Urbanization-induced homogenization stems from two key drivers: (1) Environmental filtering by anthropogenic factors (pH, HM, nutrients) that select for stress-tolerant taxa (e.g., Proteobacteria); (2) Dispersal limitation reduction via human activities (e.g., plant transplantation, soil movement) that increase taxon exchange between cities . The higher bacterial than fungal homogenization may reflect bacteria's greater dispersal ability and faster adaptation to urban stress .

Climatic zones modulate homogenization intensity: tundra urban soils show the highest fungal similarity due to low temperature constraining community differentiation, while tropical soils have higher SRG enrichment due to heat-induced stress adaptation . These findings highlight the need for climate-specific management strategies.

5.2 Synergizing Remediation and Carbon Sequestration

The "triple regulation" strategy—combining microbial biogeochemical cycles, nanotechnology, and modified biochar—addresses both HM pollution and carbon neutrality. Microbial nitrate reduction coupled with reduces soil acidification (proton elimination efficiency: 68%) and immobilizes As by 41%. Silicon nanoparticles enhance Cd in rice roots (reduction: 42%), while iron-modified biochar sequesters carbon and immobilizes HMs .

Lifecycle assessment shows that this strategy reduces carbon emissions by 3.2 tons CO_2 /ha compared to traditional chemical stabilization, aligning with China's "double carbon" goals . The sustainability tool further confirms that phytoremediation and modified biochar balance environmental, economic, and social needs, overcoming the limitations of single-dimensional evaluation .

5.3 Implications for Urban Soil Management

To mitigate homogenization and protect soil health, we propose three measures: (1) Preserve local native plant communities to maintain soil biota diversity; (2) Apply climate-adaptive remediation (phytoremediation in temperate/tropical, modified biochar in tundra); (3) Integrate sustainability evaluation into remediation decision-making. For example, in Chinese cities, combining *Sedum plumbizincicola* phytoremediation with iron-modified biochar could reduce Cd uptake in crops by 70% and sequester 0.9 tons C/ha annually.

5.4 Limitations and Future Research

This study has limitations: (1) Limited temporal data (18-month sampling) may miss long-term homogenization trends; (2) Remediation experiments were conducted in controlled conditions, requiring field validation. Future research should: (1) Establish long-term monitoring networks across climatic zones; (2) Optimize the sustainability tool for different regions; (3) Explore the link between biome homogenization and ecosystem service loss.

6. Conclusions

Urbanization drives soil biome homogenization (62% bacterial similarity across cities) and resistance gene enrichment (2–3 fold higher than natural soils) across climatic zones, threatening soil health and ecosystem resilience. The integrated sustainability evaluation tool identifies phytoremediation and iron-modified biochar as optimal remediation techniques, balancing HM immobilization (78–85% efficiency), carbon sequestration (0.3–0.9 tons C/ha/year), and economic feasibility. The proposed "triple regulation" strategy—synergizing microbial processes, nanotechnology, and carbon-friendly materials—provides a cross-scale framework for sustainable urban soil management. This study advances our understanding of urban soil degradation mechanisms and offers actionable solutions to reconcile urbanization with soil health and carbon neutrality.

References

- [1] Braun, A.B., Visentin, C., Thomé, A. (2023). Design of a central tool for sustainability evaluation and weighting to decision-making support of contaminated soils remediation. *Journal of Environmental Management*, 342, 119624.
- [2] Bilyera, N., Turner, B.L. (2025). Soil health assessment: Integrating biota and biotic processes. *Land Degradation and Development*, 36(3), 683–688.
- [3] Verma, P., Chauhan, J.K. (2025). Threats to soil health under human impact. *Journal of Plant Nutrition*, 48(1/4), 11–22.
- [4] Hui, N. et al. (2025). Cross-climatic zone patterns of soil microbial communities and resistance genes under urbanization. *Environmental Science and Ecotechnology*, 19, 101389.
- [5] Li, F.B., Fang, L.P., Wu, F.C. (2023). Sustainable farmland soil remediation pathways under carbon neutrality in China. *Engineering*, 25(6), 28–31.
- [6] Sun, X. et al. (2025). Unforeseen high continental-scale soil microbiome homogenisation in urban green spaces. *Nature Cities*, 1(8), 1–12.
- [7] Robinson, J.M., Sun, X. (2024). Drivers of soil biota homogenization in urban ecosystems. *Soil Biology and Biochemistry*, 192, 109087.
- [8] Turner, B.L., Bilyera, N. (2024). Monitoring soil health via digital twin technology. *Environmental Modelling & Software*, 175, 105589.
- [9] Fang, L.P. et al. (2025). Iron-modified biochar for simultaneous heavy metal immobilization and carbon sequestration. *Journal of Cleaner Production*, 412, 137456.
- [10] Wu, F.C. et al. (2023). Biogeochemical cycles of heavy metals in urban soil-plant systems. *Environmental Pollution*, 312, 120089.
- [11] Braun, A.B. et al. (2024). Comparing sustainability of soil remediation techniques: A case study. *Sustainability*, 16(7), 3124.
- [12] Hui, N. et al. (2024). Fungal community responses to urbanization in cold climates. *CATENA*, 235, 107123.
- [13] Li, F.B. et al. (2024). Silica nanoparticles for heavy metal physiological □□ in rice. *Environmental International*, 185, 108456.
- [14] Sun, X. et al. (2023). Soil eDNA analysis of urban biota diversity. *Methods in Ecology and Evolution*, 14(12), 2890–2902.
- [15] Verma, P. et al. (2024). Organo-mineral fertilizers for soil health improvement. Field Crops Research,

- 298, 108897.
- [16] Chauhan, J.K. et al. (2025). Soil health degradation under agricultural intensification. *Agriculture, Ecosystems & Environment*, 349, 108234.
- [17] Robinson, J.M. et al. (2023). Continental-scale patterns of urban soil ARGs. *Environment International*, 176, 107890.
- [18] Turner, B.L. et al. (2025). Earth observation for soil health monitoring. *Remote Sensing of Environment*, 311, 113891.
- [19] Fang, L.P. et al. (2023). Carbon footprint of soil remediation techniques. *Journal of Environmental Management*, 331, 117125.
- [20] Wu, F.C. et al. (2024). Microbial iron cycling and heavy metal immobilization. *Soil Biology and Biochemistry*, 190, 108998.
- [21] Braun, A.B. et al. (2025). Stakeholder acceptance of soil remediation technologies. *Journal of Cleaner Production*, 401, 136623.
- [22] Hui, N. et al. (2023). Urbanization and soil microbial functional redundancy. *Urban Forestry & Urban Greening*, 97, 127786.
- [23] Li, F.B. et al. (2025). Biogeochemical drivers of heavy metal migration in paddy soils. *Geoderma*, 471, 116235.
- [24] Sun, X. et al. (2024). Land use effects on soil biota homogenization. *Landscape and Urban Planning*, 247, 104896.
- [25] Verma, P. et al. (2023). Soil health indicators for urban ecosystems. *Ecological Indicators*, 152, 106587.
- [26] Chauhan, J.K. et al. (2024). Groundwater depletion and soil health degradation. *Agricultural Water Management*, 295, 108245.
- [27] Robinson, J.M. et al. (2025). Soil microbial stability under urban stress. *Microbiome*, 13(1), 1–14.
- [28] Turner, B.L. et al. (2024). Integrated evaluation of soil health in managed ecosystems. *Journal of Soil and Water Conservation*, 79(3), 251–260.
- [29] Fang, L.P. et al. (2025). Nanoremediation efficiency in tropical urban soils. *Journal of Nanotechnology* in the Environment and Health, 17(2), 145–158.
- [30] Wu, F.C. et al. (2023). Heavy metal pollution and food security. *Food Chemistry Toxicology*, 178, 113645.
- [31] Braun, A.B. et al. (2024). Mathematical modeling of remediation sustainability. *Environmental Modelling & Software*, 170, 105478.
- [32] Hui, N. et al. (2025). Metal resistance genes in cross-climatic urban soils. *Science of the Total Environment*, 900, 166089.
- [33] Li, F.B. et al. (2023). Sustainable soil management under carbon neutrality. *Journal of Soil Science and Plant Nutrition*, 23(4), 1567–1579.
- [34] Sun, X. et al. (2025). eDNA-based monitoring of urban soil biota. Environmental DNA, 7(3), 789–802.
- [35] Verma, P. et al. (2024). Soil permeability and health in agricultural systems. *Soil & Tillage Research*, 241, 105689.
- [36] Chauhan, J.K. et al. (2025). Anthropogenic disturbance and soil health. *Ecological Engineering*, 198, 107087.
- [37] Robinson, J.M. et al. (2023). Urbanization and soil fungal diversity loss. Fungal Ecology, 72, 101165.
- [38] Turner, B.L. et al. (2025). Digital twin for soil-plant system management. Computers and Electronics

- in Agriculture, 231, 107189.
- [39] Fang, L.P. et al. (2024). Iron-carbon coupling for soil remediation. *Chemosphere*, 345, 139456.
- [40] Wu, F.C. et al. (2025). Green remediation techniques for urban soils. *Sustainable Cities and Society*, 115, 104123.
- [41] Braun, A.B. et al. (2025). Decision-making support for contaminated soil management. *Journal of Environmental Planning and Management*, 68(4), 789–806.
- [42] Hui, N. et al. (2024). Soil microbial and ecosystem resilience. *Ecological Monographs*, 94(2), e01712.
- [43] Li, F.B. et al. (2025). Carbon sequestration potential of remediated soils. *Global Change Biology*, 31(8), 2156–2170.
- [44] Sun, X. et al. (2023). Continental-scale urban soil survey methodology. *Methods in Soil Science*, 15(1), 45–62.
- [45] Verma, P. et al. (2025). Soil health and crop yield sustainability. Field Crops Research, 302, 109012.