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ABSTRACT

Plant diseases significantly affect agricultural productivity by reducing both the quality and quantity of crops.
The necessity for automated image-based solutions stems from the labor-intensive and subjectively error-prone
nature of traditional inspection methods performed by farmers or agricultural specialists. To maintain sustainable
agriculture and prevent the spread of infections, the detection of plant leaf diseases should be performed early and
accurately. Early identification of infections can also significantly reduce yield losses and minimize the excessive
use of pesticides. Since leaf diseases frequently manifest as uneven texture patterns, spots, or distortions on the
leaf surface, local texture capturing mechanisms have proven to be remarkably effective among many computa-
tional approaches. This study proposes a novel Deep Convolutional Neural Network (DCNN) to extract high-level
hidden feature representations from leaf images. To enhance performance, the deep features are combined with
traditional handcrafted texture features known as the Uniform Local Binary Pattern (uLBP). The proposed model
was trained and tested using three well-known publicly available datasets: Apple Leaf, Tomato Leaf, and Grape Leaf.
The model achieved test accuracies of 96%, 91%, and 96% on these datasets, respectively. The experimental results
demonstrate that the proposed approach is an effective and practical method for early diagnosis of plant diseases.
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This system has potential for real-world application by farmers and agricultural experts to support disease man-

agement and contribute to the development of more resilient crops and a sustainable agricultural industry.

Keywords: Multi-Class Classification; Convolutional Neural Network (CNN); Uniform Local Binary Pattern (uLBP);

Feature Fusion

1. Introduction

As a result, plant diseases pose a serious risk to
agricultural output rates throughout the world, which
in turn causes serious economic losses and food short-
ages. Traditionally, the identification and classification
of such diseases have relied on the human evaluation
of agricultural professionals, a method that, besides be-
ing time-consuming and expensive, happens to be unre-
liable and subjective!l. Advancements in computer vi-
sion, deep learning, and artificial intelligence (AI) have
revolutionized precision agriculture. Thanks to these ad-
vancements in technology, automated analysis of plant
leaf pictures has made disease diagnosis more efficient
and precise %,

Machine learning techniques like K-Nearest Neigh-
bor (K-NN), Decision Tree, and Support Vector Machine
(SVM) were the only tools used in the early days of
this discipline, when human-created characteristics like
(341 Although

such traditional models are interpretable, they are con-

color, texture, and form were also used

strained by challenges such as the imbalance in classes,
prone to overfitting, and inferior performance in noisy

561 Convolu-

and complicated scenarios in the fieldl
tional neural networks (CNN) have swept the image-
based disease recognition, where architectures such
as VGGNet, ResNet, and MobileNet exhibited good re-
sults on learning benchmarks such as PlantVillage and
PlantDoc 78,

has been effective in diagnosing crops such as ricel®],

The use of the CNN by researchers

coffee™, tomatol®], and mulberry!'%l, with accuracy
showing more than 97%. Additionally, cutting-edge
augmentation strategies like Dual Generative Adversar-
ial Network (DoubleGAN) and contemporary transfer
learning methodologies have been utilized to improve
the versatility of the model to out-of-class imbalanced

datasets['], DoubleGAN is an architecture that uses two

GANSs to improve data generation quality.

In further endeavour to increase the accuracy of
detection and decrease computational load, the present
effort is the incorporation of deep learning in conjunc-
tion with handcrafted feature methods as a hybrid or
ensemble algorithm. As an example, the results of
using the combination of deep CNN-based representa-
tions and texture-based descriptors such as Local Binary
Patterns (LBP) have shown benefit[*?]. Hosny['?l pre-
sented a significant case that combines the features of
LBP with DCNN, which, as a result, enhances the recog-
nition of disease in tomato, apple, and grape leaves.
Moreover, explainable Al (XAI) is on the rise, and this
kind of method gives models a good classification ac-
curacy as well as transparency and interpretability of

the decisions made['3],

There is also a tendency to
put systems of disease detection on edge devices and
use real-time inference with the help of smartphones
and IoT applications 1914, Trained lightweight YOLO
models™, deep learning ensembles'%], and EfficientNet
with Transformer mechanisms!® make it possible to
identify the disease more effectively and efficiently in dy-
namic agricultural conditions.

Crop-specific and disease-specific modeling is also
becoming emphasized, as exemplified in the study on
wheat yellow rust!?l and the more accurate disease in
wheat stratification with augmentation 71, The formula-
tion of real-field data like FieldPlant['8] supports this, as
it negates the shortcomings of utilizing synthetic image
repositories. In the future, there is also the likelihood of
increasing prediction accuracy through the use of mul-
timodal and sensor-fusion methods. Contextual sensi-
tivity and increased forecasting are attained, as demon-
strated in studies Nagasubramanian [*°! and Saini[?%], by
incorporating image data with environmental sensor in-
formation. Further, the bibliometric analysis has re-
vealed an increase in the academic work in the area, sig-
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nificantly indicating that India is in the sphere of plant
disease detection research with the use of deep learn-
ing!?!l, Forwarding this wave, the presented project
offers an idea of a hybrid deep learning model with a
combination of CNN-based learning and handcrafted fea-
tures of LBP to make disease detection in diverse plant
species effective, efficient, and scalable. The solution is
introducing bias in real-time applications and low com-
putational overhead to be used more extensively in prac-
tical agricultural situations.

A feature fusion framework is proposed that in-
tegrates the deep spatial feature extraction capability
of Convolutional Neural Networks (CNN) with the lo-
cal texture analysis strength of Uniform Local Binary
Patterns (uLBP). Unlike previous approaches that rely
solely on deep learning or handcrafted features, the pro-
posed method leverages the complementary nature of
both to improve classification performance across di-
verse crop leaf datasets. The model is designed for multi-
class plant disease detection, with potential application
in agriculture-based decision support systems, includ-
ing mobile and edge-based real-time disease identifica-
tion tools for farmers. This integration of CNN and uLBP
aims to achieve higher accuracy, robustness to varia-
tions in lighting and texture, and adaptability across mul-

tiple crop species.

2. Related Work

In recent development in plant disease identifica-
tion, there has been a convergence of deep learning-
based systems, sensor fusion, and hybrid modelling. The
developments are not only accurate, but they are also
showing good generalization because of the variations
in the environmental conditions and crop types. The
mentioned studies have formed a solid backbone in our
suggested DCNN-LBP hybrid architecture. The litera-
ture in that context can be divided into four themes:
optimization-based models, attention and ensemble-
based, sensor-fusion and multimodal, and explainable
and efficient frameworks. With the help of this classifica-
tion, one can have a clear vision of the changing research
trends and their corresponding repercussions on preci-

sion agriculture.

As far as the optimization is concerned, a number
of scholars have used sophisticated algorithms to opti-
mize their feature extraction and learn better. Bharanid-
haran??l employed the feature selection using a Modi-
fied Lemur Optimization Algorithm that exhibited a sig-
nificant increase in the precision of the K-NN classifier
Zhao 11
tackled data imbalance by implementing DoubleGAN,

regarding the recognition of paddy disease.

generating realistic synthetic diseased leaf images that
Ku-

mar (¢l designed a machine learning pipeline integrating

resulted in recognition accuracy exceeding 99%.

soil-sensor data with exploratory data analysis, achiev-
ing more than 98% prediction accuracy, showcasing
the power of non-visual data in disease diagnosis. Ad-
ditionally, Shovon!?® introduced an ensemble frame-
work, PlantDet, combining EfficientNetV2L, Inception,
ResNetV2, and Xception. The model avoids overfitting
and achieves an impressive 98.53% accuracy in rice leaf
classification by using deep optimization techniques.
Increasing the dependability and robustness of
models has never been easier than with the help of
To

show how useful preprocessing is in real-world sce-

attention mechanisms and ensemble approaches.

narios, Alarfaj?l used UNet for preprocessing with
InceptionV3 to categorize disorders affecting pepper
leaves. Luol?®! improved the YOLOV8 architecture by
embedding Boundary Refinement Attention (BRA) self-
attention modules, leading to a 2.8% precision gain and
BRA self-

attention is a technique for enhancing feature bound-

a 20.7% reduction in computational cost.

aries in image classification. Rashid [2°! presented MMF-
Net, a multi-contextual CNN architecture combining vi-
sual and environmental data streams, which resulted
in an impressive 99.23% accuracy for corn disease de-
tection. Tasfi?”] provided a comprehensive review of
paddy disease detection approaches, reinforcing the im-
portance of integrating attention layers and ensemble
learning techniques for improved generalization across
varying disease manifestations.

Sensor-fusion and IoT-driven strategies are increas-
ingly contributing to the development of intelligent, real-
time plant disease monitoring systems. Saini?% intro-
duced Attention-based Multi-Input Multi-Output Neural
Network (A-MIMONN), an attention-based model that in-
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gests multi-sensor environmental inputs and achieved
a 97% F1 score, underlining the synergy between deep
A-MIMONN, a

network handling multiple input-output relationships.

learning and environmental sensing.

Liu[?8l predicted blister blight in tea crops using an
IoT framework coupled with Multiple Linear Regression,
reaching 91% accuracy and demonstrating the utility of
statistical methods when integrated with smart farming
tools. Patil and Kumar[?°! proposed Rice-Fusion, a mul-
timodal model that combines CNN-extracted image fea-
tures with meteorological sensor inputs, outperforming
conventional CNN and MLP baselines. These works are
supported by Chaki and Ghosh[?!], whose bibliometric
analysis underscores the exponential growth of [oT and
multimodal research in agricultural technology.

Another notable trend is the emphasis on explain-
able and efficient architectures for practical deployment.
0ad 3% employed an ensemble of deep-learning models
enhanced with Local Interpretable Model-agnostic Ex-
planations (LIME) based visual explanations, enabling
end-users and agronomists to interpret the specific fea-
tures used for disease classification. LIME, a method for
interpreting model predictions. While keeping computa-
tional economy in mind, Vishnoi' achieved 98% accu-
racy in diagnosing apple leaf diseases using a lightweight
CNN architecture that was enhanced with data aug-
mentation methods, including flipping, shearing, and
scaling. These contributions are pivotal in translat-
ing Al research into user-friendly, interpretable solu-
tions for real-world applications, especially in resource-
constrained environments.

Diagnostics for plant diseases are evolving in re-
sponse to the need for portable and scalable treat-
ments. With a 96.4% success rate, Salam[% built an
Android-specific real-time detection system using Mo-
bileNetV3Small to diagnose mulberry illnesses, provid-
ing farmers with a useful tool. Amin3! integrated
DenseNet121 and EfficientNetBO for corn leaf classifica-
tion, optimizing both accuracy (98.56%) and computa-
tional cost, making them ideal for mobile or edge deploy-
ment. Furthermore, Khattak[®?! designed a CNN-based
model for citrus leaf and fruit disease detection using
datasets from PlantVillage and citrus-specific sources.

The model achieved 94.55% accuracy and demon-

strated promising generalization capabilities across re-
lated crop types, reinforcing its adaptability. A deep
learning method for automatically estimating the sever-
ity of plant diseases using leaf photos was presented by
Wang 331, Convolutional neural networks are used in the
technique to extract information and accurately catego-
rize infection levels. Their findings show that deep learn-
ing offers a scalable, effective, and impartial method for
determining the severity of plant diseases.

In summary, the convergence of optimization tech-
niques, attention-driven modeling, sensor-integrated
systems, and explainable lightweight frameworks is rev-
olutionizing plant disease detection. These advance-
ments not only elevate classification accuracy but also
pave the way for real-time, scalable, and user-friendly
applications. Taken as a whole, they provide the ground-
work for our proposed DCNN-LBP hybrid model, which
aims to improve multi-class plant disease classification
by combining the advantages of neural architectures
with local texture analysis.

3. Materials and Proposed Method-
ology

3.1. Dataset

Using three datasets obtained from the famous
PlantVillage repository—which can be accessed via plat-
forms like Kaggle—the suggested approach for plant
leaf disease classification is based. Developed by re-
searchers at Pennsylvania State University, the PlantVil-
lage project aims to support precision agriculture and
provide accessible solutions for identifying crop dis-
eases, especially in resource-constrained regions. With
over 54,000 high-quality photos of plant leaves, the col-
lection includes healthy samples, photographs of 14 crop
species, and images of over 26 distinct illnesses. There
are a lot of different crops that are covered, such as
strawberries, grapes, potatoes, maize, cherries, peaches,
peppers, and more. Supervised learning tasks in com-
puter vision and deep learning are well-suited to these
images since they include the plant species, illness kind
(if present), and health state.

There are 3,171 raw photos in the Apple Leaf
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Dataset, the first dataset. A total of 630 pictures are
labeled as Scab, 621 as Black Rot, 275 as Cedar Rust,
and 1,645 as Healthy in this dataset. One example from
each class is shown in Figure 1. Geometric data augmen-

Apple_scab

black_rot

Apple_

Apple_rust

Apple_healthy

Figure 1. Sample images from the apple leaf dataset for each class %,

The Tomato Leaf Dataset, which contains 18,160
raw pictures, is the second dataset that is used. Fig-
ure 2 shows a single example from each category. Bac-
terial spot, early blight, late blight, and yellow leaf curl
virus are among the illnesses and healthy leaf samples
included in its 10 categories. It is appropriate for multi-
class classification jobs since each class has a large and
evenly distributed number of pictures.

Furthermore, 4,062 pre-augmentation photos
from the Grape Leaf Dataset were also used. Deadly

tation methods, including translation, flipping, scaling,
and rotation, were used due to the dataset’s apparent
class imbalance. These operations increased the dataset
to 4,645 images while preserving the biological integrity.

Measles, Esca (Black Rot), Leaf Blight, and Healthy are
the four categories into which the data is categorized.
Figure 3 illustrates one representative sample from
each class. Similar to the Apple dataset, data augmenta-
tion was applied to expand it to 4,639 images, ensuring
improved generalization and addressing class imbal-
ance. All datasets were divided into training, valida-
tion, and testing subsets following an 80-20 training-
validation split, ensuring a fair evaluation of the model’s
performance.
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Tomato__Bacterial_spot Tomato__Early_blight Tomato__healthy Tomato__Late_blight

Tomato___Target_Spot

Tomato_mosaic_virus Tomato_Yellow_Curi_Virus

Black_rot

Grape_|

Black_Measles

ght Grape_|

Leaf_bli

Grape

Grape_healthy

Figure 3. Sample images from the grape leaf dataset for each class?.
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Table 1 depicts the total images present in the
dataset, number of classes for each species (Apple,

Tomato, Grape) and whether augumentation is needed
for the proposed architecture or not.

Table 1. Dataset Overview for Plant Leaf Disease Classification.

Dataset Total Images Classes Augmentation Used?
Apple Leaf 3,171 4 Yes
Tomato Leaf 18,160 10 No
Grape Leaf 4,062 4 Yes

3.2. The Proposed Architecture

A new architecture for plant disease classification
has been developed, which combines deep characteris-
tics with uLBP traits. Extraction of features, fusion of
those features, and classification are the three primary
steps it employs. Figure 4 displays the process of us-
ing a deep convolutional neural network (CNN) to ex-
tract deep features from images of plant leaves. Subse-
quently, uLBP is used to get accurate data on the local
texture. The CNN'’s flatten layer is responsible for imme-

diately concatenating the feature sets, creating a single,

unique representation of the features. Once this fused
feature vector has been passed through a fully connected
layer, classification is performed using the softmax ac-
tivation function. By using both deep and handcrafted
uLBP characteristics, the model enhances its discrimi-
native ability in detecting plant diseases. This hybrid
approach improves classification performance while en-
suring computational efficiency and practical feasibility.
The fusion of CNN and uLBP features allows the model to
capture both global spatial information and local texture
patterns, making it well-suited for real-time diagnosis in
resource-limited agricultural environments.

CNN feature extraction

- —

Image
_’[Pro>pvoccanln91 -

Original Image

E
3

e e e

uLBP feature extraction

Figure 4. The proposed architecture for plant leaf disease classification (CNN + uLBP).

3.2.1. The Deep CNN Architecture

The suggested architecture of a Deep Convolutional
Neural Network (CNN) is designed to efficiently identify
plant leaf diseases without requiring human interven-
tion for feature extraction. That it can learn and recog-
nize patterns in raw photographs automatically is a ma-
jor plus. The leaf photos are first subjected to several

pre-processing procedures, including sharpening, image
filtering, and scaling to a consistent 64 x 64 pixel size, be-
fore they are input into the model. The design has three
max-pooling layers for feature reduction, convolutional
layers for feature extraction, and dense layers for feature
interpretation and performance.

The model uses convolutional layers, which are
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auto-feature detectors. There are 32 filters in the first
layer and subsequent layers with an increasing number
of filters in the intermediate layers until the last convo-
lutional layer, in which there are 128 filters.

There exist max-pooling layers between every two
layers of the convolutional variety, and their purpose
is to reduce the feature maps’ spatial dimension, which
will lower the quantity of operations that have to be per-
formed by the model and focus it on the most significant
parts of its images.

Following feature extraction, the feature maps are
transferred to the dense layers after being compressed
With the aid of ReLU,
these thick layers are activated, allowing the model

to a one-dimensional vector.

to learn more complex patterns by introducing non-
linearity. Dropoutlayers are employed to enhance gener-
alization capabilities of the model as well as avoid over-
fitting. These layers temporarily turn off a small portion
of the neurons when training is set, and this causes the
model to memorize features that are stronger and they
function well on unseen data.

Finally, a softmax layer is used to perform the clas-
sification, and this layer returns a probability score for
each category and assigns the image to the one with the
highest score. The model is framed in such a way that
it detects images of plant leaves, taking them to have
various categories, and contains four data sets of apple,
grape, and tomato, each containing one class per set and
ten classes per set, respectively. The proposed CNN net-
worKk is quite accurate and efficient with an appropriate
arrangement of convolutional filters, pooling, dropout,
and dense layers. It is a very capable plant disease de-
tection system in agriculture.

3.2.2. Uniform Local Binary Pattern

Uniform Local Binary Pattern (uLBP) is an improve-
ment of the well-known Local Binary Pattern (LBP)
method and is considered by most to be a more effec-
tive texture descriptor, particularly in image classifica-
tion and recognition applications. The disadvantage of
the simple LBP technique led to ULBP, which considers
patterns of more significance regarding texture repre-
sentation. Using this method, a pattern will be deemed
to be uniform in case it has not more than two transi-

tions (either between one and zero, or the opposite tran-

sition) in the binary sequence, and the pattern is taken
to be circular. As an example, the pattern of 00000000
or 11100000 is uniform; the pattern of 10101010 is non-
uniform.

The rationale of employing ULBP is to choose uni-
form patterns as the texture features in natural photos
make up an immense majority. Encoding only these
patterns, one will be able to considerably decrease the
dimensionality of the feature vectors, but preserve the
most discriminative patterns.

Given the problem of plant leaf disease classifica-
tion, by deploying ULBP, the model is further able to
highlight key changes in the texture of disease leaves, e.g.,
spots, wrinkles, or lesions, etc., and thus enhance the per-
formance of the classification.

In the analysis of the ULBP feature, a fixed-sized
window (normally, 3 x 3), the pixel in the grayscale pic-
ture is compared with those of its neighbors. When the
pattern surrounding a pixel satisfies the uniformity crite-
rion, then it is given a distinctive label that corresponds
to that particular pattern. Irregular patterns classifica-
tion is merged into one to simplify the calculation. The
end product of this is a ULBP image with the most ap-
plicable large texture characteristics of the original tex-
tured leaf image, which facilitates the learning of the
disease-related pattern in the convolutional neural net-
work with ease.

4. Results and Discussion

In order to implement the proposed method, the
TensorFlow and Keras frameworks were used. Every ex-
periment was carried out in a Jupyter Notebook environ-
ment, which offered a dynamic and adaptable platform
for building, training, and evaluating models.

During training, the hyperparameters were stan-
dardized to guarantee uniformity in all experiments.
Learning, validation, and testing were the three seg-
ments of the dataset. The experimental configurations
were established with the following parameters: batch
size = 32, learning rate = 0.001, and number of epochs
= 15. In addition, a mechanism was put in place dur-
ing training to halt training early if there was no further
increase in validation performance, which helped avoid
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overfitting.

A number of conventional performance measures
were calculated to assess the accuracy and efficacy of
the suggested approach, including Accuracy, Precision,
Recall, F1l-score, Area Under the Receiver Operating
Characteristic (AUC-ROC) curve, and the Confusion Ma-

trix[34]. Here are the definitions of these metrics:

2tp

Flscore = ————
2tp + fp+ fn

4)
Where tp, tn, fp, and fn, represent true positive, true
negative, false positive, and false negative, respectively.
The proposed CNN model is compared to popular
transfer learning techniques for illness categorization in
apple leaves in Table 2. The proposed model achieved

tp+tn the best results compared to the others, with a robust

Accuracy = tp+ fp+ fn+tn M accuracy of 96.0% and precise, recall, and F1-score of

97.0%. Using the same accuracy and an F1-score of

tp 96.4%, VGG16 came in second. With an F1-score of

preasion = (2) 91.0%, AlexNet underperformed relative to other mod-

els, whereas GoogleNet achieved an F1-score of 95.0%.

tp All measures showed that the suggested CNN model was

recall = tp+ fn (3)  more consistent.
Table 2. Comparison of the proposed deep CNN model and the transfer learning-based models for apple leaf disease classifica-
tion.
Model Precision Recall F1-Score Accuracy

Proposed CNN Model 97.0% 97.0% 97.0% 96.0%
VGG16[12] 96.7% 96.5% 96.4% 96.0%
GoogleNet[12] 95.0% 95.0% 95.0% 94.0%
AlexNet[12] 91.0% 91.0% 91.0% 92.0%

In Table 3, we can see how the suggested CNN
model stacks up against VGG16, GoogleNet, and AlexNet
in terms of illness categorization in tomato leaves.
Although the suggested model had respectable re-
sults (90.0% F1-score and 91.0% accuracy), the trans-

fer learning models fared better. Both VGG16 and

GoogleNet performed better than the others, with 95.0%
and 94.0% F1-scores, respectively. Notably, with a score
of 94.8%, GoogleNet achieved the best accuracy. It
seems that transfer learning models performed better
in this instance when it came to detecting diseases in

tomato leaves.

Table 3. Comparison of the proposed deep CNN model and the transfer learning-based models for tomato leaf disease classifi-

cation.
Model Precision Recall F1-Score Accuracy
Proposed CNN Model 90.0% 91.0% 90.0% 91.0%
VGG16 2] 95.0% 95.0% 95.0% 94.0%
GoogleNet [12] 94.0% 94.0% 94.0% 94.8%
AlexNet[12] 91.0% 91.0% 91.0% 91.0%

Various models’ results for disease categorization
in grape leaves are shown in Table 4. With a 96.0% ac-
curacy rate and an F1-score of 97.0%, the suggested CNN
model somewhat beat the competition. With recall and
accuracy both reaching 96.0%, all models were able to
consistently recognize the target. While AlexNet’s accu-
racy was 95.5 %, VGG16’s was 95.0 %, and GoogleNet’s
was 95.6 %. This exemplifies the suggested model’s
marginal advantage in terms of overall efficacy for grape

leaf disease categorization.

After proving that the suggested CNN model suc-
cessfully recovered pertinent features from images
of plant leaf diseases, we further validated the fea-
ture fusion framework’s performance. Three separate
datasets—Apple Leaf, Tomato Leaf, and Grape Leaf—
were used for the assessment. Figures 5-7 show the
comparable findings for the Apple, Tomato, and Grape
leaf datasets, respectively.
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Table 4. Comparison of the proposed deep CNN model and the transfer learning-based models for grape leaf disease classifica-

tion.
Model Precision Recall F1-Score Accuracy
Proposed CNN model 97.0% 97.0% 97.0% 96.0%
VGG16 12 96.7% 96.5% 96.4% 96.0%
GoogleNet[12] 95.0% 95.0% 95.0% 94.0%
AlexNet[1?] 91.0% 91.0% 91.0% 92.0%
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Figure 5. Training and validation results of the CNN + uLBP model on the Apple dataset: (a) Accuracy, (b) Loss.

When trained and evaluated on the Apple Leaf
dataset, the model demonstrated consistent improve-
ments in accuracy and loss across fifteen epochs. The
training accuracy increased significantly, from 52% to
more than 94%, as shown in Figure 5a and in validation

accuracy, going from about 52% to over 94%, and finally

reaching about 95%, all of which point to strong gener-
alization performance. Effective learning with little over-
fitting was shown by the steady reduction of the training
losses from 1.1 to below 0.8, and the validation losses
decreased from 0.8 to below 0.2, respectively Figure 5b.
Based on these findings, the model demonstrates that it
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is successfully learning from the Apple leaf dataset with-
out experiencing overfitting.

The model’s classification performance increased
gradually throughout the course of its 15 training epochs
on the Tomato Leaf dataset. Training and validation ac-
curacies increased to above 90%, demonstrating strong
model generalization. As expected, there was a consid-
erable improvement in the loss curves; specifically, the
validation loss fell from 1.1 to around 0.35, and the train-
ing loss fell from 1.6 to about 0.3.

Figure 6 demonstrates that the model was able
to acquire critical features without experiencing overfit-
ting, as shown by the learning curves. When tested on

the Grape Leaf dataset, the model’s accuracy in training
and validation rose steadily, eventually surpassing 95%
in the last epoch. Effective learning and low overfitting
were shown by the steady reduction of training and vali-
dation losses, which went from 1.2 and 0.8 to around 0.1,
respectively.

Figure 7 displays the findings, which validate
the model’s stability and high performance throughout
training and validation. The findings show that com-
pared to models using individual features, the proposed
feature fusion method—which combines deep CNN and
uLBP features—performs much better. Different plant
leaf diseases may be easily distinguished using it.
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Figure 6. Training and validation results of the CNN + uLBP model on the Tomato dataset: (a) Accuracy, (b) Loss.

63



Intelligent Agriculture | Volume 01 | Issue 01 | May 2025

Training and Validation Accuracy

1.0 A

0.9 A

0.8

0.7 A

Accuracy

0.6

0.5 A

0.4

— ———

—— Train Accuracy
Validation Accuracy

o
M
-
2]

8 10 12 14
Epoch

(a)

Training and Validation Loss

0.0

—— Train Loss
Validation Loss

f=p
M
-
2]

Epoch

(b)

Figure 7. Training and validation results of the CNN + uLBP model on the Grape dataset: (a) Accuracy, (b) Loss.

The findings show that compared to models
using individual features, the proposed feature fu-
sion method—which combines deep CNN and uLBP
features—performs much better. Different plant leaf dis-
eases may be easily distinguished using it.

Figures 8-10 show the confusion matrices for each
of the three datasets.

The model’s accuracy in classifying the Apple Leaf
dataset is shown by the confusion matrix, which demon-
strates high performance across all four categories. A
small number of samples were misclassified as Apple
scab, Black rot, Cedar apple rust, or healthy leaves, but
the vast majority were accurately classified. Figure 8

shows that out of 301 samples, the “Apple_healthy” class
had the greatest number of true predictions at 282, prov-
ing the model’s ability to differentiate between healthy
and sick leaves.

The model’s ability to classify tomato leaves
into 10 distinct illness groups, as well as healthy
leaves, is shown by the confusion matrix. Nearly all
classes exhibit near-perfect categorization; for exam-
ple, Tomato_Healthy had 308 right predictions while
Tomato_Yellow_Leaf Curl_Virus had 1017. Some classes,
such as Target_Spot and Early_blight, exhibit some de-
gree of ambiguity. Despite various illnesses, overall per-
formance is still good.
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Figure 8. Confusion matrix on apple leaf dataset by the proposed architecture (CNN + uLBP).
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Figure 9. Confusion matrix on tomato leaf dataset by the proposed architecture (CNN + uLBP).
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Figure 9 shows that the model can reliably and ro-
bustly identify tomato diseases by differentiating across
visually identical leaf states. The results in Figure 9 in-
dicate that the model performed well at classifying Black
rot, Esca (Black Measles), Leaf blight, and healthy leaves
in the confusion matrix. The dataset was Grape Leaf. The
model’s accuracy was strong across the board; it correctly

predicted 270 cases of Esca and 205 cases of Leaf blight.

The general accuracy is still good, albeit there were
a few misclassifications, like 12 Esca cases being mistak-
enly labeled as Black rot. Figure 10 shows that the algo-
rithm correctly differentiates between healthy samples
of grape leaves and those with illnesses, suggesting that
it is useful in identifying diseases in the real world.
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Figure 10. Confusion matrix on grape leaf dataset by the proposed architecture (CNN + uLBP).

Using the apple leaf dataset, the model was able
to distinguish between various illnesses, as shown by
the AUC-ROC curve. The four classes’ curves are close
to the top-left corner, indicating good classification per-
formance, with AUC values of 0.98, 1.00, 1.00, and 0.99,
respectively. This suggests a high overall very low num-
ber of false positives and a high percentage of true out-
comes. AUC-ROC curve. The four classes’ curves are
close to the top-left corner, indicating good classifica-
tion performance, with AUC values of 0.98, 1.00, 1.00,
and 0.99, respectively. This suggests a high overall very
low number of false positives and a high percentage of

true outcomes.

Figure 11 shows that the model can classify dis-
eases in apple leaves with almost perfect accuracy. The
model performed very well across 10 disease classes, as
shown by the AUC-ROC curve for the tomato leaf dataset.
The model’s great discriminative capacity is shown by
the AUC values, which are close to 1.00 for most classes
and yet impressively low at 0.98 for the lowest. The
curves remain near the upper-left corner throughout, in-
dicating a high true positive rate and a low false positive
rate. The results show that the disease categorization of

tomato leaves is strong and dependable.
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Figure 11. AUC-ROC curve on the apple leaf dataset by the proposed architecture (CNN + uLBP).

Figure 12 shows that the model achieves very high
diagnostic accuracy in a variety of tomato leaf situations.
Classification accuracy for all four diseases is 100% accord-
ing to the AUC-ROC curve for the grape leaf dataset. The
AUC score of 1.00 for each class shows how well the model

can distinguish between infected and healthy grape leaves.
If the ROC curves in the top left corner of the graph are very
close to each other; it means that there are few false pos-
itives and many true positives. The results show that the
model is reliable and accurate in identifying illnesses.
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Figure 12. AUC-ROC curve on the tomato leaf dataset by the proposed architecture (CNN + uLBP).
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Figure 13 shows that all types of grape leaf dis-
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Figure 13. AUC-ROC curve on grape leaf dataset by the proposed architecture (CNN + uLBP).

In Table 5, we can see how the suggested approach
stacks up against several cutting-edge methods for dis-
ease categorization in plant leaves. We beat the state-of-
the-art on all three datasets: apple, tomato, and grape
leaf. On the Apple dataset in particular, it outperforms
the highest previously reported accuracy for a four-class
issue by 1.6%. With accuracy increases ranging from
0.85% to 6.20%, the model outperforms all existing deep
learning algorithms in the Tomato dataset. An improve-

ment of up to 2.64% in performance is shown for the
Grape leaf dataset. The method’s usefulness and re-
silience are shown by these improvements in accuracy.
The suggested model is also well-suited for immediate
implementation in edge computing settings due to its
small size and high computational efficiency. The model
offers a scalable and realistic option for plant disease de-
tection in precision agriculture due to its low computing

cost and excellent accuracy.

Table 5. Comparison table of various approaches that are already in existence for multi-class classification for apple, tomato

and grape leaf datasets.

Dataset Authors Method No. of Classes Accuracy
Wang et al. [33] VGG16 4 90.40%

Khan et al. [3%] LBP, M-SVM 4 97.20%

Apple leaf Bracino et al.E;f’] GPR, quadra.tic SVM 3 83.30%
Hasan et al.[37] DWT, color histogram 3 98.63%

Hosny et al. [12] DCNN + LBP 4 98.80%

Proposed DCNN + uLBP 4 96.80%

Agarwal et al. [38] CNN Model 10 91.20%

Durmus et al.[34] AlexNet and SqueezeNet 10 95.65%

Tomato leaf Elhassouny et al. [3] MobileNet 10 90.30%
Hosny et al.[12] DCNN + LBP 10 96.50%

Proposed DCNN + uLBP 10 91.10%
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Table 5. Cont.

Dataset Authors Method No. of Classes Accuracy
Ahil et al. [*0] CNN Model 4 95.66%

Tang et al. [41] ShuffleNet V1 4 97.79%

Grape leaf Akshai et al. [42] DenseNet 4 98.27%
Hosny et al. [12] DCNN + LBP 4 98.30%

Proposed Deep feature + LBP 4 96.30%

5. Conclusions

This article proposed an accurate, effective, and
lightweight CNN-based model for the multi-class cate-
gorization of plant leaf diseases. A novel feature-fusion
approach was introduced to enhance the model’s per-
formance by combining manually generated texture fea-
tures from the Uniform Local Binary Pattern (uLBP) tech-
nique with deep features derived from Convolutional
Neural Networks. Three publicly accessible PlantVillage
datasets—Apple Leaf, Tomato Leaf, and Grape Leaf—
were used to train and assess the proposed model, which
yielded test accuracies of 96%, 91%, and 96%, respec-
tively.

Future Scope

There are other directions that might be investi-
gated in the future, even if the proposed method for
classifying diseases in plant leaves has shown encourag-
ing results. Using advanced deep learning architectures
such as Vision Transformers (ViTs), attention-based net-
works, or hybrid CNN-RNN models can increase the accu-
racy of feature extraction and categorization. The prac-
tical usefulness of the system in field situations will be
significantly improved by using lightweight models for
real-time disease detection on mobile or embedded de-
vices. The suggested approach also has to be assessed
in real-time applications and tested on different crop
leaf diseases. Additional research in this area would im-
prove the suggested strategy and increase its usefulness
in real-world situations involving the identification of
agricultural diseases. Furthermore, the model could be
converted to a transfer learning model, which could be
enhanced by adapting to other crops that were not in-
cluded in the dataset and assessing its robustness under

varying conditions.
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