SSM‑RA: A Novel Sharp‑Notch Metamaterial SRR Antenna with EBG Ground for Plasma‑Resilient Reentry Communication

Digital Technologies Research and Applications

Article

SSM‑RA: A Novel Sharp‑Notch Metamaterial SRR Antenna with EBG Ground for Plasma‑Resilient Reentry Communication

Rengaraj, S., & Shieh, C. (2025). SSM‑RA: A Novel Sharp‑Notch Metamaterial SRR Antenna with EBG Ground for Plasma‑Resilient Reentry Communication. Digital Technologies Research and Applications, 4(3), 250–263. https://doi.org/10.54963/dtra.v4i3.1790

Authors

  • Saravanakumar Rengaraj

    Research Institute of IoT Cybersecurity, Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Taiwan
  • Chin‑Shiuh Shieh

    Research Institute of IoT Cybersecurity, Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Taiwan

Received: 30 October 2025; Revised: 11 November 2025; Accepted: 26 November 2025; Published: 15 December 2025

Reliable communication during atmospheric reentry is strongly affected by plasma induced attenuation. Antennas for such missions must remain compact, thermally robust, and maintain stable impedance while supporting directive radiation in the C‑band. Conventional microstrip and Fabry‑Perot cavity antennas often experience radiation distortion and reflection loss under reentry conditions, and their use of extra reflectors or cavities restricts integration within thermal protection systems. This work presents the Sharp‑Notch Split‑Ring Metamaterial Reentry Antenna (SSM‑RA), an angle oriented Split‑Ring Resonator antenna with an EBG backed defected ground optimized for dual‑band C‑band operation. Sharp‑notch SRR slots placed at specific angles improve directional gain, suppress surface waves, and support polarization stability under elevated temperatures. Full wave simulations in Ansys HFSS over 3−6 GHz are used to study gain, directivity, return loss, and VSWR. The antenna is realized on an Arlon 10FR substrate and characterized using a vector network analyzer. Measurements yield gains of 3.01 dB and 4.63 dB at 3.7 GHz and 5.05 GHz, with return loss of −13.38 dB and −28.85 dB and radiation efficiencies of 67.06% and 87.33%. Relative to a conventional C‑band microstrip reference on the same substrate, SSM‑RA provides higher gain, deeper impedance minima, and broader bandwidth, with percentage improvements quantified in the comparison section.

Keywords:

Plasma‑Resilient Antenna Split‑Ring Resonator (SRR) Electromagnetic Bandgap (EBG) Reentry Com‑ munication Systems Sharp‑Notch Metamaterial Antenna

References

  1. Zhang, J.; Liu, Y.; Li, X. The Simulation of the Antenna Performance Enveloped by the Reentry Plasma Sheath with COMSOL Multiphysics. In Proceedings of the 23rd Topical Conference on Radio-frequency Power in Plasmas, Hefei, China, 14–17 May 2019. DOI: https://doi.org/10.1063/5.0013606
  2. Wang, H.; Liu, C.; Xie, X.; et al. Gain‐Improved VHF Broadband Whip Antenna Loaded with Radiation Blades. IET Microw. Antennas Propag. 2020, 14, 1446–1454. DOI: https://doi.org/10.1049/IET-MAP.2019.0867
  3. Shukla, S.B.; Adarsh, M.; Surendran, S.; et al. Antenna System for Telemetry & Telecommand RF Systems for Re-Entry Vehicle. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12 December 2022; pp. 476–479. DOI: https://doi.org/10.1109/MAPCON56011.2022.10047430
  4. Lu, X.; Li, Q. Design of Low-Profile Conformal Antenna in L Band. In Proceedings of the 2024 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Chengdu, China, 28 August 2024; pp. 1–3. DOI: https://doi.org/10.1109/RFIT60557.2024.10812384
  5. Newton, L. Survey of Wideband Antennas for Space Environments. In Proceedings of the 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Florence, Italy, 14 July 2024; p. 332. DOI: https://doi.org/10.23919/inc-usnc-ursi61303.2024.10632369
  6. Kirov, G.S. Evaluation of the Frequency Bandwidth and Gain Properties of Antennas: Characteristics of Circularly Polarized Microstrip Antennas. IEEE Antennas Propag. Mag. 2020, 62, 74–82. DOI: https://doi.org/10.1109/MAP.2020.2976912
  7. Yang, D.; Tang, Y.; Sun, K.; et al. Design of High-Gain Circularly Polarized Antennas Based on Vehicle Application Environment. IEEE Access 2020, 8, 112735–112741. DOI: https://doi.org/10.1109/ACCESS.2020.2999728
  8. Duan, W.; Xie, J.; Bi, M.; et al. Study on the Electromagnetic Performance of Radome With Laminar Ablation for Reentry Applications. IEEE Trans. Antennas Propag. 2024, 72, 6261–6269. DOI: https://doi.org/10.1109/TAP.2024.3418130
  9. Monica, J.; Jothilakshmi, P. A Design of Bandwidth-Enhanced Conformal Antenna for Aircraft Applica- tions. IETE J. Res. 2020, 69, 447–459. DOI: https://doi.org/10.1080/03772063.2020.1829507
  10. Zhao, Z.; Yuan, K.; Tang, R.; et al. A Novel Method for Sensing Local Electron Density via Measuring the VSWR of Spaceborne Antenna. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. DOI: https://doi.org/10.1109/LGRS.2022.3143206
  11. Buzov, A.L.; Buzova, M.A.; Kolchugin, Y.I.; et al. Characteristic Calculations of Antennas for Communication and Retransmission Placed on Aircraft and Helicopter Unmanned Aerial Vehicles. Radioengineering 2023, 6. DOI: https://doi.org/10.18127/j00338486-202306-13
  12. Tan, Z.Y.; Mansor, M.F. Monopole Antenna for Communication System of Military Vehicle at HF Band 3–30 MHz. In Proceedings of the 2021 IEEE 15th Malaysia International Conference on Communication (MICC), Online, 1 December 2021; pp. 102–107. DOI: https://doi.org/10.1109/MICC53484.2021.9642090
  13. Singh, A.; Sharma, D.; Kulshrestha, S.; et al. Design of 2×2 EMCP Fed Microstrip Patch Array for Altimeter Payload on Space Re-Entry Vehicle. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 11 December 2023; pp. 1–5. DOI: https://doi.org/10.1109/MAPCON58678.2023.10464150
  14. Almutawa, A.T.; Capolino, F. Strategies for Enhancing the Gain Bandwidth of Fabry-Pérot Cavity Antennas: Recent Advances. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17 March 2024; pp. 1–3. DOI: https://doi.org/10.23919/EuCAP60739.2024.10501402
  15. Johari, S.; Yasin, M.N.M.; Ismail, M.; et al. Gain Enhancement in Antipodal Vivaldi Antennas using Parasitic Elements and Metamaterials. J. Phys.: Conf. Ser. 2024, 2922, 012011. DOI: https://doi.org/10.1088/1742-6596/2922/1/012011
  16. Aragbaiye, Y.M.; Isleifson, D. Gain and Bandwidth Enhancement of 3D-Printed Short Backfire Antennas Using Rim Flaring and Iris Matching. Sensors 2024, 24, 2654. DOI: https://doi.org/10.3390/s24082654
  17. Zhang, G.; Wang, X.; Li, Q.; et al. A Broadband Dielectric Resonator Antenna Array with High Gain. In Proceedings of the 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 9 December 2022; pp. 1–2. DOI: https://doi.org/10.1109/ACES-China56081.2022.10065149
  18. Beegum, S.; Joseph, M.; Joyas, S.; et al. Dual Circularly Polarized Broadband Microstrip Antenna Array for Space Re-Entry Vehicle Applications in S Band. ICTACT J. Commun. Technol. 2024, 15, 3229–3235. DOI: https://doi.org/10.21917/ijct.2024.0481
  19. Meenakshi, N.; Solachi, R.V.; Visalakshi, R.V. Design of Frequency Re-Configurable Microstrip Patch Antenna for Ultra Wideband Application. In Proceedings of the 2024 4th Asian Conference on Innovation in Technology (ASIANCON), Pimari Chinchwad, India, 23 August 2024; pp. 1–5. DOI: https://doi.org/10.1109/ASIANCON62057.2024.10837889
  20. Zhao, Q.; Wu, Z.; Xia, Z.-X.; et al. Bandwidth and Gain Enhancement of Low-RCS Dual- Polarized Patch Antennas Based on Polarization Conversion Metasurface. In Proceedings of the 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Bejing, China, 16 May 2025; pp. 1–3. DOI: https://doi.org/10.1109/ICMMT61774.2024.10672463
  21. Nimbolkar, A.; Kumar, H.; Kumar, G. Alternatives to Metamaterial Based Antennas for Gain and Bandwidth Enhancement. IETE J. Res. 2021, 69, 1–7. DOI: https://doi.org/10.1080/03772063.2021.1886878
  22. Ram, D.; Singh, A.K.; Bhattacharyya, S. An Inverted F-Shaped Slotted Broadband Metasurface-Based Circularly Polarized Patch Antenna for 5G Application. AEU Int. J. Electron. Commun. 2024, 187, 155507. DOI: https://doi.org/10.1016/j.aeue.2024.155507
  23. Fitra, M.; Adam, I.; Yasin, M.N.M.; et al. Miniaturization of Stacked Wearable Antenna for 5g Applications. J. Teknol. 2024, 86, 137–144. DOI: https://doi.org/10.11113/jurnalteknologi.v86.21696
  24. Asri, A.F.; Mohd Ariff, M.H.; Abas, M.F.; et al. X-Slot Microstrip Patch Antenna for Sub-6 Ghz 5G Router Applications. In Proceedings of the 2025 IEEE 8th International Conference on Electrical, Control and Computer Engineering (InECCE), Kuantan, Malaysia, 27 August 2025; pp. 57–62. DOI: https://doi.org/10.1109/InECCE64959.2025.11150859
  25. Ram, D.; Singh, A.K.; Bhattacharyya, S. A Broadband Gain‐Enhanced Metasurface‐Based Circularly Polarized Patch Antenna for WLAN Application. Radio Sci. 2025, 60, 1–13. DOI: https://doi.org/10.1029/2024RS008063
  26. Infant, L.S.; Mary, G.A.A.; Mazhar, A.S.; et al. SIW Cavity-Backed Gain-Enhanced Circularly Polarized Metamaterial-Loaded Dual-Band MIMO Antenna for WLAN and 5G Applications. ACES J. 2025, 40, 363–372. DOI: https://doi.org/10.13052/2024.ACES.J.400410
  27. Shishkin, M.S. Aperture Efficiency Improvement Methods for High-Gain Wideband or Ultrawideband Stacked Microstrip Antennas. In Proceedings of the 2024 IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE), Novosibirsk, Russia, 15 November 2024; pp. 260–265. DOI: https://doi.org/10.1109/PIERE62470.2024.10804914
  28. Saxena, S.; Nandwani, R.; Mahajan, M.B.; et al. Challenges in Design and Realization of Fabry-Perot Cavity Based High Gain Antennas. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 11 December 2023; pp. 1–4. DOI: https://doi.org/10.1109/MAPCON58678.2023.10463977
  29. Tubbal, F.; Matekovits, L.; Raad, R. Antenna Designs for 5G, IoT and Space Applications. Electronics
  30. , 11, 2484. DOI: https://doi.org/10.3390/electronics11162484
  31. Gong, R.; Liu, Y.; Jia, Y. A Design of Wideband Conformal Discone Antenna. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi'an, China, 16 August 2024; pp. 1–3. DOI: https://doi.org/10.1109/ACES-China62474.2024.10699445