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Abstract: Computer network assets expose to various cyber threats in today’s digital era. Network Anomaly Detection
Systems (NADS) play a vital role in protecting digital assets in the purview of network security. Intrusion detection
systems data are imbalanced and high dimensioned, affecting models’ performance in classifying malicious traffic. This
paper uses a denoising autoencoder (DAE) for feature selection to reduce data dimension. To balance the data, the
authors use a combined approach of oversampling technique, adaptive synthetic (ADASYN) and a cluster-based under-
sampling method using a clustering algorithm, Kmeans. Then, a one-dimensional convolutional neural network (1D-
CNN) is used to perform classification. The performance of the proposed model is evaluated on UNSW-NB15 and NSL-
KDD datasets. The experimental results show that the model produces a detection rate of 98.79% and 97.23% on UNSW-
NB15 for binary classification and multiclass classification, respectively. In the evaluation using NSL-KDD, the model
yields a detection rate of 98.52% for binary type classification and 98.16% for multiclass type classification.
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1. Introduction
The pervasive use of digital devices in today’s

digitally connected world, especially the IoT paradigm in
different aspects of lives [1] , brings much information
into cyberspace. On the other hand, this overall
development and changes cause hidden dangers [2,3] to
digital assets. Hence, protecting digital assets is a critical
challenge and motivates network security scholars to
research the domain. In recent years, many network
security incidents have happened on personal and
commercial systems with different attack methods [4]; it
shows that the number of attacks increased and the forms
of attacks increased dramatically. The traditional in-place
security tools as a first-line network security defence,
such as encryption methods and firewalls, cannot cope
with all types of network security dimensions. Therefore,
developing an effective tool to detect network attacks is
highly needed. NADS is a promising method to identify
new intrusive activities and unauthorized access to digital
assets.

Moreover, network traffic data is huge, resulting in
computational costs for anomaly detection [5]. In the real
world, network traffic data are an imbalance that causes a
delay in the model’s convergence and results in bias

prediction [6,7]. Re-sampling techniques are widely
employed methods to balance data. Re-sampling includes
over-sampling and under-sampling. Each one has its pros
and cons. Over-sampling is good for keeping all
information but increases the size of data.

In contrast, under-sampling decreases the data size
but causes information loss to some extent based on the
type and proportion of sampling. The simplest method is
random over-sampling (ROS) and under-sampling (RUS).

Some of the other representations are Balance
Cascade [8], Synthetic Minority Oversampling
Technique (SMOTE) [9] and Adaptive Synthetic
(ADASYN) [10]. There are many recommendations for
over-sampling in previous works; for example, author
[11] has proved that over-sampling does not cause over-
fitting, and it is the best way to handle imbalance
problems in deep learning. We propose a feature
selection technique using DAE to reduce the data
dimensionality to solve the problems mentioned earlier.
To handle imbalance issues in network traffic data, we
use a combined method of oversampling, ADASYN and
a cluster-based under-sampling, using the K-means
algorithm. The aim of using the combined method is to
avoid the data size increase with the help of under-
sampling and exploits the advantages of keeping as much
as informative samples with the use of over-sampling.
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Then, this imbalance processing approach is fused to 1D
CNN to perform binary classification and multiclass
classification tasks.

The performance of the model is evaluated on NSL-
KDD and UNSW-NB15 datasets. Our main contributions
in this study are:

a. We present a combined ADASYN and K-means-
based clustering method to handle imbalance issues in
the network traffic data.

b. We propose a flow-based NADS that employs
an integrated imbalance processing method and the 1D
CNN model. Our model performs superior to the state-of
-the-art in producing detection rates and dramatically
reducing false alarm rates. It will be a prominent point
for future NADS design and development.

The remainder of this paper consists of several
sections. Section 2 briefly describes related work. Next,
in Section 3, a description of the datasets is given. The
pro-posed method is explained in Section 4. Section 5
details experimental results and analysis, and finally,
Section 6 concludes the paper.

2. Related Work
This section briefly summarises some of the most

related literature to our work. Authors [12] employed
DAE for feature selection and Multilayer Perceptron
(MLP) for classification, with an accuracy of 98.80%.
The performance of the proposed method was evaluated
on the UNSW-NB15 dataset. Authors [13] proposed a
network intrusion detection using a conditional
variational autoencoder for network anomaly detection in
the IoT domain. The proposed method deals with feature
re-construction in the case of incomplete data. The
authors claimed that the performance was improved and
less complex than other unsupervised methods. Authors
[14] proposed a Recurrent Neural Network (RNN) based
network intrusion detection system. The authors claimed
that deep learning-based network intrusion detection
achieves better in the case of big data processing.
Authors [15] proposed a deep learning-based distributed
attack detection in an IoT environment especially using
edge devices. The method produced an accuracy of
98.27% on the NSL-KDD dataset. Baig et al. [16]
developed a multiclass classification method for network
intrusion detection. They used a cascaded artificial neural
network which yields an accuracy of 86.40% on the
UNSW-NB15. Kwon et al. [17] used a fully connected
neural network architecture for NIDS. The performance
of the method was tested on the NSL-KDD dataset. The
detection rate was reported from 92.9% to 95.3% for
different files of the NSL-KDD dataset. The authors [18]
proposed an intrusion detection based on Deep Neural
Network (DNN). The model performance was evaluated
on different datasets for binary and multiclass

classification. With the rapid growth of technological
advancement, data in cyberspace is getting larger and
larger. Therefore, shallow learning with traditional
machine learning (ML) relies on a high level of human
involvement in data preparation, which may not be
suitable in the real-world environment [19,14]. Also,
these techniques produce low accuracy [14]. In recent
years, deep learning demonstrated success in different
real-world problem solving, including cyber-security,
due to its capability of automatic feature capturing and
correlation in large data- sets [14].

3. Dataset
We use UNSW-NB15 and NSL-KDD datasets for

the proposed model performance evaluation.

3.1 UNSW-NB15
The UNSW-NB15 [20,21] was generated by the

University of South Wales in 2015. The researchers
employed three virtual servers and used a tool called Bro
to extract 49-dimensional features, including two labels.
This dataset has 2.54 million network traffic samples
with nine types of attacks. The number of attack types is
more than KDD, and its features are plentiful. UNSW-
NB15 has a serious class imbalance. From Table 1,
detailed distribution of each class, we can calculate that
87.35% of the entire data is normal traffic, and the
remaining 12.65% is all types of attacks. We use the
entire dataset for the experiment and divide it into
training, testing, and validation at a ratio of 70%, 20%,
and 10%,respectively.

3.2 NSL-KDD
NSL-KDD is a refined version of the KDD CUP 99

dataset [22]. The records in the NSL-KDD have been
chosen carefully to avoid redundancy issues in the
previous version. It contains only a moderate number of
records. There are different files with different formats
for the NSL-KDD dataset [23]. In this experiment, we
used KDDTrain+ and KDDTest+. From Table 1, detailed
distribution of each class, we can calculate that 51.88%
of the entire data is normal traffic, and the remaining
48.20% is all types of attacks. It is imbalanced but not as
much as UNSW-NB15. We divide it into training, testing,
and validation at 70%, 20%, and 10%, respectively.
Further details on NSL-KDD are available [24]. This is
one of the commonly used datasets in NIDS.

4. The Proposed Method
The proposed method mainly consists of data pre-

processing, class imbalance handling, classification, and
evaluation. Figure 1 illustrates the architecture of the
model.



Digital Technologies Research and Applications | Volume 01 | Issue 02 | August 2022

68

Figure 1. The proposed Method.

Table 1. The number of instances in each class of UNSW-NB15 and NSL-KDD datasets.

The data pre-processing includes one-hot encoding,
data normalization, and feature selection. The second
step is combining imbalance processing using
ADASYN and the k-means algorithm. The
classification consists of 1D-CNN and, finally, the
evaluation of the model.

4.1 Data Pre-Processing
First, we dropped unnecessary features such as

“srcip”, “ sport”, “dstip”, “dsport”, “stime” , and “ltime”
[12] from the UNSW-NB15 dataset before the data pre-
processing step. Data pre-processing consists of three
main steps: one-hot encoding, data standardization, and
feature selection. One-hot encoding is a process of
converting nominal features into binary vectors [4]. The
goal of performing data standardization is to bring down
all the features to a common scale without distorting the
differences in the range of the values. Feature selection
reduces the number of variables to an optimal set by
eliminating redundant or unnecessary variables. UNSW-
NB15 and NSL-KDD have three nominal features each.
Nominal features of UNSW-NB15 are “proto”, “state”,
and “service”,and nominal features of NSL-KDD are
“protocol type”, “service”, and “flag”. After applying
one-hot encoding, the UNSW-NB15 feature dimension
increased to 202 , and the feature dimension of NSL-
KDD increased to 121. Similarly, one-hot encoding is
applied on the class label of both datasets. Next, we
standardize all the remaining features according to
Equation (1) and normalize them to Normal Distribution,
also called the Gaussian Distribution, with a mean of 0
and a variance of 1.

x' = x−μ
δ

(1)

where x is the normalized features, x is the original
feature, µ is the mean, and δ is the standard deviation.

The general form of Gaussian Distribution is given
in Equation (2).

Dataset Class Train-Set Test-Set Validation-Set Total

UNSW-NB15

Normal 15,59,255 4,36,755 2,22,751 22,18,761

Generic 1,51,430 42,418 21,633 2,15,481

Exploits 31,291 8,764 4,470 44,525

Fuzzers 17,039 4,773 2,434 24,246

DoS 11,491 3,220 1,642 16,353

Reconnaissance 9,830 2,753 1,404 13,987

Analysis 1,881 527 269 2,677

Backdoors 1,637 458 234 2,329

Shellcode 1,061 298 152 1,511

Worms 123 34 17 174

Total 17,85,038 5,00,000 2,55,006 25,40,044

NSL-KDD

Normal 54,150 15,168 7,736 77,054

DoS 37,517 10,508 5,360 53,385

Probe 9,893 2,772 1,412 14,077

R2L 2,634 738 377 3,749

U2R 177 50 25 252

Total 1,04,371 29,236 14,910 1,48,517
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f(x, μ, δ) = 1
δ 2π

e
−(x−μ)2

2δ2 (2)

where x is the original feature, µ is the mean, and δ is the
standard deviation.

Finally, we perform feature selection using DAE on
both datasets and select the top 15 features for each.
Table 2 shows 15 selected features’ names of both
datasets.

4.2 Data Imbalance Processing

In Table 1, the number of instances is too
small for some classes in the UNSW-NB15. For
example, worms, shellcode, and backdoors have few
samples, and similarly, the number of samples for
U2R and R2L is smaller in NSL-KDD compared to
the other classes. We present a combined over-
sampling technique using ADASYN and a cluster-
based under-sampling technique using the K-means
algorithm to balance the data. Over-sampling alone
increases the data size, ultimately increasing the
model’s computational cost and affecting model
accuracy. Under-sampling decreases data size but
causes information loss by eliminating some
informative transactions. To overcome those
shortcomings, we use a combination of both re-
sampling techniques. For the minority class, we use
the ADASYN technique. ADASYN is an improved
version of SMOTE. The key idea behind the use of
ADASYN is that it employs a density distribution as
a criterion to automatically decide the number of
synthetic samples that are required to be generated
for each minority example [10]. The way it works is
similar to SMOTE, with a minor improvement. It
adds some small random values to the points, making
them more realistic. So, instead of all the samples
being linearly correlated to the parent points, they
have some more variance,i.e . they are scattered.
Next, in the clustering-based under-sampling
technique, we divide the data belonging to each
majority class into 10 clusters and randomly choose
some portions from each cluster so that the sum of
all taken portions has to be equal to the selected
threshold the minority class has been over-sampled.
Algorithm 1, ADASYN-KM, describes our
imbalance processing method.

Table 2. Selected features of UNSW-NB15 and NSL-
KDD datasets.

Dataset Selected features

UNSW-NB15
dtcpb,stcpb, service_- , dmeansz,dload,sload, service_
dns, smeansz, trans_depth,sttl, djit,service_ftp-data,
ct_ftp, ct_state_ttl,sloss

NSL-KDD

service_http, dst_host_srv_rerror_rate, duration, dst_
host_same_srv_rate, protocol_type_udp, same_srv_
rate, dst_host_serror_rate, srv_rerror_rate, logged_in,
service_telnet, dst_host_srv_serror_rate, service_other,
flag_SF, num_root, srv_count,

4.3 Convolutional Neural Networks

Neural networks (NNs) are a subset of ML at
the heart of deep learning algorithms. Neural
networks compromise from node layers. They
contain three main layers, i.e. input layer, one or
possibly more hidden layers, and an output layer.
The nodes are connected one to another and are
associated with weight and a certain threshold. The
node is activated if the output value crosses the
threshold and then passes the data to the next layer;
else, no data is passed to the next network layer.
Convolutional neural networks (CNN) are an
extension architecture of feed-forward neural
networks by having three main layers: convolutional,
pooling, and fully connected. The first layer is the
convolutional layer, followed by other layers or
pooling layers. The final layer of CNN is the fully
connected layer.

Algorithm1 ADASYN-KM
Required:
(a) Cn = The total number ofclasses;
(b) Training set S = Si, i = 1,2,3,...Cn;
(c) |S| = N; #All samples
(d) cl = 10 #number of clusters

Output:
′(a) A balanced training set S;
1: Avg = int (N/Cn)
2: for i ← 1 to Cn do
3: if |Si| <Avg then
4: A

g
DASYN (Si, Avg) # Apply ADASYN S’ i , so | S’|=Avg

5: end if
6: if |Si | >Avg then
7: Kp = K – means (Si, cl) #Use K-means algorithm
to cluster Si into cl
Clusters,p = 1, 2, 3...., cl
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8: forp ← 1 to cl do

9: ifKp > Avg/cl then
10: K’p = Resample (Kp , Avg/cl) #Avg/cl random
samples from Kp

11:else
12: K ’p = Avg/cl #assign whole cluster

13:end for
14: S’i =Merge (K’p)

15: end if
16: S’=Merge(S’i)
17: end for
18: return S‘

 Convolutional layers: The convolutional layer is
the main part of CNN because the majority of
computation occurs here. The few required
components of this layer are input data, a filter,
and a feature map.

 Pooling layer layers: This layer is responsible
for dimensionality reduction and reducing the
number of parameters in the input, thus called
down-sampling. The pooling operation sweeps
the filter through the input as the convolutional
layer does, but this filter has no weights.
Moreover, the kernel applies an aggregation
function intending to populate the outputarray in
the pooling operation. The two main types of
pooling are Max Pooling and Average Pooling
[25,26]. Max pooling selects the maximum value,
and Average Pooling calculates the average
values within the receptive field. In this work, we
use Max Pooling, as shown in Equation (3).

���� � = ���(��) (3)
where x describes the vector of input data with
an activation function.

 Fully connected layers: The fully connected
layer is responsible for the task of classification
based on the extracted features through the
previous layers and different filters. The fully
connected layer usually leverages a softmax
activation function to classify inputs, while
convolutional and pooling layers tend to use
ReLu functions.

We developed our model based on a six-layer 1D
CNN. Figure 1 illustrates the complete step-by-step of
our model. The classification part is the network
architecture, which shows that a Max-pooling layer
follows every two convolutional layers for the first
four layers. The dense layers integrate the locally

learned features into global features. The first dense
has 64 neural units, and the final dense mainly
performs the task of classification or prediction. The
parameters vary from dataset to dataset based on the
number of class labels and type of classification, such
as binary and multiclass classification. The data are
just mapped into a two-dimensional array as the
input to the network.

5. Experimental Results and Analysis
We implemented the proposed CNN-based NADS

model in Python and conducted the experiments on a
machine with Windows 11 Pro 64 bits operating
system. Detailed information on the experimental setup
is given in Table 3. The class imbalance process was
done on the training set only. The batch size was set to
256, and the epoch was between 100 to 200.

Table 3. Experimental environment.

Parameter Value

OS Windows 11 Pro

CPU Intel® Xeon®W-1250@3.30 GHz

GPU NVIDIA Quadro RTX 4000

RAM 32 GB

Programming Language Python 3.6

Framework Keras 2.2.4

Backend Engine Tensorflow

5.1. Evaluation Metrics
The performance of the model is evaluated by

Accuracy, Precision, Recall, f-measure, and false alarm
rate (false positive rate), which are formulated as:
A66ݑTa6ݕ = (4)

PTeci i n = (5)

Re ll = (6)

F1 = 2×( Te i i n×Re ll) (7)
( Te i i n+Re ll)

F R = (8)

5.2 Classification
The number of convolution kernels and learning rate

directly affect classification results in a CNN-based
model [27,28]. We performed experiments on several
convolution kernels with different learning rates to
obtain a better result. This experiment was on UNSW-
NB15 for multiclass classification. We use the
“nadam” optimizer and “categorical crossentropy” loss
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function for the entire experiment. In our model, the
number of convolution kernels in the first four layers
of 1D CNN is 64 64 256 256. We use Max-pooling two
times to under-sample the parameters of the
convolution layer. The activation function for the
output layer is softmax, and for the rest of the layers is
Relu. To avoid over-fitting, a dropout with a parameter
of 0.2 is used after each pooling layer. We tested six
different convolution kernels with seven learning rates.
Table 4 presents comparative studies of different
convolution kernels concerning different sets of
learning rates. We observe that the convolution kernels
of 64 64 256 256 and learning rate 0.1 outperform in
Recall, f1-score, Train-loss and Test-loss with the
score of 97.23%, 97.64%, 0.30%, and 0.07%,
respectively. It scores lower by 0.02% in Accuracy
with a learning rate of 0.01, and Precision is lower by
0.02% from 64 64 128 128 with a learning rate of 0.1.
The FAR is 0.48%, which is higher by 0.8%, with a
learning rate of 0.002. Based on this experiment, we
can claim that convolution kernels 64 64 256 256
outperform the other number of convolution kernels for
most metrics, such as Accuracy, Recall, f1-score, FAR,
Train-loss, and Test-loss except for Precision and
computational time.
To evaluate the effectiveness of our model on

different datasets and different types of classifications,
we implemented the same experiment on binary
classification and multiclass classification on both
datasets. Table 5 provides summary results for all the
metrics on both datasets. Table 6 presents per class
performance of the model on UNSW-NB15 dataset.
We can see that the detection rate for the minority
classes of shellcode and worms is better concerning the
deficient number of samples for the classes.

5.3 Discussion
The experimental results show that by combining

an imbalance processing technique and a 1D-CNN-
based classifier model, our proposed method
significantly improved the detection rate and reduced
the FAR. The main reason is that instead of random
re-sampling, we employed a combined method of
ADASYN over-sampling and a cluster-based under-
sampling using the K-means algorithm. We manually
set the number of clusters to 10 due to better results
from a small pre-test. Cluster-based under-sampling
prevents information loss, which may occur by
eliminating samples randomly. In this way, it will
contribute to good performance.

On the other hand, ADASYN over-sampling
generates synthetic points which are more realistic
than the randomly generated points. There are many
ways of under-sampling, such as K-means algorithm,
random under-sampling, Gaussian-based clustering
etc. Similarly, there are many over-sampling
techniques like random-oversampling, SMOTE etc.
We selected ADASYN rather than SMOTE to
generate more realistic samples. SMOTE generates
samples linearly, while ADASYN works similarly to
SMOTE but adds some small fractions to generate
more realistic samples. To demonstrate the
effectiveness of our model, we compared our results
with some of the previous works given in Table 7. We
use Accuracy, Precision, Recall, f-measure, and FAR
metrics for the comparison and can see from the
table that our model performs much better than the
previous works. Reducing the false positive rate
(false alarm rate) is one of the key challenges in
network anomaly detection, which is significantly
dropped by our method.
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Table 4. Performance comparison of the proposed model with different numbers of convolution kernels at
different learning-rate for multiclass classification on UNSW-NB15 dataset.

Conv. Kernel No. LR Acc.% Precision% Recall% F1-Score% FAR% Train-Time InSec Test-Time Insec Train-Loss Test-Loss

0.1 98.89 98.28 96.79 97.37 0.06 2877 11 0.34 0.08

0.03 98.89 98.32 96.85 97.41 0.07 3143 14 0.34 0.07

0.01 98.88 98.29 96.82 97.37 0.06 3474 14 0.34 0.08

16_16_32_32

0.008

0.006

0.004

0.002

98.89

98.88

98.88

98.88

98.31

98.30

98.30

98.31

96.94

96.85

96.92

96.86

97.43

97.38

97.41

97.40

0.10

0.08

0.04

0.06

3358

3432

3316

3359

13

15

16

17

0.35

0.35

0.34

0.34

0.07

0.08

0.07

0.07

0.1 98.96 98.29 96.95 97.47 0.48 2477 46 0.33 0.08

0.03 98.90 98.28 96.77 97.39 0.11 2491 47 0.33 0.07

0.01 98.90 98.32 96.60 97.28 0.09 2989 56 0.33 0.08

16_16_64_64

0.008

0.006

0.004

0.002

98.94

98.95

98.89

98.90

98.31

98.31

98.30

98.31

96.84

97.03

96.82

96.84

97.44

97.50

97.40

97.42

0.22

0.28

0.07

0.08

2746

2915

2942

2948

64

44

64

64

0.33

0.33

0.33

0.33

0.07

0.07

0.08

0.08

0.1 98.92 98.37 97.02 97.51 0.16 3226 101 0.32 0.07

0.03 98.91 98.38 97.07 97.53 0.14 3293 123 0.32 0.07

0.01 98.91 98.38 96.60 97.33 0.12 3418 125 0.32 0.09

32_32_64_64

0.008

0.006

0.004

0.002

98.92

98.91

98.92

98.91

98.37

98.34

98.37

98.37

97.02

96.62

97.05

97.02

97.52

97.31

97.53

97.51

0.16

0.08

0.15

0.13

3351

3287

2956

3292

121

124

97

127

0.32

0.32

0.32

0.32

0.07

0.07

0.07

0.07

0.1 98.94 98.37 97.08 97.55 0.26 4087 215 0.31 0.07

0.03 98.99 98.37 97.03 97.55 0.41 4183 230 0.31 0.07

0.01 98.91 98.37 96.97 97.49 0.14 3801 196 0.31 0.07

32_32_128_128

0.008

0.006

0.004

0.002

98.92

98.92

98.93

98.93

98.37

98.39

98.40

98.37

97.02

96.99

96.94

96.86

97.52

97.51

97.51

97.45

0.13

0.10

0.13

0.17

4214

4217

4135

4172

224

225

218

229

0.31

0.31

0.31

0.31

0.07

0.07

0.07

0.07

0.1 98.96 98.40 97.14 97.59 0.29 5238 326 0.30 0.07

0.03 98.98 98.39 97.10 97.58 0.29 4875 275 0.30 0.07

0.01 98.99 98.38 97.19 97.61 0.39 5482 348 0.30 0.07

64_64_128_128

0.008

0.006

0.004

0.002

98.99

98.98

98.97

98.96

98.39

98.38

98.38

98.39

97.12

97.17

97.16

97.15

97.60

97.60

97.59

97.59

0.35

0.38

0.29

0.29

5438

5628

5373

5497

415

421

364

375

0.30

0.30

0.30

0.30

0.07

0.07

0.07

0.07

0.1 99.01 98.38 97.23 97.64 0.48 6030 339 0.30 0.07

0.03 98.99 98.39 97.14 97.60 0.37 6673 389 0.30 0.07

0.01 99.03 98.38 97.03 97.57 0.48 6949 414 0.30 0.07

64_64_256_256

0.008

0.006

0.004

0.002

99.02

98.99

99.00

99.00

98.37

98.37

98.38

98.38

97.14

97.17

97.09

97.16

97.61

97.61

97.59

97.61

0.49

0.40

0.42

0.40

7373

7388

7621

7846

439

440

454

467

0.30

0.30

0.30

0.30

0.07

0.07

0.07

0.07
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Table 5. Performance of the proposed model in binary/multiclass classification on UNSWNB15 and NSL-
KDDdatasets.

Dataset UNSW-NB15 NSL-KDD

Classification Binary Multi-class Binary Multi-class

Accuracy % 98.79 99.01 98.52 98.97

Precision % 98.90 98.38 98.52 98.35

Recall % 98.79 97.23 98.52 98.16

F1-score % 98.81 97.64 98.52 98.22

FAR % 0.18 0.48 1.48 0.48

Train-time in sec. 8049.91 6029.59 641.41 626.41

Test-time in sec. 388.31 339.09 15.67 14.90

Train loss 0.03 0.30 0.09 0.17

Test loss 0.02 0.07 0.05 0.07_

Table 6. Performance evaluation of the proposed model in multiclass classification on the UNSW-NB15 dataset.

Class Accuracy % Precision % Recall % F1-score % Support

Normal 98.92 99.92 98.84 99.38 4,36,755

Generic 99.83 99.84 98.21 99.02 42,418

Exploits 98.97 84.07 50.54 63.13 8,764

Fuzzers 98.90 45.22 69.70 54.85 4,773

DoS 98.90 33.48 71.74 45.65 3,220

Reconnaissance 99.82 85.76 80.28 82.93 2,753

Analysis 99.69 11.34 28.46 16.22 527

Backdoors 99.77 10.82 20.74 14.22 458

Shellcode 99.68 13.13 78.52 22.50 298

Worms 99.97 16.13 73.53 26.46 34

Overall/avg. 99.01 98.38 97.23 97.64 5,00,000

Table 7. Comparison results based on UNSW-NB15 and NSL-KDD datasets for multiclass classification with
previous studies.

Dataset Classification Model Acc. % Precision% DR % F1-score % FAR
%

CSCADE-ANN [16] 86.40 86.74 93.38 89.94 -

UNSW-NB15 Multiclass ICVAE-DNN [29] 89.08 86.05 95.68 90.61
19.01

In this work 99.01 98.38 97.23 97.64 0.48

SCDNN [30] 72.64 - 57.48 - -

RNN-IDS [14] 81.29 - - - -

ID-CVAE [13] 80.10 81.59 80.10 79.08 -
NSL-KDD Multiclass

Gaussian–Bernoulli RBM [31] 73.23 62.33 95.09 75.30 -

ICVAE-DNN [29] 85.97 97.39 77.43 86.27 2.74

In this work 98.97 98.35 98.16 98.22 0.48
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6. Conclusions
We proposed a combined approach to process class

imbalance to overcome the class imbalance issue in
network traffic data. The technique combines
ADASYN over-sampling and clustering-based under-
sampling using the k-means algorithm. We develop a
1D CNN-based network anomaly detection with 64
64 256 256 number of convolutional kernels, a
learning rate of 0.1, a softmax activation function for
the output layer, Relu activation function for the
layers other than the output layer, and Max-pooling
followed by a dropout. We evaluated our model on
two commonly used datasets, UNSW-NB15 and NSL-
KDD. The binary and multiclass classification was
conducted on both datasets. A comparative study with
six different convolution kernels and seven learning
rates was conducted to show how our model performs
vs the other convolution kernels. The experimental
results show that the model produces a detection rate
of 98.79% and 97. 23% on UNSW-NB15 for binary
classification and multiclass classification,
respectively, which is the highest among all tested
scenarios. In the evaluation using NSL-KDD, the
model yields a detection rate of 98.52% for binary
type classification and 98.16% for multiclass type
classification. We compared our method with some
previous work on multiclass classification. Our model
performs superior to state-of-the-art models and
points to a promising direction for future network
anomaly detection with large-scale and imbalanced
datasets. We plan to explore more imbalance
processing methods on a distributed platform to
improve detection performance and reduce time in our
future research.
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