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Abstract: This paper presents an enhanced and comprehensive framework for optimal scheduling of Plug‑in Elec‑
tric Vehicle (PEV) charging by integrating Mixed Strategist Dynamics (MSD) with Forward Dynamic Programming
(FDP) to achievebothuser‑level fairness andgrid‑orientedoptimization. TheMSDmechanismgenerates probabilis‑
tic charging strategies that distribute demand across time slots while incorporating equity‑based payoff functions
to prevent synchronized charging peaks. Building on these probabilistic schedules, an FDP‑based deterministic
refinement layer is introduced to ensure accurate State‑of‑Charge (SoC) fulfilment, minimize operating cost, and
satisfy grid operational constraints. To ensure technical feasibility, the proposed hybrid MSD–FDP approach is val‑
idated on the IEEE 34‑bus radial distribution system using Backward/Forward‑Sweep (BFS) power‑flow analysis.
A voltage‑penalty cost component is incorporated to restrict bus‑voltage deviations within 0.955–1.05 p.u. and to
prevent transformer overloading under high EV penetration. Themodel also integrates Vehicle‑to‑Grid (V2G) capa‑
bility, enabling controlled discharging during peak‑load conditions to support voltage recovery and improve feeder
stability. Simulation results demonstrate that the proposed hybrid framework achieves substantial improvements
over MSD‑only scheduling and uncoordinated charging. Peak‑load demand is reduced by approximately 27%, and
the minimum bus voltage is improved from 0.91 p.u. to 0.958 p.u. Additionally, fairness among EVs is significantly
enhanced with entropy values averaging 1.77–1.79, indicating balanced access to charging resources. The findings
confirm that coordinated charging with V2G support can effectively transform EV fleets into flexible distributed
energy assets while ensuring cost efficiency, technical reliability, and scalability for real‑world smart‑grid applica‑
tions.
Keywords: Plug‑in Electric Vehicles (PEV); Mixed Strategist Dynamics (MSD); Forward Dynamic Programming
(FDP); Grid‑Oriented Optimization; Vehicle‑to‑Grid (V2G); IEEE 34‑Bus

1. Introduction
The rapid electrification of transportation has become a key component in global sustainability and decar‑

bonization initiatives. Plug‑in Electric Vehicles (PEVs) play a significant role in reducing emissions and enabling
flexible demand‑sidemanagement. However, the increasing penetration of PEVs introduces substantial operational
challenges to existing power distribution networks. Whenmany vehicles charge simultaneously—particularly dur‑
ing evening peak hours—distribution feeders experience severe load spikes, transformer overloading, and voltage
instability. These issues degrade system reliability and efficiency, especially in networks originally designed for
predictable residential consumption.

To address these challenges, several charging‑scheduling strategies have been proposed. Centralized optimiza‑
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tion methods such as mixed‑integer programming provide high‑quality optimal solutions but require extensive
communication, high computational power, and raise data‑privacy concerns. In contrast, decentralized and game‑
theoretic scheduling frameworks offer better scalability and autonomy but often struggle to guarantee fairness
among participating users, deterministic fulfillment of State‑of‑Charge (SoC) requirements, and strict compliance
with grid operational limits. Additionally, most prior studies focus either on user‑centric economic objectives or
system‑level voltage stability, without achieving a balanced integration of both perspectives.

To bridge this gap, thiswork presents a hybridmulti‑layer scheduling architecture that integratesMixed Strate‑
gist Dynamics (MSD) with Forward Dynamic Programming (FDP), incorporating realistic grid constraints and
Vehicle‑to‑Grid (V2G) capability. MSD generates probabilistic charging distributions enhanced with fairness‑
oriented payoff functions, while FDP produces deterministic charging trajectories that satisfy SoC and operational
grid constraints. A power‑flow validation module based on Backward/Forward Sweep (BFS) enforces voltage lim‑
its and transformer loading constraints on the IEEE 34‑bus system. V2G support further enables peak‑load relief
and voltage improvement through controlled discharging.

The novelty of this work lies in its unified scheduling framework that simultaneously ensures fairness, de‑
terministic optimization, and grid reliability—achieving significant improvements in peak‑load reduction, voltage
quality, and operational cost efficiency under high PEV penetration.

Major Contributions of This Work

The major contributions of this work are summarized as follows:
1. Development of a hybrid MSD–FDP scheduling framework that combines probabilistic fairness‑driven coor‑

dination with deterministic optimization for SoC fulfilment.
2. Introduction of a voltage‑penalty cost formulation to enhance grid stability and enforce technical feasibility

under realistic distribution‑system constraints.
3. Integration of V2G capability to provide peak‑load mitigation and support voltage regulation during high‑

demand periods.
4. Validation on the IEEE 34‑bus feeder demonstrating real‑world applicability using BFS power‑flow analysis.
5. Significant performance improvements, achieving approximately 27% peak‑load reduction and improving

minimum bus voltage from 0.91 p.u. to 0.958 p.u. under coordinated scheduling.
6. Enhanced fairness among users, demonstrated through entropy‑based equity metrics with values between

1.77–1.79, ensuring balanced access to charging resources.
The remainder of this paper is organized as follows. Section 2 describes the system model and the proposed

MSD–FDP scheduling framework. Section 3 presents the simulation results and grid‑level performance analysis.
Section 4 discusses the implications and limitations of the proposed approach. Finally, Section 5 concludes the
paper and outlines future research directions.

2. Materials and Methods
The proposed methodology is based on an integrated cyber‑physical framework that models the interaction

between Plug‑in Electric Vehicles (PEVs), charging infrastructure, tariff signals, and distribution‑grid operational
constraints. The system enables fair, cost‑efficient, and grid‑safe charging coordination by combining probabilistic
decision‑making and deterministic optimization. Each vehicle ismodelled as an energy‑storage unit with a capacity
of 20–24 kWh, and the State of Charge (SoC) is restricted between 20%and 90% to protect battery lifecycle. Level‑2
charging (3.3 kW) and Vehicle‑to‑Grid (V2G) discharging (−3.2 kW) capabilities are considered along with realistic
arrival and departure time variations.

The overall architecture consists of three functional layers—user layer, scheduling layer, and grid layer—as
shown inFigure1. Theuser layermodels individual EVbehavior andenergydemandpatterns. The scheduling layer
coordinates charging using Mixed Strategist Dynamics (MSD) and Forward Dynamic Programming (FDP) to ensure
fairness and deterministic fulfilment of SoC requirements. The grid layer evaluates technical feasibility through
power‑flow validation, enforcing voltage and transformer‑loading constraints.
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Figure 1. Three‑layer scheduling framework for EV load management.

2.1. EV and SystemModelling
The SoC transition of each vehicle is represented as:

𝑆𝑜𝐶𝑖(𝑡 + 1) = 𝑆𝑜𝐶𝑖(𝑡) + 𝜂 ⋅ 𝑃𝑖(𝑡) ⋅ Δ𝑡𝐶bat,𝑖
(1)

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑖(𝑡) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 , 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥 (2)
where 𝜂 represents the charging efficiency, 𝑃𝑖(𝑡) denotes the charging (positive) discharging (negative) power of
vehicle i at time t, Δt is the scheduling interval, and 𝐶𝑏𝑎𝑡,𝑡 is the battery capacity of the i‑th vehicle.

To ensure safe operation and limit battery degradation, the state of charge and charging power are constrained
as shown in Equation (2).

Typical values used in this study are 𝑆𝑜𝐶𝑚𝑖𝑛 = 20%, 𝜂 = 95%, 𝑃𝑚𝑎𝑥 = 3.3 kW, and 𝑃𝑚𝑖𝑛 = −3.2 kW under V2G
operation.

Charging and discharging losses during V2G operation are modeled through the efficiency parameter 𝜂, which
accounts for inverter and battery conversion losses.

2.2. Mixed Strategist Dynamics (MSD)
MSD represents EVs as agents competing for limited charging opportunities using probabilistic rather than

deterministic strategies to avoid synchronized peaks. The charging‑strategy update rule is expressed as:

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝛼[𝑈𝑖(𝑡) − 𝑈̄𝑖(𝑡)]𝑝𝑖(𝑡) (3)

𝑈𝑖 = −𝜆𝐶𝑖 − 𝛽𝑇𝑖 − 𝛾𝑊𝑖 + 𝛿𝐹𝑖 (4)

𝐹𝑖 = −(𝑝1𝑙𝑜𝑔(𝑝1) + 𝑝2𝑙𝑜𝑔(𝑝2) + … + 𝑝𝑚𝑙𝑜𝑔(𝑝𝑚)) (5)
where 𝛼 is the learning rate, 𝑃𝑖(𝑡) represents the mixed strategy probability of vehicle i at time t, 𝑈𝑖(𝑡) denotes the
individual payoff, and \bar{U}_i(t) is the average payoff across all strategies.

The payoff function integrates multiple objectives, including charging cost 𝐶𝑖 , tariff penalty 𝑇𝑖 , battery wear
cost𝑊𝑖 , and a fairness rewar term 𝐹𝑖 .

Fairness among users is quantified using an entropy‑basedmeasure, which encourages a balanced distribution
of charging probabilities across users.

Higher entropy values indicate more equitable participation. MSD enables decentralized learning using only
local information, improving scalability and privacy.

The overall MSD process is illustrated in Figure 2.

2.3. Forward Dynamic Programming (FDP)
FDP refines MSD outputs into deterministic power trajectories and ensures SoC satisfaction while minimizing

economic cost and grid impact. The SoC update rule is:
The state‑of‑charge transition during the FDP stage follows the EV systemmodel defined in Equation (1).

𝐽 =෍
𝑇

𝑡=1
ቂ(𝐿base(𝑡) + 𝑃𝑖(𝑡))

2 ⋅ 𝑇𝑎𝑟𝑖𝑓𝑓(𝑡) + 𝜆𝑣 ⋅ ∅(𝑉𝑡)ቃ (6)
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where 𝐿𝑏𝑎𝑠𝑒(𝑡) represents the non‑EV demand, 𝑇𝑎𝑟𝑖𝑓𝑓(𝑡) is the time‑varying electricity price, 𝜆𝑣 is the voltage‑
penalty coefficient, and ∅(𝑉𝑡) is a voltage constraint function that penalizes deviations outside 0.95–1.05 p.u.

Figure 2. Flowchart of the Mixed Strategist Dynamics (MSD) scheduling process, showing probabilistic strategy
updates based on fairness‑aware payoffs.

2.4. Grid‑Oriented Optimization
Grid validation is performed using the Backward/Forward‑Sweep (BFS) power‑flow algorithm on the IEEE 34‑

bus system to verify voltage limits and transformer loading. V2G operation provides controlled discharging during
peak periods to enhance system stability and reduce peak loading (Figure 3).

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥 , 𝑆𝑜𝐶𝑖(𝑡) ≥ 𝑆𝑜𝐶𝑚𝑖𝑛 (7)

Figure 3. Overall scheduling framework integrating MSD, Forward Dynamic Programming (FDP), grid validation
using Backward/Forward Sweep (BFS), and Vehicle‑to‑Grid (V2G) support.

Forward Dynamic Programming Flowchart Explanation: The proposed FDP algorithm operates in sequen‑
tial stages to determine the optimal charging and discharging profile for each Plug‑in Electric Vehicle (PEV). The
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process begins by initializing the vehicle parameters, including battery capacity, initial and desired SoC, and maxi‑
mum charging power. In each time step, the algorithm evaluates all feasible actions (charging, discharging, or idle)
while satisfying SoC and power limits. The instantaneous cost is computed using the time‑dependent tariff and the
voltage‑penalty term derived from bus‑voltage deviations. The algorithm then updates the SoC for the next state
and accumulates the total cost across the scheduling horizon. This forward recursion continues until all time slots
are processed. The optimal path, corresponding to the minimum cumulative cost, yields the final power trajectory
that satisfies both cost minimization and grid‑stability constraints.

2.5. Simulation Setup and Parameters
Simulations are conducted on the IEEE 34‑bus distribution feeder with 10–50 vehicles and realistic residen‑

tial demand profiles. Table 1 summarizes the parameters used in performance evaluation, while Tables 2 and 3
describe the case‑study scenarios and feeder constraints.

Table 1. Simulation parameters used for performance evaluation.

Parameters Values Remarks

Number of EVs 10–50 Fleet size varied across scenarios
Battery capacity (C_{bat}) 20–24 kWh Compact to mid‑size EVs
Charging efficiency (η) 95% Typical Level‑2 chargers
Discharging power (V2G) 0–3.2 kW Enabled in V2G cases
SoC limits 20–90% Preserves battery health
Arrival time (T_{a}) 17:00–20:00 Residential evening plug‑in
Departure time (T_{d}) 06:00–08:00 Morning departure
Energy demand (E_{require}) 8–15 kWh Based on daily travel patterns
Scheduling interval (Δt) 15 min (96 slots/day) Resolution for charging control
Charging power (P_{𝑐ℎ}) 0–3.3 kW Level‑2 charging limit

Additional case studies and feeder parameters are detailed in Tables 2 and 3.

Table 2. Case‑study configuration used to evaluate different coordination scenarios.

Case Description Key Features

Case 1 Uncoordinated charging Immediate charging at arrival
Case 2 MSD scheduling without fairness Probabilistic strategy updates only
Case 3 MSD scheduling with fairness Entropy‑based fairness payoff included
Case 4 FDP scheduling Deterministic SoC fulfilment
Case 5 FDP with grid constraints and V2G integration Voltage/transformer validation, V2G support

Table 3. IEEE 34‑Bus Feeder Parameters and Operational Constraints.

Parameter Value Remarks

Nominal voltage 24.9 kV Standard distribution level
Network configuration Radial, long feeder High R/X ratio, weak end buses
Transformer rating 30 kW Local distribution transformer
Base load profile Evening peak 18:00–22:00 Residential + light commercial demand
Voltage limits (p.u.) 0.95–1.05 IEEE Std.
Regulation devices Regulators, capacitors Limited support under high EV load
Constraint checks Transformer loading, bus voltage Applied during FDP iterations

3. Results
This section presents the performance evaluation of the proposed coordinated scheduling framework under

various operational scenarios. The results analyse Mixed Strategist Dynamics (MSD), Forward Dynamic Program‑
ming (FDP), and grid‑constrained optimization, focusing on convergence behavior, fairness improvement, peak‑
load reduction, voltage stability, and computational efficiency.

3.1. MSD‑Based Scheduling Results
The application of Mixed Strategist Dynamics enables decentralized coordination among EVs by progressively

reducing thenumberof feasible charging strategies froman initial set of sixty options to seven stable equilibria. This
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reduction significantly improves convergence speed and computational tractability. At equilibrium, the charging
power is uniformly distributed at approximately 1.33 kWper time slot, with charging probabilities converging near
0.133.

Uncoordinated (immediate) charging results in steep evening load peaks that overload distribution transform‑
ers. In contrast, MSD scheduling effectively flattens the load curve by spreading charging demands across time,
thereby preventing simultaneous charging and enhancing grid stability. The entropy‑based fairness metric demon‑
strates balanced access to charging slots, achieving values between

1.77 and 1.79, indicating equitable participation.
Figures4–9 illustrate the convergence of strategy sets, comparisonof unmanaged versusMSD‑managed charg‑

ing, SoC trajectories, and improvements in fairness and aggregate load behavior. The results confirm that MSD
avoids synchronized demand peaks and ensures reliable SoC fulfilment for all EVs.

(a)

(b)

(c)

Figure 4. Convergence of MSD charging strategies: (a) Full set of 60 feasible strategies; (b) Reduced set of 7 strate‑
gies; (c) Final equilibrium charging profile.

Figure 5. Total grid load under unmanaged charging and MSD‑managed strategies.
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Figure 6. SoC trajectories under fairness‑aware MSD‑managed strategies (Full, 7‑MS, and 4‑MS sets).

Figure 7. Individual EV charging profiles under different strategy sets.
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Figure 8. Stacked charging profiles showing fairness improvement across EVs.

Figure 9. Aggregate grid load comparison between fairness‑based MSD vs unmanaged charging.

3.2. FDP Optimization Results
Forward Dynamic Programming provides deterministic scheduling refinement based on the probabilistic MSD

output. For a single EV, the optimal charging trajectory precisely achieves the required SoC target (from 15.36
kWh to 16 kWh), demonstrating high accuracy and efficiency. For multiple EVs, the best‑response FDP algorithm
converges within a few iterations, confirming scalability and effective coordination among vehicles.

Figures 10 and 11 show the optimal SoC trajectories for single and multi‑vehicle scenarios, demonstrating
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that all EVs achieve their energy requirements without violating operational constraints.

Figure 10. Optimal power and State of Charge (SoC) trajectories for a single PEV using FDP scheduling.

Figure 11. SoC trajectories of 10 EVs under best‑response FDP coordination.

3.3. Grid‑Oriented Optimization Using FDP
To validate the effectiveness of the proposed FDP‑based optimization, the IEEE 34‑bus distribution system is

considered for grid‑level analysis. The charging profiles obtained from the MSD stage are applied as initial sched‑
ules, and FDP refinement is performed to minimize voltage deviations and power losses. The grid model incor‑
porates voltage‑dependent loads, dynamic tariffs, and a voltage penalty factor λV for buses operating below 0.955

37



New Energy Exploitation and Application | Volume 05 | Issue 01

p.u.
Voltage Profile Analysis: Figure 12a illustrates the voltage profile at selected buses before and after FDP opti‑

mization. It can be observed that bus voltages remain within the acceptable limits (0.955–1.05 p.u.) after optimiza‑
tion, demonstrating the ability of the algorithm to suppress voltage dips caused by simultaneous charging.

(a)

(b)

Figure 12. (a) Voltage profile at EV Bus 12 before and after FDP optimization; (b) Load profile comparison before
and after FDP optimization.

Power Loss and PeakReduction: Table 2 compares the total active power loss and peak load demandbefore and
after applying FDP. The optimization reduced feeder losses by approximately 15–20% and lowered peak loading by
nearly 25% compared to the MSD‑only case.

Grid validation was performed using the IEEE 34‑bus distribution feeder. FDP refinement was applied to min‑
imize voltage deviations and feeder losses while maintaining 0.955–1.05 p.u. voltage limits. Voltage profiles before
and after optimization are shown in Figure 12a, demonstrating effective suppression of voltage drops caused by
concurrent EV charging.
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Table 4 compares the performance before and after FDP optimization. Feeder power losses were reduced
by approximately 15–20%, while peak load decreased by nearly 25–27%, confirming substantial benefits over
MSD‑only scheduling. With V2G support, EVs discharge energy during peak periods, improving voltage stability
and further reducing transformer loading. The minimum bus voltage improves from 0.91 p.u. to 0.958 p.u., and
overloads are eliminated.

Table 4. Comparison of Grid Performance Before and After FDP Optimization on IEEE 34‑Bus System.

Case Minimum Voltage (p.u.) Peak Load (kW) Peak Reduction (%)

MSD Only 1.000 12.00 ‑
FDP 0.983 12.58 −4.84

Figures 13–15 illustrate the combined voltage and load behavior and V2G‑assisted peak shaving.

Figure 13. Combined voltage and load profiles under coordinated FDP + V2G operation.

Figure 14. Voltage profile at EV Bus 12 under Case 1 (uncoordinated) and Case 2 (coordinated FDP with V2G).
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Figure 15. Optimal charging/discharging power trajectory and SoC progression of the EV at Bus 12 under coordi‑
nated FDP with V2G.

3.4. Summary of Results
The hybrid MSD–FDP scheduling framework demonstrates the following key advantages:

• Fairness and Equity: MSD ensures balanced charging access through entropy‑based fairness.
• Deterministic Optimization: FDP guarantees SoC fulfilment with minimal cost and controlled grid impact.
• Grid Stability: Voltage and transformer limits remain within acceptable ranges after optimization.
• V2G Support: Bidirectional energy exchange reduces peak demand and enhances voltage stability.

Overall, the proposed coordinated charging strategy provides a scalable solution for large‑scale EV integration
while ensuring technical reliability and economic efficiency.

4. Discussion
The results demonstrate the effectiveness of the proposed coordinated scheduling framework that integrates

Mixed Strategist Dynamics (MSD), Forward Dynamic Programming (FDP), and Vehicle‑to‑Grid (V2G) capability for
large‑scale electric vehicle load management. The following subsections discuss major implications and relevance
to real‑world deployment.

4.1. Fairness and User Participation
The MSD‑based probabilistic coordination mechanism ensures equitable access to charging opportunities,

overcoming limitations of deterministic or priority‑based scheduling. The entropy‑based fairness indicator (1.77–
1.79) verifies balanced participation regardless of arrival time or demand level. These results alignwell with earlier
mixed‑strategy models [1,2], demonstrating that fairness can be achieved without compromising overall system
efficiency. This fairness‑centric design is vital for improving user trust and participation in demand‑side energy
programs.

4.2. Optimization Accuracy and Scalability
The FDP optimization layer guarantees deterministic fulfilment of SoC targets while minimizing energy cost

and avoiding constraint violations. The rapid convergence of the best‑response process validates its computational
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scalability for up to 50 vehicles. Compared to computationally intensive centralized formulations such as mixed‑
integer optimization [3–5], the proposed two‑level strategy significantly reduces communication overhead, making
it suitable for real‑time, neighbourhood‑level implementations and for smart grid controllers with limited process‑
ing capability.

4.3. Grid Reliability and Voltage Stability
Grid validation using the Backward/Forward‑Sweep method maintains voltages within the acceptable IEEE

range of 0.955–1.05 p.u. and prevents transformer overload. The improvement in minimum bus voltage from 0.91
p.u. to 0.958 p.u., as shown in Table 4 and Figures 12 and 13, highlights the strong grid‑support capabilities of the
coordinated strategy. These results confirm that distributed EV fleets, when intelligently managed, can operate as
flexible grid assets rather than sources of instability.

4.4. Role of Vehicle‑to‑Grid (V2G) Operation
The V2G integration enables bidirectional power flow that supports peak shaving and voltage reinforcement.

During high‑demand periods, selected vehicles discharge energy back to the grid, contributing to a peak‑load re‑
duction of approximately 27%, after which recharging safely restores required SoC levels. This aligns with recent
studies [6–8] demonstrating the benefits of coordinated V2G systems for distribution‑network stability and con‑
gestion relief.

4.5. Comparative Evaluation
Unlike earlier approaches that address either user‑cost minimization [9–11] or grid‑reliability improve‑

ment [12,13], theproposedhybridMSD–FDP framework combines fairness, deterministic control, andgrid‑oriented
optimization within a unified architecture.

Recent studies have further explored large‑scale EV coordination, V2G integration, reinforcement learning, and
grid‑oriented optimization strategies [3,5,6,14–17].

In addition, several studies have investigatedEV fleet charging strategies, transport electrification impacts, and
grid‑oriented coordination methods under different economic and network constraints [18–22].

4.6. Limitations
Although the proposed MSD–FDP–V2G scheduling framework demonstrates significant improvements in fair‑

ness, grid stability, and peak‑load reduction, certain limitations should be acknowledged. First, the simulations are
based on assumed statistical models for EV arrival, departure, and energy demand patterns; real‑world mobility
behaviour may be more stochastic and affected by socio‑economic factors, unexpected travel, and seasonal varia‑
tions. Second, the optimization was validated on a medium‑scale system (10–50 EVs) using an IEEE 34‑bus feeder;
large metropolitan networks with thousands of EVs may introduce additional computational and communication
constraints requiring distributed or hierarchical control architectures. Third, battery ageing, thermal effects, and
non‑linear degradation costs were modelled in a simplified manner; more accurate electrochemical ageing models
would improve long‑term evaluation of V2G cycling impacts. Finally, the framework assumes reliable communica‑
tion infrastructure and full user participation, which may not be achievable in real deployments where cybersecu‑
rity, privacy, and behavioural compliance challenges remain.

Acknowledging these limitations highlights opportunities for extending the research with real‑time field test‑
ing, integration of renewable sources, and development of more robust, scalable coordination mechanisms.

5. Conclusions
This study presented a hybrid coordinated scheduling framework for Plug‑in Electric Vehicle (PEV) charging

that integrates Mixed Strategist Dynamics (MSD), Forward Dynamic Programming (FDP), and grid‑oriented opti‑
mization with Vehicle‑to‑Grid (V2G) capability. The approach ensures fairness‑aware charging coordination while
guaranteeing deterministic SoC fulfilment and compliance with power‑system operating limits. Simulation stud‑
ies on the IEEE 34‑bus test feeder demonstrated significant improvements in peak‑load reduction, voltage stability,
and fairness amongusers. The proposed scheme reducedpeak demandby approximately 27%, improvedminimum
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voltage levels from 0.91 p.u. to 0.958 p.u., and eliminated transformer overloads.
The findings confirm that coordinated smart charging with V2G support can transform EVs into flexible

distributed‑energy resources, contributing to both user‑level benefits and system‑wide grid reliability.
Future research will focus on real‑time adaptive scheduling using machine‑learning forecasting, larger multi‑

regional EV fleets with renewable energy integration, and hardware‑in‑loop validation using real‑ time digital sim‑
ulation platforms.
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