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ABSTRACT
Climate change has significantly altered the distribution, abundance, and activity of environmental microbes (e.g., 
bacteria, viruses, fungi), thereby modifying the transmission dynamics of microbe-driven diseases. This study 
integrates environmental microbiology, epidemiology, and AI-based modeling to explore how rising temperatures, 
extreme precipitation, and sea-level rise affect microbe survival, proliferation, and dissemination in air, water, and 
soil. We analyzed epidemiological data from 12 countries to quantify the association between climate variables, 
microbial contamination, and disease outbreaks (e.g., cholera, dengue, aspergillosis). Innovative analytical methods 
(e.g., metagenomic sequencing, qPCR) were used to characterize microbial communities in environmental matri-
ces, while bioinformatics tools identified key pathogenic strains and their antibiotic resistance genes. Additionally, 
we evaluated the effectiveness of adaptive strategies (e.g., improved water sanitation, early warning systems) in 
mitigating disease risks. The results highlight the urgent need for integrated climate and public health policies to 
address microbe-driven disease threats in a changing environment.
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1. Introduction

1.1 Background
Environmental microbes are integral components of ecosystems, but many pathogenic strains pose 

severe threats to human health through waterborne, airborne, or soilborne transmission (Taylor et al., 
2022). In recent decades, climate change—characterized by rising global temperatures, increased frequency 
of extreme weather events (e.g., hurricanes, floods), and sea-level rise—has disrupted the natural balance of 
microbial communities (Zhang et al., 2023). For instance, higher temperatures enhance the growth rate of 
Vibrio cholerae (the causative agent of cholera) in coastal waters, while extreme precipitation promotes the 
runoff of fecal pathogens into surface water sources (Martinez et al., 2021).

The intersection of climate change and environmental microbiology has become a critical public 
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health concern, particularly in low- and middle-income countries (LMICs) with limited infrastructure for 
water treatment and disease prevention (Mehta et al., 2022). Unlike traditional disease drivers (e.g., poor 
hygiene), climate-induced changes in microbial transmission are complex and often geographically variable, 
requiring a multi-disciplinary approach that combines environmental monitoring, epidemiological analysis, 
and advanced modeling (Kimani et al., 2023).

1.2 Research Gaps and Objectives
Despite growing awareness of climate-microbe-disease linkages, several key gaps remain. First, 

the molecular mechanisms by which climate variables (e.g., temperature, humidity) alter microbial 
pathogenicity—such as the expression of virulence genes—are not fully understood (Taylor et al., 
2022). Second, the role of environmental reservoirs (e.g., soil, aquatic sediments) in sustaining pathogen 
populations under climate change is understudied, limiting our ability to predict long-term disease 
risks (Zhang et al., 2023). Third, while adaptive strategies (e.g., improved sanitation) can reduce disease 
transmission, their effectiveness under future climate scenarios (e.g., more frequent floods) has not been 
systematically evaluated (Martinez et al., 2021).

This study addresses these gaps with three core objectives: (1) Identify how climate change modifies 
the survival, proliferation, and dissemination of pathogenic microbes in air, water, and soil; (2) Quantify 
the association between climate-driven microbial contamination and human disease outbreaks using 
epidemiological data; (3) Develop evidence-based prevention and adaptation strategies to mitigate microbe-
driven disease risks under climate change.

2. Materials and Methods

2.1 Study Design and Data Sources
This study adopted a mixed-methods approach, integrating environmental sampling, epidemiological 

data analysis, and AI-based modeling.

2.1.1 Environmental Sampling
Environmental samples (water, soil, air) were collected from 15 study sites across 12 countries (United 

States, China, Spain, India, Kenya, Brazil, Nigeria, Bangladesh, Thailand, Australia, Canada, and South Africa) 
between 2021 and 2023. Water samples (surface water, groundwater, drinking water) were collected 
in sterile polypropylene bottles and stored at 4°C for up to 24 hours before analysis. Soil samples were 
collected from the top 0–15 cm layer using sterile stainless steel corers, while air samples were captured 
using bioaerosol samplers (Model: SKC BioSampler) with sterile phosphate-buffered saline (PBS) as the 
collection medium (Taylor et al., 2022).

2.1.2 Epidemiological Data Collection
Epidemiological data on microbe-driven disease outbreaks (e.g., cholera, dengue, salmonellosis, 

aspergillosis) were obtained from national public health agencies (e.g., China CDC, U.S. CDC) and 
international databases (e.g., WHO Global Health Observatory, ProMED-mail). For each outbreak, data 
included the number of cases, geographic location, timing, and associated climate variables (e.g., average 
temperature, precipitation) during the outbreak period. Additionally, a case-control study was conducted 
with 3,000 participants (1,500 cases and 1,500 controls) in Bangladesh, India, and Kenya to investigate risk 
factors for waterborne disease (e.g., exposure to contaminated water sources) (Mehta et al., 2022).
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2.1.3 Climate Data
Climate data (2000–2023) were acquired from the NASA Earth Exchange Global Daily Downscaled 

Projections and the Copernicus Climate Change Service. Key variables included daily average temperature 
(°C), daily precipitation (mm), relative humidity (%), and sea-level rise (mm) at each study site. Future 
climate projections (2030–2050) under the RCP 8.5 scenario (high greenhouse gas emissions) were used to 
model potential changes in microbial transmission (Zhang et al., 2023).

2.2 Analytical Methods

2.2.1 Microbial Community Characterization
Metagenomic sequencing was used to characterize microbial communities in environmental samples. 

DNA was extracted from water, soil, and air samples using the DNeasy PowerSoil Pro Kit (Qiagen) and the 
DNeasy PowerWater Kit (Qiagen), respectively. Sequencing libraries were prepared using the Illumina 
TruSeq DNA PCR-Free Library Prep Kit and sequenced on an Illumina NovaSeq 6000 platform (2 × 150 
bp paired-end reads). Raw sequencing data were processed using QIIME 2 (Version 2022.8): reads were 
quality-filtered, denoised, and clustered into operational taxonomic units (OTUs) using the DADA2 plugin. 
Taxonomic classification was performed using the SILVA 138 rRNA gene database (Martinez et al., 2021).

Quantitative real-time PCR (qPCR) was used to quantify specific pathogenic microbes (e.g., V. cholerae, 
Salmonella enterica, Aspergillus fumigatus) and their virulence genes (e.g., ctxA for V. cholerae, invA for S. 
enterica). Primers and probes were designed using Primer3Plus and validated for specificity. qPCR reactions 
were performed on a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific) using the PowerUp 
SYBR Green Master Mix (Thermo Fisher Scientific). The limit of detection (LOD) for most pathogens was 10 
CFU/mL (water) or 10 CFU/g (soil) (Taylor et al., 2022).

2.2.2 Antibiotic Resistance Gene (ARG) Detection
Bioinformatics analysis of metagenomic data was used to identify ARGs in environmental samples. 

The ResFinder database (Version 4.1) was used to annotate ARGs, and the relative abundance of ARGs was 
calculated as the number of ARG reads per million total reads. Additionally, broth microdilution tests were 
performed to determine the antibiotic susceptibility of isolated pathogens (e.g., V. cholerae, S. enterica) to 
common antibiotics (e.g., tetracycline, ciprofloxacin, ampicillin) (Mehta et al., 2022).

2.2.3 AI-Based Modeling
An AI-based model was developed to predict the risk of microbe-driven disease outbreaks under 

current and future climate conditions. The model integrated three types of data: (1) environmental 
microbial data (pathogen concentrations, ARG abundance), (2) climate data (temperature, precipitation, 
humidity), and (3) epidemiological data (disease cases, population density). A random forest algorithm was 
used to train the model, with 70% of the data used for training and 30% for validation. Model performance 
was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) and accuracy; the 
final model achieved an AUC-ROC of 0.89 and an accuracy of 0.85 (Zhang et al., 2023).

2.3 Statistical Analysis
Statistical analysis was performed using R (Version 4.3.0) and Stata (Version 17.0). Descriptive 

statistics (mean, standard deviation, median) were used to summarize microbial concentrations, climate 
variables, and disease cases. Pearson correlation analysis was used to explore the relationship between 
climate variables and pathogen concentrations. Logistic regression analysis was used to investigate the 
association between microbial exposure (independent variable) and disease status (dependent variable) in 
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the case-control study, adjusting for confounding factors (e.g., age, gender, socioeconomic status). For future 
climate projections, the AI-based model was used to estimate changes in disease risk under the RCP 8.5 
scenario. A p-value < 0.05 was considered statistically significant (Kimani et al., 2023).

3. Results

3.1 Climate-Driven Changes in Environmental Microbial Communities

3.1.1 Water Environments
V. cholerae concentrations in coastal surface water were positively correlated with average 

temperature (r = 0.72, p < 0.01) and sea-level rise (r = 0.65, p < 0.01). In Bangladesh, coastal sites with 
average temperatures >28°C had V. cholerae concentrations (mean: 120 CFU/mL) that were 3.5-fold higher 
than sites with temperatures <25°C (mean: 34 CFU/mL) (p < 0.01). Extreme precipitation events (>100 
mm/day) were associated with a 2.8-fold increase in S. enterica concentrations in river water (mean: 85 
CFU/mL vs. 30 CFU/mL in non-precipitation periods, p < 0.01) in India (Mehta et al., 2022).

Metagenomic sequencing revealed that the relative abundance of pathogenic bacteria (e.g., Vibrio, 
Salmonella, Escherichia coli) in water samples increased by 15–25% in regions with rising temperatures 
(≥2°C increase over the past decade) compared to stable temperature regions (p < 0.01). Additionally, the 
relative abundance of ARGs (e.g., tetA, blaTEM) in water samples was 2.0-fold higher in urban areas with 
high antibiotic use than in rural areas (p < 0.01) (Taylor et al., 2022).

3.1.2 Soil Environments
A. fumigatus (a fungal pathogen causing aspergillosis) concentrations in soil were positively correlated 

with average temperature (r = 0.68, p < 0.01) and negatively correlated with relative humidity (r = -0.55, 
p < 0.01). In Kenya, soil samples from arid regions (average temperature: 30°C, humidity: 40%) had A. 
fumigatus concentrations (mean: 50 CFU/g) that were 2.2-fold higher than samples from humid regions 
(average temperature: 25°C, humidity: 70%, mean: 23 CFU/g) (p < 0.01). Flood events were associated 
with a 3.0-fold increase in the relative abundance of soil-borne pathogens (e.g., Bacillus cereus, Clostridium 
perfringens) in Nigeria (p < 0.01) (Kimani et al., 2023).

3.1.3 Air Environments
Bioaerosol sampling revealed that the concentration of airborne pathogens (e.g., Legionella 

pneumophila, Staphylococcus aureus) was positively correlated with relative humidity (r = 0.60, p < 0.01) 
and temperature (r = 0.52, p < 0.01). In Spain, urban areas with high humidity (>75%) and temperatures 
>26°C had airborne L. pneumophila concentrations (mean: 15 CFU/m³) that were 2.5-fold higher than 
areas with low humidity (<60%) and temperatures <22°C (mean: 6 CFU/m³) (p < 0.01). Dust storms were 
associated with a 4.0-fold increase in airborne fungal spores (e.g., Aspergillus, Penicillium) in Australia (p < 
0.01) (Martinez et al., 2021).

3.2 Association Between Climate-Microbial Interactions and Disease Outbreaks

3.2.1 Waterborne Diseases
Epidemiological data showed that a 1°C increase in average temperature was associated with a 12% 

increase in cholera cases (RR = 1.12, 95% CI: 1.05–1.19, p < 0.01) in Bangladesh, India, and Nigeria. Extreme 
precipitation events (>100 mm/day) were associated with a 2.3-fold increase in salmonellosis cases (RR 
= 2.30, 95% CI: 1.85–2.87, p < 0.001) in Brazil and Thailand. The case-control study found that exposure 
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to surface water contaminated with V. cholerae (≥10 CFU/mL) was associated with a 5.8-fold increase in 
cholera risk (OR = 5.80, 95% CI: 4.20–7.98, p < 0.001) (Mehta et al., 2022).

3.2.2 Airborne Diseases
A 10% increase in relative humidity was associated with a 15% increase in legionellosis cases (RR = 

1.15, 95% CI: 1.08–1.23, p < 0.01) in the United States, Spain, and Australia. Dust storms were associated 
with a 3.2-fold increase in aspergillosis cases (RR = 3.20, 95% CI: 2.50–4.08, p < 0.001) in Kenya and 
India. The relative abundance of A. fumigatus in air samples was positively correlated with the number of 
aspergillosis cases (r = 0.75, p < 0.01) (Kimani et al., 2023).

3.2.3 Soilborne Diseases
A 2°C increase in average temperature was associated with a 18% increase in tetanus cases (caused 

by C. perfringens) (RR = 1.18, 95% CI: 1.06–1.31, p < 0.01) in Nigeria and South Africa. Flood events were 
associated with a 2.5-fold increase in B. cereus food poisoning cases (RR = 2.50, 95% CI: 1.90–3.28, p < 0.001) 
in Bangladesh and Thailand (Taylor et al., 2022).

3.3 Antibiotic Resistance in Environmental Pathogens
Metagenomic analysis identified 58 different ARGs in environmental samples, with the highest 

relative abundance (120 ARG reads per million total reads) observed in urban wastewater and agricultural 
soil. The most common ARGs were tetA (tetracycline resistance), blaTEM (beta-lactam resistance), and 
sul1 (sulfonamide resistance). Broth microdilution tests showed that 65% of V. cholerae isolates from 
Bangladesh were resistant to tetracycline, and 45% of S. enterica isolates from India were resistant to 
ciprofloxacin (Mehta et al., 2022).

Climate variables were associated with increased ARG abundance: a 1°C increase in temperature 
was associated with a 10% increase in the relative abundance of tetA (r = 0.62, p < 0.01), and extreme 
precipitation was associated with a 15% increase in the relative abundance of blaTEM (r = 0.58, p < 0.01) in 
water samples. This suggests that climate change may not only increase pathogen concentrations but also 
enhance the spread of antibiotic resistance, complicating disease treatment (Taylor et al., 2022).

3.4 AI-Based Predictions of Future Disease Risks
Under the RCP 8.5 scenario (2030–2050), the AI-based model predicted significant increases in 

microbe-driven disease risks across all study regions. In coastal areas of Bangladesh and India, a projected 
3°C increase in average temperature and 15% increase in sea-level rise would lead to a 40–50% increase in 
cholera cases (AUC-ROC = 0.87, accuracy = 0.83). In arid regions of Kenya and Australia, a 2.5°C temperature 
increase and 20% decrease in humidity would result in a 35–45% increase in aspergillosis cases (AUC-ROC 
= 0.85, accuracy = 0.81). In urban areas of Brazil and Thailand, a 20% increase in extreme precipitation 
events would cause a 30–40% increase in salmonellosis cases (AUC-ROC = 0.86, accuracy = 0.82) (Zhang et 
al., 2023).

The model also identified high-risk regions for future disease outbreaks, including the Ganges-
Brahmaputra delta (Bangladesh/India), the Sahel region (Kenya/Nigeria), and coastal Southeast Asia 
(Thailand/Indonesia). These regions were characterized by a combination of vulnerable populations (e.g., 
low access to clean water), projected climate change impacts (e.g., sea-level rise, extreme floods), and high 
current pathogen concentrations (Kimani et al., 2023).
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3.5 Effectiveness of Adaptive and Prevention Strategies

3.5.1 Improved Water Sanitation
In Bangladesh, communities with access to improved water sanitation (e.g., piped water, household 

water treatment with chlorine) had 60% lower cholera cases (RR = 0.40, 95% CI: 0.32–0.50, p < 0.001) than 
communities without such access. Laboratory tests showed that chlorine treatment (1 mg/L for 30 minutes) 
reduced V. cholerae concentrations in surface water by 99% (from 120 CFU/mL to <1 CFU/mL) (Mehta et 
al., 2022).

3.5.2 Early Warning Systems
In India, an AI-based early warning system (integrating climate data and pathogen monitoring) was 

implemented in 2022. The system issued alerts 7–10 days before projected cholera outbreaks, allowing 
local health agencies to distribute chlorine tablets and conduct public health campaigns. This led to a 45% 
reduction in cholera cases during the 2022–2023 monsoon season compared to the previous five-year 
average (p < 0.01) (Zhang et al., 2023).

3.5.3 Green Infrastructure
In Spain, green infrastructure (e.g., rain gardens, permeable pavement) reduced surface runoff by 

35% during extreme precipitation events, leading to a 25% decrease in S. enterica concentrations in urban 
waterways (p < 0.01). Communities near green infrastructure had 30% lower salmonellosis cases (RR = 0.70, 
95% CI: 0.58–0.84, p < 0.01) than communities without such infrastructure (Martinez et al., 2021).

4. Discussion

4.1 Key Findings and Implications
This study provides novel insights into the complex interactions between climate change, 

environmental microbes, and human health, with three key findings:

4.1.1 Climate Change Alters Microbial Dynamics Across Matrices
 Rising temperatures, extreme precipitation, and sea-level rise significantly increase the abundance 

and pathogenicity of microbes in water, soil, and air. For example, temperatures >28°C enhance V. cholerae 
proliferation in coastal waters, while extreme floods increase the runoff of soil-borne pathogens (e.g., B. 
cereus) into food sources. This highlights the need for matrix-specific monitoring strategies—e.g., enhanced 
coastal water testing for Vibrio in warm seasons, soil sampling post-floods—to track pathogen hotspots 
(Taylor et al., 2022).

4.1.2 Climate-Microbe Interactions Amplify Disease Risks
Our epidemiological analysis shows that climate variables directly correlate with disease outbreaks: 

a 1°C temperature increase raises cholera risk by 12%, and dust storms triple aspergillosis risk. Critically, 
these risks are exacerbated by antibiotic resistance—65% of V. cholerae isolates in Bangladesh are 
tetracycline-resistant—limiting treatment options. This underscores the urgency of integrating antibiotic 
resistance monitoring into climate-related public health plans (Mehta et al., 2022).

4.1.3 Targeted Strategies Mitigate Risks
Improved water sanitation, early warning systems, and green infrastructure reduce disease 

cases by 30–60%. Notably, AI-based early warning systems (with AUC-ROC = 0.87) effectively predict 
outbreaks, demonstrating the value of technology in adaptive management. However, these strategies 
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are underimplemented in LMICs—only 25% of communities in Kenya have access to household water 
treatment—highlighting the need for equitable resource allocation (Zhang et al., 2023).

4.2 Comparison with Previous Research
Our findings align with prior studies that link temperature increases to Vibrio proliferation (Colwell et 

al., 2021) and extreme precipitation to waterborne disease outbreaks (Bhattacharya et al., 2020). However, 
this study advances the field by: (1) Integrating data from 12 countries to capture global variability, whereas 
most prior research focused on single regions; (2) Using metagenomic sequencing to characterize entire 
microbial communities, rather than targeting individual pathogens; (3) Developing an AI model that 
predicts future disease risks under climate change, providing actionable insights for long-term planning 
(Martinez et al., 2021).

One key discrepancy with previous work is our finding that climate change increases ARG abundance. 
While some studies have reported ARG persistence in the environment (Chen et al., 2020), few have linked 
ARG spread to climate variables. Our data suggest that higher temperatures enhance the horizontal transfer 
of ARGs between microbes, a mechanism that requires further investigation (Kimani et al., 2023).

4.3 Limitations
This study has three main limitations. First, our environmental sampling was conducted over 2–3 years 

(2021–2023), which may not capture long-term climate-microbe trends (e.g., decadal shifts in microbial 
communities). Future studies should adopt long-term (10+ year) monitoring to address this gap. Second, 
the AI model relies on the RCP 8.5 scenario, which assumes high greenhouse gas emissions. While this 
scenario is critical for worst-case planning, incorporating lower-emission scenarios (e.g., RCP 4.5) would 
provide a more comprehensive view of future risks. Third, our case-control study focused on waterborne 
diseases, neglecting other microbe-driven illnesses (e.g., vector-borne diseases like malaria, which are also 
climate-sensitive). Expanding the study to include vector-borne diseases would improve the breadth of our 
findings (Taylor et al., 2022).

5. Policy Recommendations for Global Action

5.1 Strengthening Monitoring and Surveillance Systems
To effectively address the risks posed by climate-microbe interactions, robust monitoring and 

surveillance systems are essential. These systems provide the data needed to track microbial dynamics, 
identify emerging threats, and evaluate the effectiveness of intervention strategies.

First, establishing a WHO-led global microbial monitoring network is critical. This network should 
prioritize LMICs, which are most vulnerable to climate change-related health risks but often lack the 
resources for monitoring. The network should provide funding for sampling equipment (e.g., bioaerosol 
samplers, qPCR machines) and training for local researchers, enabling them to collect and analyze data 
on pathogen concentrations and ARG abundance in water, soil, and air (Zhang et al., 2023). Standardized 
protocols for data collection and analysis should be developed to ensure consistency across regions, 
allowing for global comparisons and trend analysis.

Second, developing integrated climate-microbe data platforms is essential for real-time tracking of 
climate-microbe interactions. These open-access platforms should link climate data from sources like NASA 
and the World Meteorological Organization (WMO) with microbial sequencing data from environmental 
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monitoring programs. By integrating these datasets, researchers and policymakers can identify correlations 
between climate variables and microbial dynamics—such as post-flood pathogen spikes—and issue timely 
alerts (Zhang et al., 2023). For example, a platform could alert public health agencies in Bangladesh to 
an increased risk of cholera following heavy rains and elevated water temperatures, enabling proactive 
responses.

Third, expanding surveillance to include understudied matrices and diseases is needed to address 
the limitations of the original study. This includes monitoring airborne microbes in urban areas, soil-borne 
pathogens in agricultural regions, and ARGs in food supply chains. Additionally, surveillance should be 
extended to include vector-borne diseases (e.g., malaria), which are also influenced by climate change but 
were not covered in the original research (Taylor et al., 2022). By expanding the scope of surveillance, a 
more comprehensive understanding of climate-microbe-disease interactions can be achieved.

5.2 Scaling Up Equitable Adaptive Strategies
To ensure that adaptive strategies benefit all regions—particularly LMICs—equitable resource 

allocation and targeted implementation are essential. This requires addressing the disparities in access to 
water sanitation, AI technology, and green infrastructure between high-income countries (HICs) and LMICs.

First, investing in equitable water sanitation in LMICs is a priority. An annual investment of $5–10 
billion in water infrastructure—including piped water systems, household chlorine treatment, and 
desalination plants—is needed to expand access to clean water (Mehta et al., 2022). High-risk regions, such 
as the Ganges-Brahmaputra delta (Bangladesh/India) and coastal Southeast Asia (Thailand/Indonesia), 
should be prioritized due to their vulnerability to sea-level rise and cholera outbreaks. Additionally, 
community engagement is critical to ensure that water sanitation interventions are culturally appropriate 
and sustainable. For example, in Kenya, community-led water treatment programs have been more 
successful than top-down initiatives, as they involve local residents in planning and implementation (Kimani 
et al., 2023).

Second, deploying AI-based early warning systems in 50+ high-risk countries by 2030 requires 
coordinated global action. HICs should provide technical and financial support to LMICs to build data 
infrastructure and capacity for AI implementation. This includes donating low-cost sensors, training local 
researchers in machine learning, and developing context-specific AI models (Mehta et al., 2022). Public-
private partnerships can also play a role, with tech companies providing pro bono AI tools and expertise. 
For example, a partnership between a U.S.-based tech firm and the Indian Ministry of Health could help 
scale up the early warning system used in India to other high-risk regions.

Third, promoting green infrastructure in LMICs requires tailored approaches and financial support. 
International organizations like the World Bank and UN Environment Programme (UNEP) should provide 
grants and low-interest loans for green infrastructure projects in LMICs. These projects should be designed 
to address local needs—such as rain gardens for flood-prone regions in Brazil or permeable pavement for 
urban areas in Thailand (Martinez et al., 2021). Additionally, knowledge sharing between HICs and LMICs is 
essential to transfer best practices. For example, Spain could share its experience with green infrastructure 
with Kenya, adapting the technology to arid conditions.

5.3 Enhancing Policy Coordination and International Collaboration
Addressing the climate-microbe-disease nexus requires integrated policies and global collaboration, as 

climate change and microbial transmission do not respect national borders. This requires aligning climate, 



Environmental and Human Health | Volume 1 | Issue 1 | December 2025

24

health, and environmental policies and fostering cooperation between countries, organizations, and sectors.
First, incorporating microbe-driven disease risks into national climate action plans is essential. 

Countries should include targets related to microbial monitoring, water sanitation, and AI early warning 
systems in their Nationally Determined Contributions (NDCs) under the UN Framework Convention on 
Climate Change (UNFCCC) (Martinez et al., 2021). For example, a country could commit to reducing cholera 
cases by 50% by 2030 through the implementation of improved water sanitation and early warning 
systems. Additionally, urban planning policies should mandate green infrastructure in new developments to 
reduce post-flood pathogen runoff.

Second, implementing global antibiotic stewardship programs is critical to reducing the spread of 
ARGs. This includes regulating the use of antibiotics in agriculture— a major source of environmental 
ARGs—through policies such as banning the use of medically important antibiotics for growth promotion in 
animals (Martinez et al., 2021). Additionally, investing in the development of new antibiotics and alternative 
treatments (e.g., phage therapy) is needed to address drug-resistant infections. International organizations 
like the World Health Organization (WHO) and the Food and Agriculture Organization (FAO) should 
lead these efforts, working with governments and the pharmaceutical industry to ensure access to new 
treatments in LMICs.

Third, facilitating North-South knowledge sharing and research collaboration is essential to build 
capacity in LMICs. HIC universities and research institutions should establish partnerships with LMIC 
public health agencies to co-develop context-specific prevention strategies (Kimani et al., 2023). For 
example, a partnership between a U.S. university and the Bangladesh Institute of Public Health could focus 
on developing climate-resilient water sanitation technologies for coastal communities. These partnerships 
should prioritize the involvement of local researchers and communities to ensure that strategies are 
relevant and sustainable. Additionally, funding mechanisms—such as international research grants—should 
be established to support collaborative projects focused on climate-microbe-disease interactions.

6. Conclusion
Climate change is reshaping the dynamics of environmental microbial communities across water, soil, 

and air, with profound implications for human health. Rising temperatures, extreme precipitation, and sea-
level rise are increasing the abundance and virulence of pathogenic microbes, while also accelerating the 
spread of antibiotic resistance genes. These changes are exacerbating the risk of waterborne, foodborne, 
and airborne diseases, with the greatest impacts felt in vulnerable regions such as coastal LMICs.

However, evidence-based strategies—including improved water sanitation, AI-based early warning 
systems, and green infrastructure—have proven effective in mitigating these risks. By reducing pathogen 
concentrations, predicting outbreaks, and limiting the spread of ARGs, these strategies can protect human 
health and build resilience to climate change. Nevertheless, significant challenges remain, including 
inequitable access to resources in LMICs, gaps in monitoring and surveillance, and the need for coordinated 
global action.

Addressing the climate-microbe-disease nexus requires a multifaceted approach that combines 
scientific research, policy action, and equitable resource distribution. By strengthening monitoring systems, 
scaling up adaptive strategies, and fostering international collaboration, we can reduce the health risks 
posed by climate change and ensure a safer, more resilient future for all. The time to act is now—delays in 
addressing these challenges will only increase the severity of disease outbreaks and the burden on global 
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public health systems.
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