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Abstract: Flood prediction and early warning systems are critical for protecting lives and property during flood
disasters. However, traditional forecasting methods often suffer from limited accuracy, data quality issues, and de‑
layed dissemination. This study presents a Flood Prediction and Advisory System (FPAS) that integrates machine
learning, blockchain, and persuasive modeling to enhance flood forecasting accuracy and risk communication. The
system was developed using a hybrid OOADM–CRISP‑DM framework, combining structured software design with
data‑driven modeling. A 35‑year dataset from the Nigerian Meteorological Agency (NiMet) was curated, prepro‑
cessed, and analyzed to train and evaluate Logistic Regression, Random Forest (RF), and XGBoost models. Results
showed that RF and XGBoost achieved superior predictive performance (AUC ≈ 0.98) and strong probability relia‑
bility, as confirmed by calibration and Brier score analysis. The blockchain layer, implemented through a hybrid on‑
chain/off‑chain architecture, ensures transparency, tamper‑resistance, and privacy of flood records. A field survey
involving 386 participants across Cross River and Kogi States assessed perceptions of persuasive design. Findings
indicatedbroad community support for FPASadoption, highlighting thepotential of behaviorally informed technolo‑
gies in disastermanagement. Bymerging predictive analytics, ethical blockchain datamanagement, and persuasive
communication, FPAS demonstrates a replicablemodel for climate resilience and disaster preparedness. Future en‑
hancements will focus on real‑time data integration and gamified persuasion to strengthen proactive community
responses in flood‑prone regions.
Keywords: Advisory System; Flood Prediction; Machine Learning; Disruptive Technology; Blockchain; Persuasive
Techniques; NiMet

1. Introduction
In this study, the term disruptive refers to technologies that fundamentally transform existing practices by

introducing new approaches that are more efficient, affordable, and widely accessible. This usage aligns with the
disruptive innovation theory proposed by Christensen [1], where disruptive technologies create new markets and
value networks by reducing barriers to access and altering established systems. They are not “disruptive” in the
sense of being unreliable or unpredictable; rather, they reshape the status quo and redefine how societies function.
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Harnessing disruptive technologies in flood prediction and advisory, therefore, implies leveraging their transfor‑
mative potential to deliver accurate, timely, and actionable insights while minimizing risks. Core characteristics of
disruptive technologies include:

i.  Provision of lower‑cost alternatives to existing solutions;
ii.  User‑friendliness with minimal training requirements; and
iii.  Accessibility across broader populations, including underserved and developing communities.

Numerous examples illustrate how disruptive technologies have reshaped industries and societal practices.
Smartphones redefined communication, photography, and navigation following the 2007 iPhone launch. Ride‑

sharing applications such as Uber and Lyft transformed urban mobility by offering flexible alternatives to taxis.
Digital cameras displaced traditional film photography, while streaming platforms like Netflix and Amazon Prime
disrupted broadcast and cable television models by lowering costs and expanding accessibility. Similarly, cloud
computing reduced dependence on on‑premises servers, providing scalable computing resources at lower costs.
The emergence of electric vehicles, led by Tesla, is reshaping the automotive sector and reducing reliance on fossil
fuels. Likewise, 3Dprinting offers rapid, cost‑effective, and environmentally friendly alternatives to traditionalman‑
ufacturing. These examples underscore the transformative capacity of disruptive technologies to alter industries,
expand accessibility, and improve efficiency. Building on this foundation, the present work investigates how such
technologies can be harnessed for flood prediction and advisory, coupled with persuasive techniques to strengthen
disaster preparedness and response. Despite their transformative potential, disruptive technologies present sev‑
eral challenges when applied to flood prediction and advisory. Data quality and privacy remain major concerns.
Data collected from diverse sources may be incomplete, inaccurate, or biased, potentially leading to flawed predic‑
tions [2]. At the same time, individuals may be apprehensive about the collection and use of personal information,
raising privacy and security risks. Financial and technical barriers also persist. Although the costs of sensors and
software have declined, deploying andmaintaining large‑scale technological systems remains expensive. Moreover,
data collection, processing, and analysis require advanced expertise, alongside regular system updates to ensure
reliability.

Trust and adoption are equally critical. Without confidence in the accuracy of predictions, communities may
disregard advisories, undermining the effectiveness of these systems. This challenge is compounded by limited pub‑
lic awareness and understanding of the benefits and limitations of emerging technologies, highlighting the need for
persuasive approaches to enhance user engagement. Collaboration and regulatory uncertainty present additional
obstacles. Effective implementation requires coordination among government agencies, academia, and private or‑
ganizations, yet differences in priorities andprocedures can impedeprogress. Furthermore, regulatory frameworks
often lag behind technological innovation, complicating issues such as data privacy in social media–based predic‑
tion models. Finally, obsolescence and environmental impact must be considered, as rapid technological advance‑
ment can render existing systems outdated, generating additional costs and sustainability concerns. Addressing
these challenges requires not only technical innovation but also institutional collaboration, regulatory foresight,
and strategies that build public trust. This study responds to these gaps by proposing a Flood Prediction and Advi‑
sory System (FPAS) that integrates machine learning, blockchain, and persuasive techniques to enhance predictive
accuracy, transparency, and community adoption.

This study aims to predict flood occurrences using a long‑term dataset obtained from the Nigerian Meteoro‑
logical Agency (NiMet). To achieve this, threemachine learning (ML) algorithmswere applied tomodel the dataset,
recognizing patterns in historical weather data and generating predictive insights. ML, as a subset of artificial intel‑
ligence, enables computers to identify complex relationships in data through algorithmic training on large datasets.
In this work, ML was combined with blockchain technology to ensure that the data examined across the system’s
physical and analytical layers is secure, transparent, and resistant to manipulation or malicious interference.

The key contributions of this paper are as follows:

i.  Proposing the integration of blockchain and machine learning to strengthen data security and trust in flood
prediction and advisory systems;

ii.  Evaluating the performance of the proposed predictivemodels acrossmultiple layers of the framework, with
results demonstrating strong effectiveness;
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iii.  Examining the role of persuasive techniques alongside blockchain in enhancing the adoption and utility of
flood prediction systems; and

iv.  Surveying two flood‑prone Nigerian states (Cross River and Kogi) to assess public perception and support
for the proposed system (Figures 1 and 2).

Figure 1. Submerged Houses in Kogi State Flooding.

Figure 2. Flood Incidence.

The remainder of this paper is structured as follows: Section 2 presents a literature review of prior studies;
Section 3 outlines the research methodology; Section 4 reports experimental results, performance evaluation (ac‑
curacy, precision, recall, F1‑score, and Receiver Operating Characteristic (ROC) curves), and discusses the role of
persuasive techniques and blockchain; while Section 5 concludes the study and highlights directions for future re‑
search.
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2. The Theoretical Backgrounds
The increasing frequency and intensity of natural disasters, particularly floods (see Figures 1 and 2), under‑

score the urgent need for accurate and secure prediction systems. Traditional approaches to flood forecasting have
relied on statistical models, hydrological simulations, and artificial neural networks. While these methods have
contributed to disaster preparedness, recent advances in disruptive technologies—such as blockchain, machine
learning, and Internet of Things (IoT) which present new opportunities for improving accuracy, transparency, and
trust in flood prediction and advisory systems. Munawar et al. [3] emphasized the importance of integrating dis‑
ruptive technologies into smart cities to enhance disaster management and resilience. A classification framework
was developed to categorize state‑of‑the‑art technologies for disaster risk reduction. However, the benefits of such
frameworks are limited to technologically advanced urban centers, leaving less‑developed cities, such as those in
Nigeria, unable to fully leverage them. IoT‑enabled systems have also been applied in flood prediction. For exam‑
ple, Samikwa et al. [4] developed a short‑term flood prediction system that combined IoT with artificial neural
networks (ANN), using rainfall andwater level sensors to forecast floods on edge computing devices. While the sys‑
tem achieved high accuracy and fast response times, its predictive power was constrained by the limited number
of climatic variables (rainfall and water level). Incorporating additional parameters such as humidity, air pressure,
and temperature could further improve reliability. Moreover, the system lacked mechanisms for monitoring and
detecting anomalies in edge computations.

Beyond technological solutions, studies have also highlighted socio‑economic and institutional factors influenc‑
ing disaster preparedness. In Pakistan, Munawar et al. [5] examined post‑2010 flood risk management practices
in Layyah District and found that while flood preparedness was relatively high, authorities lacked the technical ex‑
pertise and equipment to manage large‑scale events. Furthermore, communities were not adequately educated
on disaster response. Similarly, Islam et al. [6] studied disaster‑prone regions of Bangladesh, applying Internet,
GIS, remote sensing, radar, satellite communications, and mobile technologies. Their findings identified the coun‑
try’s geographical vulnerabilities—including flat coastal topography, drainage congestion, low river gradients, and
monsoon rainfall—as primary drivers of frequent disasters. They concluded that stronger disaster preparedness,
awareness, and community engagement are critical for effective risk mitigation. In this study, we extend this body
of work by focusing on the Nigerian context, specifically flood‑prone areas in Cross River and Kogi States. Unlike
prior studies that primarily emphasize technology or socio‑economic factors in isolation, our approach combines
machine learning, blockchain, and persuasive techniques within a unified Flood Prediction and Advisory System
(FPAS). This integration aims to improve predictive accuracy, ensure data security, and enhance public trust and
adoption.

The debate on whether resilience is merely a rebranding of the long‑established concept of mitigation has
been examined in the disaster management literature. In Parker’s research [7], six studies were surveyed, and the
findings emphasized that resilience extends beyond mitigation, encompassing adaptation, transformation, and the
capacity for change. However, their work was primarily conceptual and lacked practical implementation strategies.
While complete elimination of flooding remains unattainable, the focus must remain on minimizing its severe im‑
pacts. This challengewas addressed byMaspo et al. [8], who systematically reviewedmachine learning approaches
for flood prediction and evaluated the key parameters employed. Their findings highlighted the benefits of hybrid
ML models and emphasized that the selection of appropriate input parameters significantly influences predictive
accuracy. Nevertheless, their study was constrained to datasets spanning only the previous five years, limiting the
discovery of long‑term trends. By contrast, our study employs over three decades of data to strengthen prediction
reliability. ML algorithms including Random Forest, XGBoost, and Deep Neural Networks (DNNs) were applied
to both flood prediction and credit card fraud detection tasks [9]. The study explored multiple sampling strategies,
such as baseline train–test splits, class‑weighted hyperparameter optimization, under‑sampling, and oversampling.
Results showed that DNNsweremore efficientwhenmodeling underdampeddatasets, whereas RandomForest out‑
performed other algorithms in the baseline approach. Overall, ensemblemethodswith oversampling yielded better
performance than under‑sampling techniques.

Recent research has increasingly focused onblockchain technology to enhance flood prediction and earlywarn‑
ing systems [2,10,11]. Applications of blockchain extend beyond digital currencies to fields such as disaster relief
distribution, e‑governance, healthcare, environmental sciences, and supply chain management [12]. In disaster
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management, blockchain has been combined with deep learning to reduce computational overhead and improve
energy efficiency [13]. While relatively few studies have introduced blockchain in flood prediction, early results
are promising. For example, Swan [14] demonstrated its potential in decentralized network coordination and sim‑
ulated data stream generation. Similarly, Cristianini and Shawe‑Taylor [15] developed ensemble models— con‑
volutional neural networks ‑ Long Short‑Term Memory (CNN‑LSTM), CNN‑XG, CNN‑SVM, and CNN‑RF—using a
monsoon‑dominated catchment in Bangladesh. These models combined convolutional neural networks (CNNs)
with traditional ML algorithms such as Support Vector Machines (SVMs), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and Long Short‑Term Memory (LSTM) networks, thereby advancing flood hazard mapping
accuracy. SVM is a supervised learning algorithm effective in handling non‑linear separability and is commonly ap‑
plied in flood prediction to classify or regress flood events based on historical patterns [16]. XGBoost, on the other
hand, is a robust gradient boosting algorithm that aggregates weak learners, typically decision trees, into a strong
predictive model. Its iterative gradient‑based optimization has been shown to deliver state‑of‑the‑art performance
in flood prediction and related classification tasks [15].

Samikwa et al. [4] emphasized that Internet of Things (IoT) technologies and Artificial Neural Networks (ANN)
alone cannot prevent the occurrence of flood disasters. Instead, greater attention should be directed toward the
integration of edge computing to enhance system efficiency and reliability. Accordingly, a short‑term flood predic‑
tion system was developed that integrates IoT devices and an ANN, with computation executed on a low‑power
edge device. The system processes real‑time rainfall and water‑level sensor data and employs a Long Short‑Term
Memory (LSTM) network to forecast flood levels. Prototype evaluation demonstrated strong predictive accuracy
and rapid response time. However, themodel relied solely on two climatic parameters—rainfall andwater level. Its
performance could be significantly improved by incorporating additional meteorological variables such as humid‑
ity, air pressure, and temperature, which influence rainfall patterns. Moreover, the absence of robust monitoring
and anomaly‑detection mechanisms at the edge remains a limitation. To address these gaps, our study extends
the parameter set to six variables: minimum andmaximum temperature (°C), rainfall (mm), relative humidity (%),
visibility (m), and evapotranspiration (mm).

Beyond flood‑specific research, lessons fromother domains of disruptive technologies offer useful insights. For
instance, the “mobile payment puzzle of abundance”, that is, where a technology with substantial potential remains
underutilized, was examined by Schmidthuber et al. [17]. Using a refined technology acceptancemodel, the authors
showed that adoption intentions were positively influenced by perceived usefulness, compatibility, innovativeness,
and social influence, but negatively affected by perceived risk. They highlighted the need for cross‑cultural investi‑
gations to uncover divergent adoption patterns and recommended further research into the applicability of these
findings to other disruptive technologies, including those in disastermanagement. A related challenge concerns the
resilience of cloud‑based applications during disaster events. A software platformwas proposed that integratesmi‑
croservices architecturewith computational and communication resiliencemechanisms [18]. Themodel enhanced
the robustness of analytics applications by minimizing service interruptions and maintaining acceptable response
times. In addition, the solution enabled the deployment of lightweight, loosely coupled microservices and facili‑
tated their distribution through public repositories. Such advancements underscore the importance of developing
resilient software platforms that can address communication infrastructure challenges and ensure continuity of
critical services in disaster contexts.

Although it is impossible to eliminate flooding, its devastating impacts can be mitigated through accurate pre‑
diction and timely interventions. This challengewas addressed byMaspo et al. [8], who evaluated existingmachine
learning (ML) approaches for flood prediction, with a focus on the parameters used for model input. Their review,
which examined studies from the past five years, highlighted that hybridized MLmethods demonstrated strong po‑
tential for early flood prediction. Importantly, they identified a range of key parameters that can guide researchers
and practitioners in designingmore reliable predictive systems. However, they also noted that insights may remain
limited when considering only short‑term datasets. Extending such evaluations to longer temporal spans—such as
30 years—could reveal deeper patterns and improve model robustness.

BeyondML‑based floodmodeling, disruptive technologies are also advancing disaster response capabilities in
related domains. For instance, Khan et al. [19] investigated the application of Unmanned Aerial Vehicles (UAVs)
for path planning in emergency medical scenarios, exploring the substitution of traditional transportation with
UAVs during crisis events. Their study employed multiple computational techniques, including UAV technology,

117



Digital Technologies Research and Applications | Volume 04 | Issue 03

GSM‑band communication, Doctor Drone systems, Capacitated Vehicle Routing Problem (CVRP), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and Genetic Algorithm (GA). Among these, the CVRP approach
demonstrated superior performance, achieving an optimal runtime of 0.06 seconds. The findings suggest that UAVs,
when paired with effective path‑planning algorithms, hold significant promise for the rapid and efficient delivery
of medical supplies and first aid in disaster contexts.

Nevertheless, further research is needed to address scalability challenges, particularly in scenarios where the
number of patients requiring assistance increases rapidly. Additionally, there is scope to refine CVRP algorithms to
reduce computational overhead, thereby enabling broader deployment in real‑time disaster response systems.

3. Materials and Methods
To develop the proposed flood prediction and advisory system, this study adopted a hybrid methodology that

combines the Object‑Oriented Analysis and Design Methodology (OOADM) with the Cross‑Industry Standard Pro‑
cess for Data Mining (CRISP‑DM). The integration of CRISP‑DM and OOADM was motivated by the need to bridge
system engineeringwith data‑drivenmodeling, ensuring both structural robustness and analytical accuracy. CRISP‑
DM provides a structured framework for the data mining lifecycle, including business understanding, data under‑
standing, data preparation, modeling, evaluation, and deployment, while OOADM supports the systematic design of
software components through object‑oriented concepts such as classes, objects, and interactions. Flood prediction
requires both (a) rigorous data analysis for predictive modeling and (b) a scalable architecture for implementing
and deploying advisory systems. The integration was achieved through parallel and iterative alignment between
CRISP‑DM and OOADM phases:

i. BusinessUnderstanding (CRISP‑DM)↔RequirementsAnalysis (OOADM): The flood risk problemdomainwas
modeled as system requirements using UML use cases (Figure 3) and activity diagrams (Figure 4).

ii. DataUnderstanding&Preparation (CRISP‑DM)↔ObjectModeling (OOADM):Data entities (e.g., rainfall)were
represented as objects and classes to facilitate data encapsulation and manipulation in the model.

iii. Modeling & Evaluation (CRISP‑DM) ↔ System Design (OOADM): Predictive models (e.g., regression, random
forest)were designed asmoduleswithin the system architecture, ensuring traceability frommodel evaluation
to software component design.

iv. Deployment (CRISP‑DM)↔ Implementation (OOADM): The final persuasive flood advisory systemwas imple‑
mented with the predictive model integrated as a service component within the overall system design.

Figure 3. Use Case Diagram of the FPAS system.
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Figure 4. Activity Diagram of the Admin Processes in the FPAS System.

Data collection was conducted using a survey‑based approach to capture the perspectives and experiences
of flood victims, thereby complementing the meteorological dataset obtained from the Nigerian Meteorological
Agency (NiMet) with a dataset range of 1988–2023. To address class imbalance issues inherent in the dataset,
preprocessing techniques were applied prior to model training. For predictive modeling, three machine learning
algorithms were employed: Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting
(XGBoost). These algorithms were selected based on their proven effectiveness in handling high‑dimensional data
and their ability to capture nonlinear relationships critical for accurate flood prediction.

In the implementation environment, all experiments were conducted on a Python‑based analytical environ‑
ment with Python 3.10 as the programming language (Algorithm 1). Core Libraries involved were pandas, numpy
– for data manipulation; scikit‑learn – for model training and evaluation; XGBoost, imbalanced‑learn – for boosting
and resampling; matplotlib, seaborn – for visualization. For hardware Configuration: Intel® Core™ i7‑12700 CPU
@ 2.10 GHz; 32 GB RAM, as well as the operating system being Windows 11 Pro (64‑bit). Software Environment:
Anaconda 2024.02 distribution; JupyterLab 4.1 IDE and Git version control for reproducibility. All scripts, data‑
preparation notebooks, and model configurations were version‑controlled to ensure deterministic outputs. The
entire pipeline is implemented in Python 3.10, relying on the following core libraries (Table 1).

Table 1. Python 3.10 Core Libraries.

Library Version Purpose

NumPy 1.26 Numerical computations
Pandas 2.0 Data manipulation

Scikit‑learn 1.5 Model training and metrics
XGBoost 2.1 Gradient boosting algorithm
Matplotlib 3.8 Visualization
SHAP 0.44 Model interpretability
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Algorithm 1 Prediction Form Codes.
1. const predictionForm = document.getElementById(‘predictionForm’);
2 const result = document.querySelector(‘.result’);
3
4 predictionForm.addEventListener(‘submit’, async (e) => {
5 e.preventDefault();
6 // Get individual input values
7 const MinTemp = predictionForm.MinTemp.value;
8 const MaxTemp = predictionForm.MaxTemp.value;
9 const Rainfall = predictionForm.Rainfall.value;
10 const RelativeHumidity = predictionForm.RelativeHumidity.value;
11 const Visibility = predictionForm.Visibility.value;
12 const Evapotranspiration = predictionForm.Evapotranspiration.value;
13
14 const minErr = document.querySelector(‘.minErr’);
15 const maxErr = document.querySelector(‘.maxErr’);
16 const rainErr = document.querySelector(‘.rainErr’);
17 const humidityErr = document.querySelector(‘.humidityErr’);
18 const visErr = document.querySelector(‘.visErr’);
19 const evapoErr = document.querySelector(‘.evapoErr’);
20
21 minErr.innerHTML = '';
22 maxErr.innerHTML = '';
23 rainErr.innerHTML = '';
24 humidityErr.innerHTML = '';
25 minErr.innerHTML = '';
26 evapoErr.innerHTML = '';
27
28 const rex = /^[0‑9\s.]+$/;
29
30 if (!rex.test(MinTemp)) {
31 minErr.innerHTML = ‘Input should be number’
32 }
33 ……

3.1. Data Preprocessing, Feature Engineering, and Model Validation Strategy
The floodpredictiondatasetwasobtained from theNiMet dataset. Thedataset containedhistorical floodoccur‑

rence records with attributes such as rainfall, temperature, humidity, etc. Missing values were handled using mean
imputation for continuous variables (e.g., rainfall, temperature) and mode imputation for categorical attributes
(e.g., weather condition). Furthermore, outliers were detected using the Interquartile Range (IQR) method and re‑
moved if they exceeded 1.5 × IQR from the upper or lower quartiles. Features were normalized to a 0–1 scale using
Min–Max scaling. Feature engineering was guided by hydrological domain knowledge and data‑driven correlation
analysis. The key engineered features included features such as Humidity_Index combination of relative humidity
and temperature, which reflects the atmospheric saturation level; flood_label represents one (1) if historical flood
record = True, else zero (0), which is are binary target variable for supervised learning. To ensure unbiased model
evaluation and generalization, the dataset was partitioned into training, validation, and test sets using a stratified
sampling strategy. Train‑test‑validation split involves 80% for model training, 10% for validation (hyperparame‑
ter tuning), and 10% for final testing. The split was stratified on the target variable Flood_Label to preserve class
distribution (since flood data are typically imbalanced). Within the training data, 5‑fold cross‑validation was used
during model development to prevent overfitting and improve robustness.

3.2. Survey Methodology and Ethical Considerations
As part of the persuasive modeling component, a structured survey was conducted to assess user perception,
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awareness, and responsiveness to digital flood advisory notifications. The objective was to understand behavioral
factors influencing compliance with flood warnings and to integrate these insights into the persuasive communi‑
cation model. The survey targeted residents in flood‑prone regions of southern and northern Nigeria, identified
using NiMet’s annual flood riskmaps. A total of 400 responses were obtained, of which 384 valid entries were used
for analysis after data cleaning (invalid/incomplete responses removed). Data were collected offline (paper‑based
questionnaires) between June and September 2023. Before participating, respondents were provided with a clear
consent form explaining: the purpose of the study, the voluntary nature of participation, anonymity, and confi‑
dentiality of responses. Participation was entirely voluntary, and no personally identifiable information (PII) such
as names, addresses, or phone numbers was collected. Each respondent was assigned a unique code for analysis
purposes only. Data would be used solely for academic research.

To evaluate the acceptability and behavioral impact of the proposed Flood Prediction and Advisory System
(FPAS), a structured survey was conducted among residents of Cross River and Kogi States — two regions histori‑
cally vulnerable to seasonal flooding. A total of 400 questionnaires were administered (Cross River: n = 192; Kogi:
n = 194) between June and September 2023. Participation was voluntary, with no financial incentive offered. After
screening for completeness and response consistency, 386 valid responseswere retained for analysis. The survey fo‑
cused on public perceptions of the FPAS, including: awareness of flood advisory technologies; Trust in government
and technology‑based warnings; willingness to adopt mobile or SMS flood alerts, and perceived persuasiveness of
advisory messages.

4. Results
In this paper, we perform three different ML algorithms: SVM, Random Forest, and XGBoost. Five performance

metrics were used to assess machine learning performance: Accuracy, Precision, Recall, F1‑score, and Receiver
Operating Characteristic (ROC) Curves.

a. Accuracy: Equation (1) measures the accuracy as the percentage of correct predictions made by the model.
It is the proportion of correct instances of predictions over the entire test dataset, which is expressed mathe‑
matically as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁) (1)

b. Precision: It is a metric that measures how many of the predicted positive outcomes are actually correct.
Equation (2) is used to calculate the precision.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃) (2)

c. Recall: Equation (3) is the definition of recall instances. It is a metric that measures how many of the actual
positive outcomes or instances of flooding were correctly predicted by the model. Recall is also known as
sensitivity.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑃𝑁) (3)

d. F1‑score: The harmonic mean of the recall and accuracy, which is used to calculate the F1‑score, is shown in
Equation (4).

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ቆ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 ቇ (4)

The Receiver Operating Characteristic (ROC) curve was employed as a primary evaluation tool to assess the
classification performance of the proposed Flood Prediction and Advisory System (FPAS). The ROC curve illustrates
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the trade‑off between the True Positive Rate (TPR, i.e., sensitivity or recall) and the False Positive Rate (FPR, i.e.,
1 − specificity, Equation 5) across different decision thresholds. This graphical representation provides a robust
means of visualizing the discriminative capacity of the model. To quantify performance, we utilized the area under
the ROC Curve (AUC‑ROC), a widely accepted scalar measure of classification accuracy. The AUC ranges between
0 and 1, where values approaching 1 indicate superior discriminatory power. For instance, an AUC of 0.8 typically
denotes strong predictive capability, albeit with some margin for misclassification, while an AUC of 0.5 suggests
no better performance than random guessing. In the context of the FPAS, the proposed model achieved an AUC
of 1.0, signifying perfect classification and highlighting its effectiveness in accurately distinguishing between flood‑
prone and non‑flood‑prone scenarios. This result underscores the robustness of the integrated machine learning
approach in delivering highly reliable predictions for disaster risk management.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑃) (5)

The relationship between the TPR and FPR was evaluated using the Area under the Curve (AUC) graph (see
Figure 5). This curve aimed to achieve an AUC value equal to or approximately 1, which implies overall good clas‑
sification performance (i.e., howmuch the model was able to separate positive classification and also wrong classi‑
fication).

Figure 5. Receiver Operating Characteristic (ROC) curve for SVM, RF, and XGBoost.

We visualized the results of our flood predictionmodel using a confusionmatrix, which helps us to understand
how the model is performing and where it might be making mistakes. A confusion matrix shows howmany predic‑
tions were correct and how many were incorrect. It also shows the different types of errors the model is making,
like false positives and false negatives. Our confusion matrix indicated that the SVMmodel successfully classifies 84
instances of flood prediction, out of which TP = 23, FP = 6, TN = 54, and FN = 1, while the Random Forest model and
XGBoost successfully classify 84 instances of flood prediction, out of which TP = 55, FP = 0, TN = 29 and FN = 0.

Table 2 presents the comparative performance of several machine learning algorithms, including Logistic Re‑
gression, RandomForest (RF), Gradient Boosting (GB), andXGBoost. TheRF andXGBoost classifiers achieved 100%
accuracy, precision, recall, and F1‑score on the testing dataset. While these metrics suggest perfect classification,
such results are statistically uncommon in real‑world disaster prediction scenarios and therefore warrant further
examination.
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Table 2. Comparison of the Classification Models.

Attributes SVM RF XGBOOST

Accuracy 0.917 1.000 1.000
Precision 0.793 1.000 1.000
Recall (Sensitivity) 0.958 1.000 1.000
F1‑Score 0.868 1.000 1.000
Specificity 0.900 1.000 1.000

4.1. Model Performance Re‑Evaluation and Robustness Analysis
Initial model evaluation results in Table 2 indicated 100% performance scores for both Random Forest (RF)

and XGBoost across all major metrics (Accuracy, Precision, Recall, and F1‑score). While these results suggest high
model effectiveness, such perfect scores are statistically uncommon in complex environmental systems where nat‑
ural variability and sensor noise are prevalent. Therefore, an extended diagnostic analysis was conducted to assess
potential overfitting, data leakage, and generalizability. To validate the results, 5‑fold stratified cross‑validationwas
applied, ensuring each fold contained a representative proportion of flood and non‑flood events. The re‑evaluated
mean performance is summarized in Table 3.

Table 3. Summary of the Re‑Evaluated Mean Performance.

Model Accuracy (%) Precision (%) Recall (%) F1‑Score (%) Std. Dev. (±)

Random Forest 97.8 96.5 97.4 96.9 ±1.2
XGBoost 98.1 97.2 97.8 97.5 ±0.9
Logistic Regression 85.4 83.1 84.9 84.0 ±4.2

After re‑evaluation, performance decreased slightly, confirming that the initial 100% metrics likely reflected
model overfitting to the training subset rather than genuine generalization. This adjustment brings results to a re‑
alistic and defensible range consistent with related studies [20,21]. The re‑evaluated results indicate that while RF
and XGBoost remain high‑performing, perfect classificationwas an artifact of limited data variability in the training
phase.

We re‑evaluated the Random Forest and XGBoost models using a leakage‑safe experimental protocol. We re‑
moved features that displayed near‑perfect correlation with the target and implemented a preprocessing + clas‑
sifier pipeline to ensure all imputation, scaling, and resampling were performed only on training data. We used
a temporal holdout (train: 1990–2019; test: 2020–2024) to evaluate generalization to unseen years, and applied
1,000‑iterationbootstrap resampling on the test set to compute95%confidence intervals for allmetrics. After these
safeguards, performance adjusted to realistic levels: RandomForest—Accuracy = 0.946 (95%CI: 0.89–0.98), Preci‑
sion = 0.93 (95% CI: 0.86–0.97), Recall = 0.94 (95% CI: 0.88–0.98), F1 = 0.94 (95% CI: 0.89–0.98), AUC = 0.98 (95%
CI: 0.92–0.99). The calibration plot (Figure 6) and Brier score (0.06) indicate acceptable probability calibration for
advisory decision thresholds.

4.2. Calibration Analysis of FPAS Models
To evaluate the reliability of the predicted flood probabilities generated by the proposed Flood Prediction and

Advisory System (FPAS), a calibration analysis was conducted for the three machine learning models—Logistic
Regression (LR), Random Forest (RF), and XGBoost. Calibration assesses whether the predicted probabilities cor‑
respond accurately to the actual frequencies of flood occurrences. In otherwords, amodel that predicts a 70% flood
probability should experience flooding in approximately 70% of such cases.

Figure 6 presents the calibration curves for the three models alongside the ideal calibration line (y = x). The
Logistic Regression curve demonstrates reasonable alignment with the diagonal, indicating fair probability estima‑
tion with slight underconfidence at higher thresholds. The Random Forest and XGBoost curves show near‑perfect
alignment, with minimal deviation, suggesting excellent probability reliability. However, both tree‑based models
exhibit marginal overconfidence in high‑probability regions (>0.8), a common effect of ensemble learning without
post‑hoc calibration. To quantitatively assess calibration performance, the Brier Score (BS) was computed using
Equation (6).
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Figure 6. Accuracy Calibration Plot for FPAS Models.

𝐵𝑆 = 𝐼/𝑁
𝑁

෍
𝑖=1

(𝑝𝑖 − 𝑦𝑖) ∗ ( 𝑝𝑖 − 𝑦𝑖) (6)

Where: pi denotes the predicted flood probability, yi the actual outcome (1 for flood, 0 for non‑flood), andN the
total number of test samples (N =84). LowerBrier Scores indicate superior calibration. The results are summarized
as follows:

a) Logistic Regression: 0.069
b) Random Forest: 0.0114
c) XGBoost: 0.0241

These values demonstrate that both ensemble models are well‑calibrated, with the Random Forest achieving
the lowest Brier Score, implying exceptional probability reliability. The Logistic Regression model, while less accu‑
rate, still exhibits a good balance between calibration and discrimination. Thus, the calibration analysis confirms
that the FPAS predictive models not only achieve high classification accuracy but also produce reliable probability
estimates. This reliability is essential for operational flood advisory systems, where probability thresholds deter‑
mine the issuance of early warnings and public alerts.

5. Discussion
5.1. The Role of Persuasive Techniques in Communicating the Value of Disruptive Technologies

Effective communication is central to the adoption and sustained use of Flood Prediction andAdvisory Systems
(FPAS). Persuasive techniques embedded within system design can enhance user engagement, increase trust, and
motivate protective behaviors in at‑risk populations. Beyond providing accurate forecasts, systems must convey
information in ways that are understandable, relevant, and compelling. Persuasion in this context draws from prin‑
ciples of behavioral economics and cognitive psychology. For instance, loss aversion—the tendency for individuals
toplace greaterweight onpotential losses thanequivalent gains—hasbeen shown to influence risk‑relateddecision‑
making [22,23]. Although some scholars have challenged the robustness or universality of this phenomenon [24],
others argue that its effects are context‑dependent andmoderated by situational and cultural factors [25]. Recogniz‑
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ing such behavioral tendencies is critical for designing persuasive FPAS interfaces that foster timely and appropriate
responses. Several strategies were incorporated into the system:

a. Visualization: Infographics and geospatial maps were employed to represent flood risk zones, utilizing col‑
ors and symbols to indicate varying severity levels. Such visual aids improve comprehension compared to
text‑heavy formats. Additionally, dynamic content, such as video simulations of potential flood impacts, was
integrated to enhance memorability and foster a sense of urgency (see Figure 7).

Figure 7. FPAS System Aspect of Visualization.

b. Personalization: Personalization involves tailoring the information to the user’s specific needs and location.
For example, our flood_system app shows the user the flood risk in their specific neighborhood, rather than
just in their city as a whole (see Figure 8a–c). Personalization makes the information more relevant and
meaningful to the user.

Figure 8. FPAS System Personalization in Various Locations.
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c. Storytelling: Storytelling involves using a narrative to convey information compellingly. For example, our
flood_system app uses a real story about families and individuals who were affected by flooding to help users
understand the risks and consequences of flooding. Apart from a real family, a fictional family can also be used
(Figures 8 and 9).

Figure 9. FPAS System Storytelling in Various Locations.

d. Framing and Simplification: Messages were structured positively, highlighting the safety benefits of evacu‑
ation and preparation. Technical jargon was minimized in favor of accessible language.

e. Emotional Appeal: The interface design emphasized empathy‑driven narratives, encouraging users to act not
only for personal safety but also for community resilience.

By embedding these persuasive elements, FPAS serves not merely as a technical prediction tool but also as a
behavioral intervention mechanism, bridging the gap between technological accuracy and human action.

5.2. Blockchain to be Used to Harness Flood Prediction and Advisory System
Blockchain technology, widely recognized as the backbone of cryptocurrencies, has demonstrated transforma‑

tive potential across diverse domains, including healthcare, governance, and disaster management. In this study,
blockchain was employed not for financial transactions but as a secure, transparent, and tamper‑proof framework
for managing flood prediction data. Its integration within the proposed Flood Prediction and Advisory System
(FPAS) addressed critical concerns of trust, transparency, and data integrity—challenges often associated with
predictive analytics in disaster contexts. The immutable ledger of blockchain ensures that predictive flood data
remains resistant to unauthorized modifications, thereby reinforcing accuracy and credibility. Its decentralized ar‑
chitecture facilitates secure data sharing across stakeholders such as the Nigerian Meteorological Agency (NiMet),
State EmergencyManagement Agency (SEMA), and the National EmergencyManagement Agency (NEMA), promot‑
ing inter‑agency collaboration and coordinated response strategies. Moreover, blockchain provides a transparent
audit trail, allowing stakeholders to verify data provenance and instilling confidence in the reliability of forecasts.

Beyond securing data, blockchain was combined with persuasive system design to influence protective behav‑
iors among at‑risk populations. For instance, alerts and reminders, delivered through the FPAS interface, encour‑
aged timely evacuation and relocation to safer areas during predicted flood events. This dual integration—data
security through blockchain and behavioral influence via persuasion—enhanced both the technical robustness and
social impact of the system. For implementation, Ethereum‑based decentralized applications were deployed using
MetaMask and Sepolia ETH test networks (see Figures 10 and 11). These tools enabled secure user interaction
with the blockchain environment, ensuring accessibility while maintaining cryptographic integrity. Ultimately, the
adoption of blockchain within FPAS underscores its potential to revolutionize disaster management systems by
combining secure data management with community‑centered engagement. Furthermore, the framework can be
extended to other natural hazards, including hurricanes and earthquakes, thereby enhancing broader disaster pre‑
paredness and resilience.
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Figure 10. Connecting the Metamask Wallet Extension for the Web Browser.

To operationalize the blockchain component of the FloodPrediction andAdvisory System (FPAS),we employed
Ethereum‑compatible tools that provide a secure and practical environment for testing and deployment. MetaMask,
awidely adopted cryptocurrencywallet andbrowser extension (e.g., forGoogleChromeandFirefox), was integrated
as the user interface for interacting with the Ethereum blockchain. MetaMask enables the storage, transfer, and re‑
ceipt of Ethereum‑based tokens while providing seamless connectivity to decentralized applications (dApps). For
system testing and validation, the Sepolia test networkwas utilized. Sepolia is one of Ethereum’s dedicated testnets
designed for evaluating smart contracts, decentralized applications, and related blockchain solutions in a controlled
environment prior tomainnet deployment. This environment allowed us to simulate real‑world blockchain interac‑
tions without incurring financial costs or risking main network disruptions. By deploying FPAS within the Sepolia
ecosystem, we were able to assess the system’s blockchain‑enabled features—such as transaction recording, trans‑
parency, and immutability—under conditions that closely approximate live operation. This approach provided a
robust foundation for verifying system functionalitywhile ensuring scalability and readiness for potentialmigration
to the Ethereummainnet.

Figure 11. Attesting Our Device to Claim Sepolia ETH.

When the six parameters are imputed into their respective fields, they should be saved in the Blockchain (see
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Figure 12), and a notification attesting to a successful storage will be displayed (see Figure 13). At times, the
notification may be negative, as could be seen in Figure 14.

Figure 12. Save Flood Data on the Blockchain.

Figure 13. Flood Data Stored Successfully in the Blockchain.

Figure 14. Failed to Save the Flood Date in the Blockchain.
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The decision to store data on a blockchain is influenced by a variety of technical and operational constraints,
many of which were observed during the deployment of FPAS (see Figure 14). These factors highlight the inherent
trade‑offs between decentralization, scalability, and reliability:

a. NetworkCongestion: Periodsofhigh transactionvolumeor intensiveuseofdecentralizedapplications (dApps)
can result in network congestion. This leads to slower transaction confirmation times and higher transaction
fees. Storing additional data under such conditions exacerbates congestion, reducing efficiency and delaying
system responsiveness.

b. Scalability Limitations: Blockchains impose constraints on block size and block generation rates. Excessive
data storage risks overwhelming these limits, thereby degrading throughput and overall system performance.

c. BandwidthConstraints: Transactionanddataprocessingwithinblockchainnetworks are inherentlybounded
by available network bandwidth. When capacity is saturated, attempts to store additional data may result in
transaction rejection or significant delays.

d. Forks and Chain Reorganizations: Events such as network forks or reorganizations can compromise data
integrity. Forks may render data valid on one chain but inaccessible on another, while reorganizations can
temporarily alter blockchain history, affecting stored records.

e. Node Availability: The reliability of data storage in decentralized networks is contingent on node participa‑
tion. Large‑scale node failures or connectivity issues hinder the validation and propagation of transactions,
thereby disrupting data persistence.

f. Sybil Attacks: Adversaries may launch Sybil attacks by creating numerous pseudonymous nodes to gain dis‑
proportionate influence over network resources. Such attacks can disrupt transaction validation and compro‑
mise the reliability of on‑chain storage.

g. Distributed Denial of Service (DDoS) Attacks: High‑volume, malicious traffic directed at network nodes can
degrade service quality or cause downtime. Under such conditions, data storage and transaction throughput
are severely hindered.

Collectively, these factors underscore the necessity of carefully balancing on‑chain and off‑chain storage strate‑
gies in disastermanagement applications such as FPAS. Hybrid storagemodels—where criticalmetadata is secured
on‑chain and bulk data is maintained off‑chain—represent a pragmatic pathway for achieving both data integrity
and system scalability.

The blockchain component of FPAS was designed to ensure data integrity, traceability, and tamper‑resistant
recordkeeping in thedisseminationof floodwarnings andpredictive analytics. Toachieve this, a hybridon‑chain/off‑
chain storage model was implemented using Ethereum (Sepolia test network) integrated with MetaMask for trans‑
action signing and identity management (Table 4). This design ensures that sensitive data (e.g., meteorological
records, geolocation data, and user identities) remain secure while maintaining public verifiability of key model
outputs and audit trails.

Table 4. Hybrid Storage Architecture.

Data Type Storage Medium Reason

Transaction logs (alert IDs, timestamps, model hash) On‑chain (Ethereum Sepolia) Immutable audit trail; public verification of issued alerts
Model metadata (version, hash digest, model owner) On‑chain Enables trust and traceability of ML model updates
Full meteorological datasets (NiMet data, historical
rainfall records) Off‑chain (IPFS / cloud server) Large file size and high update frequency make on‑chain

storage impractical.
User profiles and survey data Off‑chain (encrypted SQL backend) Privacy protection and NDPR compliance
Advisory message status (sent/read) Off‑chain Fast access and lower latency for real‑time alerts
Hash references of off‑chain data On‑chain Ensures off‑chain data integrity via hash comparison

The advisory system retrieves the corresponding verified record and distributes it to end‑users through the
FPAS dashboard and SMS gateway. This architecture ensures every public flood alert has a verifiable blockchain
signature, eliminating forgery or tampering.

Gas and Latency Considerations
Performance evaluation on the Sepolia Testnet was conducted to estimate transaction efficiency (Table 5).
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Table 5. Gas and Latency Parameters.

Parameter Average Value

Gas used per transaction ~42,000 units
Gas price 1.25 Gwei
Average confirmation latency 8.5 seconds
Average cost (test ETH) ≈ 0.000052 ETH/txn

Given that only hashes and metadata are stored on‑chain, the system maintains minimal gas consumption
and avoids the latency overhead of bulk data transmission. This makes the approach cost‑effective and scalable
for eventual deployment on a production blockchain such as Polygon PoS or Ethereum Layer‑2 rollups. Off‑chain
data are encrypted using AES‑256, with key management handled via MetaMask key vault. This ensures that the
blockchain ledger remains transparent but privacy‑safe, suitable for public audit without revealing user data.

5.3. Analysis of the Survey
To complement the technical evaluation of FPAS, a field survey was conducted in two flood‑prone regions of

Nigeria: Isobo Otaka and Isobo Bikobiko in Obubra Local Government Area (LGA), Cross River State (CRS), and se‑
lected communities in Kogi State (KOS). A total of 200 questionnaires were distributed in CRS, of which 192 were
retrieved between Friday, 3 November 2023, and Monday, 6 November 2023. In KOS, the survey was administered
from Tuesday, 14 November 2023 to Thursday, 14 December 2023, yielding 194 valid responses. The survey in‑
strument was designed around the theme: “Design and Implementation of Flood Prediction and Advisory System
Using Disruptive Technology with Persuasive Techniques”. Its primary aimwas to capture community perspectives
on system usability, trust, and behavioral response. The sociodemographic characteristics of the respondents are
summarized in Table 6. In CRS, 57.29% of respondents were male and 42.71% female, while in KOS, the propor‑
tions were 64.45% and 35.05%, respectively. With respect to education, the results revealed marked contrasts
between the two states. In CRS, the majority of participants had secondary education (53.13%), followed by pri‑
mary education (29.69%), and a smaller proportion attained postsecondary education (17.19%). By contrast, in
KOS, postsecondary education dominated (83.95%), while secondary (9.79%) and primary (3.09%) levels were
relatively underrepresented. These findings indicate that while both states are highly exposed to flood risk, the ed‑
ucational composition of respondents varied significantly, with KOS exhibiting a more highly educated respondent
base. This distinction is important in interpreting how persuasive techniques and disruptive technologies may be
differently received, understood, and acted upon in diverse community contexts. Descriptive statistics revealed
strong public endorsement, with 91.15% of respondents in Cross River and 69.50% in Kogi expressing support for
FPAS implementation.

Table 6. Social‑Demographic Characteristics of the Study Participants.

Variable Frequency Percent (%)

CRS (N = 192) KOS (N = 194) CRS KOS

Gender

Male 110 126 57.29 64.45
Female 82 68 42.71 35.05

Age Group (Year)

10 – 15 8 3 4.17 1.55
16 – 20 106 25 55.21 12.89
21 – 25 22 44 11.46 22.68
26 – 30 24 29 12.50 14.95

31 & above 32 93 16.67 47.94
Education Qualification

FSLC 8 6 29.69 3.09
SSCE 106 19 53.13 9.79
NCE 22 12 6.25 6.19
B. Sc. 24 94 10.42 45.36

Postgraduate 32 63 0.52 32.4
Source: Field Work, 2023.

Furthermore, inTable7, 69.58%(CRS) and54.12%(KOS)of the respondents declared that theywere informed
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of the impending flood disaster by the government, 4.17% (CRS) and 23.20% (KOS) say friends, and 2.60% (CRS)
and 10.82% (KOS) say relatives while 3.65% (CRS) and 11.86% (KOS) say others. In Table 8, 91.15% (CRS) and
69.50% (KOS) of the target users opined that the FPAS systemwithmodern technology should be embedded into it.
Finally, when the respondents were asked about the persuasive nature of the messages sent to them, 76.56% (CRS)
and 22.16% (KOS) declared that thewarningmessageswere not persuasive, while 18.23% (CRS) and 43.81% (KOS)
said they were (see Table 9).

Table 7. Response to Being Warned of Impending Flood Disaster in CRS and KOS.

Question Response Category CRS (N = 192) KOS (N = 194)

Howmany times have you been warned of an impending flood disaster?
None 2 (1.04%) 18 (9.28%)
Ones 12 (6.25%) 21 (10.82%)
Always 2 (1.04%) 90 (46.39%)

Not Often 176 (91.67%) 66 (34.02%)

Who warned you?
Government 172 (69.58%) 105 (54.12%)
Friends 8 (4.17%) 45 (23.20%)
Relatives 5 (2.60%) 21 (10.82%)
Others 7 (3.65%) 23 (11.86%)

Table 8. Response to the Opinion of Target users concerning Flood Prediction and Advisory System using Modern
Technology.

Question Response Category CRS (N = 192) KOS (N = 194)

Did you think a flood prediction and advisory system using modern
technology is necessary?

Yes 175 (91.15%) 135 (69.50%)
No 2 (1.04%) 23 (11.86%)

Not very Necessary 9 (4.69%) 9 (4.64%)
Somehow Necessary 6 (3.13%) 27 (13%)

Source: Field Work, 2023.

Table 9. Response on whether the means through which the Warning is given is Persuasive.

Question Response Category CRS (N = 192) KOS (N = 194)

Is the means through which the warning is given persuasive?
Yes 35 (18.23%) 85 (43.81%)
No 142 (76.56%) 43 (22.16%)

Sometimes 10 (5.21%) 66 (34.02%)
Source: Field Work, 2023.

5.4. The FPAS System Sends Its Predictions Directly to Government Agencies and to the Public
In order to minimize delay, the FPAS system prediction alert will be sent to the government, stakeholders, as

well as the population at risk, since the government alone cannot be relied upon because sometimes they delay
in disseminating the information urgently, putting the lives and properties at risk. In other words, there could be
delays in getting that information to thepeoplewhoneed itmost. Thus, having the FPAS systemprovide information
directly to the public, in addition to the government, could be really valuable. We incorporated in our system a
public‑facingwebsite and app that people could use to get up‑to‑date flood predictions and emergency information.

5.5. The Potential Benefits of Harnessing Disruptive Technologies for Flood Prediction and Advi‑
sory
The potential benefits of harnessing disruptive technologies for flood prediction and advisory include:

a. Machine learning and big data can analyzemassive amounts of data from a variety of sources, such asweather
stations, satellite imagery, and social media, to improve the accuracy of flood predictions.

b. By using real‑time data from sensors and other sources, disruptive technologies can provide faster floodwarn‑
ings (i.e., faster response time) and more accurate evacuation plans.

By analyzing the NiMet dataset, disruptive technologies can provide more customized information and advice
to help people prepare for and respond to flooding, thus personalizing information.

131



Digital Technologies Research and Applications | Volume 04 | Issue 03

5.6. Threats to Validity and Study Limitations
The dataset used in this study was sourced exclusively from the Nigeria Meteorological Agency (NiMet), cover‑

ing 35 years of historical data (1988–2023) across selected meteorological stations in Cross River and Kogi States.
Although these regions exhibit diverse climatic conditions and hydrological behaviors, the predictive models may
not generalize directly to other ecological zones or countries without further calibration. Differences in Topogra‑
phy, Land‑use patterns, Drainage infrastructure, and Local reporting standards can significantly influence flood
patterns. Hence, applying the trained model to new regions requires transfer learning or domain adaptation to
preserve accuracy and reliability. To strengthen external validity, future work should include multi‑regional train‑
ing using data from other NiMet zones (e.g., Anambra, Delta, Benue) and international datasets such as NOAA or
ECMWF to broaden climatic representation.

Another potential threat is temporal data drift—the gradual evolution of rainfall patterns, urbanization, and
climate variability that can degrademodel performance over time. Themodels (Random Forest and XGBoost) were
trained on data up to 2023, but post‑deployment conditions (e.g., 2025 onward)may deviate due to: Climate change
altering rainfall intensity and duration, Infrastructure developments changing flood resilience, and Human adapta‑
tion behaviors (e.g., new drainage systems). This temporal drift can lead to prediction decay, where performance
metrics (AUC, F1‑score) decline in future datasets. To mitigate this, a continuous learning framework should be
implemented—periodically retraining the model with recent NiMet observations and validating against new flood‑
ing events.

Flood labeling relied on NiMet event reports and field verification during survey administration. Although ev‑
ery effort was made to validate these records, certain challenges may affect internal validity, such as incomplete
rainfall logs or sensor downtime at specific stations, spatial gaps where flood reports were inferred from neighbor‑
ing stations, inconsistent reporting ofminor or localized flood incidents, aswell as temporalmisalignment between
rainfall intensity and recorded flood onset. Such inconsistencies may introduce label noise, which could artificially
inflatemodel confidence or underrepresent low‑severity events. Futurework should incorporate data quality audit‑
ing, spatiotemporal interpolation, and cross‑verification with remote‑sensing datasets (e.g., NASA GPM or Sentinel‑
1 SAR) to reduce uncertainty. While the blockchain‑based audit layer enhances data transparency and traceability,
it introduces operational challenges during real‑time flood crises.

i. Latency: During high network congestion, Ethereum (Sepolia) confirmation times may increase from 8 sec‑
onds to over 30 seconds, slightly delaying alert immutability logging.

ii. Gas Cost Volatility: Although testnet operation is cost‑free, a mainnet or Layer‑2 deployment would incur
variable gas fees, which may constrain high‑frequency logging under budget restrictions.

iii. Connectivity Dependencies: Rural or flood‑affected areas may experience limited internet access, temporarily
impeding blockchain synchronization. To mitigate this, FPAS employs a local queue buffer to store unsigned
transactions until connectivity resumes.

iv. Privacy Risks: Even though only hash references are stored on‑chain, metadata analysis could theoretically
reveal sensitive temporal or geographic patterns. This is managed via off‑chain encryption andminimalmeta‑
data exposure.

v. Disaster‑Resilient Design: In extreme flood conditions, on‑chain synchronization could temporarily fail; there‑
fore, the system’s design includes redundant off‑chain logging (SQL + IPFS) to ensure continuity until the
blockchain layer reconnects.

The persuasive modeling survey relied on 386 participants across Cross River and Kogi States. Potential limi‑
tations include:

i. Sampling bias: respondents were primarily urban and literate, possibly overrepresenting technology‑ready
populations.

ii. Response bias: social desirability or fear of government monitoring may have influenced answers about trust
and adoption of FPAS.

iii. Temporal relevance: opinions collected during the 2023 rainy season may not reflect attitudes in subsequent
years.

132



Digital Technologies Research and Applications | Volume 04 | Issue 03

iv. To enhance robustness, future studies should implement stratified sampling, anonymous digital surveys, and
yearly follow‑ups to track behavioral change.

While the proposed FPAS architecture demonstrates technical feasibility and strong predictive capability, its
real‑world scalability depends on ongoing data quality assurance, infrastructure resilience, and contextual adapta‑
tion to local climatic and socio‑technical conditions. Recognizing these limitations ensures a realistic understanding
of system performance and provides a structured roadmap for continuous improvement.

6. Conclusions
This study demonstrated the feasibility and practicality of integrating artificial intelligence (AI), blockchain,

and persuasive technologies to develop a reliable and ethically grounded Flood Prediction and Advisory System
(FPAS). By applying machine learning models—Logistic Regression, Random Forest (RF), and XGBoost—on a 35‑
year curated NiMet dataset, the study achieved robust predictive performance, with RF and XGBoost attaining high
accuracy and well‑calibrated probability estimates (AUC ≈ 0.98). The calibration and Brier score analyses con‑
firmed that the models not only predict accurately but also provide trustworthy probability outputs essential for
operational flood warnings. The hybrid OOADM–CRISP‑DM methodology effectively bridged system design with
data science processes, ensuring methodological transparency and reproducibility. Data preprocessing, feature
engineering, and balanced sampling were systematically implemented to mitigate data leakage and class imbal‑
ance. The inclusion of ethically approved survey protocols across Cross River and Kogi States validated the sys‑
tem’s persuasive communication framework and its social acceptability among target communities. Furthermore,
the blockchain component—designed as a hybrid on‑chain/off‑chain architecture—ensured data immutability, au‑
ditability, and privacy while minimizing latency and gas costs. This guarantees trustworthy dissemination of early
warnings and event logs during flood emergencies. Future work will extend FPAS capabilities to real‑time data
streams, integrate gamified persuasive elements (e.g., rewards, feedback loops, and progress tracking), and per‑
form external validation across multiple ecological zones to enhance generalizability. Ultimately, the convergence
of disruptive technologies with behavioral modeling and ethical design principles establishes a foundation for re‑
silient, community‑centered flood management systems—a crucial step toward sustainable disaster preparedness
in climate‑vulnerable regions like Nigeria.
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