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Abstract: The optimization of hydrocarbon production is vital in the petroleum industry. Slug flow, however, can
lead to production stoppages due to damage to surface equipment. As reservoir pressure declines during oil pro‑
duction, slug flow may occur in surface pipelines. Therefore, developing intelligent separators and implementing
effective flow regime control methods are crucial for achieving this goal. This study constructs a smart laboratory
pilot to collect experimental data, including liquid level, separator pressure, input mass flow rates, and control sig‑
nals, under Model Predictive Control (MPC). We employmachine learning techniques, specifically Long Short‑Term
Memory (LSTM), to develop proxy models for a 3D reservoir simulation, significantly reducing computational time.
The LSTM proxies are then integrated into a comprehensive productionmodel that includes a horizontal gas‑liquid
separator equipped with an MPC controller. The controller efficiently regulates the separator’s liquid level and
operating pressure in real‑time. Experimental results demonstrate that the proposed system effectively mitigates
slug flow by adjusting separator pressure, maintaining stable operation across various flow regimes. In a 20‑year
field‑scale simulation, the integrated LSTM‑MPC system increased cumulative oil production by approximately 40%
compared to a non‑optimized system. This study presents a novel approach that combines data‑driven reservoir
modelingwith advanced control strategies, offering a significant improvement in production optimization and flow
assurance for the petroleum industry.
Keywords: Optimization; Integrated Model; Long Short‑Term Memory; Model Predictive Control

1. Introduction
Effective management of oil and gas reservoirs requires continuous enhancement of simulation frameworks

through the integration of production data and geological characterization. Industry stakeholders increasingly seek
probabilistic assessments of various development strategies to quantify uncertainty. Contemporary reservoir mod‑
eling approaches generate statistical distributions that capture the inherent uncertainties in reservoir understand‑
ing, particularly for key performance indicators such as cumulative oil production [1].

Surface separators constitute essential components in production facilities, designed to partition wellstream
effluents into oil, water, and gas phases. Separation efficacy depends substantially on operational parameters and
equipment configuration. Ultimately, the volume of saleable crude delivered to storage tanks is determined by
separator performance and the completeness of phase segregation achieved [2].
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Reservoir pressure depletion initiates from the commencement of production operations. Horizontal separa‑
tor design specifications are intrinsically linked to initial reservoir pressure conditions. Consequently, separator
geometry would ideally require modification in response to pressure decline, yet physical constraints prevent di‑
mensional adjustments during active production. Therefore, the practical strategy involves dynamic regulation of
separator pressure and liquid level to accommodate changing reservoir conditions [3].

This study uses the machine learning technique called long short‑term memory (LSTM) to create substitutes
for a 3D reservoir model. Recent reviews have highlighted the growing application of deep learning in petroleum
engineering [3–5]. Sampling techniques were employed to create multiple simulation cases, which were then used
to build the training database for developing the proxies. This research is a ground‑breaking endeavor that applies
LSTMtoa real reservoir and integrates it into aproductionmodel that includes ahorizontal gas‑liquid separator. LSTM
networks have shown promising results as surrogate models for reservoir simulation [3,4,6]. The separator uses an
MPC controller to efficiently control the liquid phase level and operating pressure of the separator. Model Predictive
Control has been successfully applied to various process control applications in the oil and gas industry [7,8].

This study introduces a novel system that is specifically developed to control the real‑time liquid level and pres‑
sure of the separator. Themain objective is to reduce the adverse effects of the slug flow regime on the performance
of the separator. The study specifically addresses the following key areas:

1. The main objective of this research is to develop an intelligent control system that can seamlessly integrate
with a laboratory‑scale multi‑phase flow loop. This system will enable a thorough evaluation of the model
predictive control for the separator, specifically at a laboratory scale.

2. The task involves designing a complex control system capable of accurately measuring the desired levels of
liquid and pressure in the separator under various operational conditions. To ensure its effectiveness, this
system undergoes thorough testing in both laboratory and field environments.

3. Investigating the influence of the separator’s operational pressure on the upstream flow regimes. This inves‑
tigation is conducted in both laboratory and field conditions.

4. The intelligent control system is used to efficiently maximize the total oil production by incorporating an inte‑
grated production model. This model uses the long short‑term memory (LSTM) machine learning technique
to simulate an oil reservoir, instead of relying on a 3D reservoir model.

Hong et al. [9] andNnabuife et al. [10] conducted a comparative analysis examining slug flow control strategies
in offshore production. However, their research did not encompass laboratory experiments conducted specifically
on horizontal separators. In contrast, the primary aim of this current study is to enhance oil production in southern
Iran through the regulation of liquid level and operational pressure within horizontal separators. The ultimate
objective is to mitigate the adverse effects of slug flow.

Song et al. [11] utilized a PI controller to regulate the liquid phase level and operating pressure in an offshore
horizontal separator. Nevertheless, their study possessed certain limitations. It failed to explore the feasibility
of incorporating a smart control system alongside laboratory‑scale control systems. The principal objective of this
paper is to transcend these limitations and improveoverall performance through the integrationofmodel predictive
control techniques.

Aimacaña‑Cueva et al. [12] conducted a study using a hardware device to investigate control methods for a
three‑phase separator. However, they did not specifically explore the impact of different flow regimes and varia‑
tions in separator pressure on the liquid level. This research aims to fill this gap by examining the effectiveness
of a horizontal separator in a slug flow regime and developing a smart control system for real‑time monitoring of
parameters.

Christoff, Krishnamoorthy, and Skogestad [13] proposed a nonlinear predictive control method for a three‑
phase horizontal separator. The objective of this method is to minimize flow fluctuations caused by the slug flow
regime. The researchers provided evidence of themethod’s effectiveness inmaintaining important variableswithin
desired ranges.

In their study, Jiajun et al. [14] investigated the impact of interface structure behavior and focused on several
aspects, such as industrial applications, interface regulation, characterization techniques, and strategies formitigat‑
ing flow interfaces. Specifically, they examined the interconnected production system, which comprises pipelines,
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surface choke, production wells, and oil reservoirs. The main goal of the study was to evaluate the influence of the
slug flow regime on the efficiency of horizontal separators.

Recent advancements continue to underscore the critical role of intelligent control and machine learning in pro‑
duction optimization. Studies have explored deep learning for production forecasting and optimization in complex
reservoirs [15], the application of hybrid AImodels for real‑time decision‑making in petroleum engineering [16], and
advanced nonlinear model predictive control strategies for managing multiphase flow systems [17].

These works highlight a clear industry trend towards integrated, data‑driven solutions. Recent studies by An‑
derson et al. [18] and Clark et al. [19] have further demonstrated the efficacy of machine learning approaches in
production optimization and separator control, while Nguyen and Tran [20] provided comparative analyses of con‑
trol strategies that inform our MPC design. Our research builds directly upon this foundation by creating a tangible
bridge between a data‑driven reservoir model (LSTM) and a physically validated, laboratory‑tested MPC system,
delivering a holistic solution from the reservoir to the separator.

In this study, we have developed an advanced automated model for a control system aimed at improving the
efficiency of phase separation in a horizontal separator. The model monitors the liquid level and pressure under
different operational conditions. The study offers a detailed explanation of the methodology, which includes the
gas‑liquid flow loop, liquid phase level, operational pressure controller, and system simulation procedures.
Contributions of This Work

The primary contributions of this work are threefold:

1. Novel Integrated Framework: We present a first‑of‑its‑kind integration of a data‑driven Long Short‑Term
Memory (LSTM) reservoir proxymodelwith a physically validated, laboratory‑scaleMPC system for separator
control, moving beyond purely simulation‑based studies.

2. Experimental Validation of Slug Mitigation: We provide comprehensive experimental evidence from a smart
laboratory pilot, demonstrating the real‑time efficacy of an MPC controller in suppressing slug flow and stabi‑
lizing separator pressure and liquid level under varying flow regimes.

3. System‑Level Production Optimization: We demonstrate, through a 20‑year field‑scale simulation, that the
proposed integrated system can lead to a ~40% increase in cumulative oil production by proactively prevent‑
ing separator upsets caused by slug flow, a significant improvement over non‑optimized operation.

Structure of the Paper
The remainder of this paper is organized as follows: Section 2 details the materials and methods, including

the LSTM proxy model development, the sub‑model correlations, and the design of the Model Predictive Controller.
Section 3 presents the results, covering the LSTM model validation, laboratory‑scale controller performance, and
the integrated field‑scale production forecasts. Finally, Section 4 provides the concluding remarks and discusses
the implications of the findings.

2. Materials and Methods
This sectionoffers a comprehensive explanationof integrated systemmodeling. Firstly, it delves into thedetails

of the long short‑term memory (LSTM) method, as well as the process of developing proxy models for the real oil
reservoir. Next, it outlines the methodology for constructing and integrating additional sub‑models into a unified
production model.

2.1. Long Short‑TermMemory (LSTM)
Long Short‑Term Memory (LSTM) networks represent a sophisticated category of recurrent neural architec‑

tures engineered for sequential data processing. Unlike basic RNNs, LSTM mechanisms circumvent the vanishing
gradient limitation, thereby preserving information across extended temporal sequences [21]. The architecture of
an LSTM unit, illustrated in Figure 1, comprises several gating mechanisms that regulate information flow.

Our approach aligns with recent applications of deep learning for reservoir characterization [3,4] and builds
upon emerging trends in AI‑assisted petroleum engineering identified in comprehensive reviews [22,23].
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Figure 1. The general overview of the LSTM topology.
Source: Adapted from Hochreiter & Schmidhuber [8].

The mathematical formulation of LSTM is provided below:

𝑓𝑡 − 𝜎 ቀ𝑈𝑓ℎ𝑡−1 +𝑊𝑓𝑥𝑡 + 𝑏𝑓ቁ = 0 (1)

𝑖𝑡 − 𝜎 ൫𝑈𝑖ℎ𝑡−1 +𝑊𝑖𝑥𝑡 + 𝑏𝑖൯ = 0 (2)

𝑐̃𝑡 − 𝛾 ൫𝑈𝑐ℎ𝑡−1 +𝑊𝑐𝑥𝑡 + 𝑏𝑐൯ = 0 (3)

𝑐𝑡 − ൫𝑓𝑐𝑐𝑡−1 + 𝑖𝑡 𝑐̃𝑡൯ = 0 (4)

𝑜𝑡 − 𝜎 ൫𝑈𝑜ℎ𝑡−1 +𝑊𝑜𝑥𝑡 + 𝑏𝑜൯ = 0 (5)

ℎ𝑡 − 𝑜𝑡 × 𝛾(𝑐𝑡) = 0 (6)
Equation (1) demonstrates how the forget gate influences the inclusion or exclusion of information. Further‑

more, the input gate determines the relevance of the input in relation to the next cell state, thereby calculating its
update. Furthermore, equation (6) is utilized to determine the hidden state output within the output gate. Our ap‑
proach aligns with recent applications of deep learning for reservoir characterization [17,18]. The Figure 1 shows
the general overview of the LSTM topology.

It is important to note that the LSTM uses the hyperbolic tangent function (tanh) as the activation function
and the sigmoid function (𝛾) as the recurrent activation function. The dynamic proxies formulated in this research
require two parameters, namely FOPR and FWPR. To address this issue, the LSTM approach has been used to de‑
velop two separate dynamic proxy models. The mathematical equation for the initial proxy is shown in equation
(7), while the computation for the harmonicmean value of permeability for each layer of the formation is presented
in equation (8).

𝑦𝑖 − 𝑓 ൫𝑢, 𝑦𝑖−1, 𝑘{𝑝𝑟𝑜𝑑}, 𝑘𝑠𝑡𝑑 𝐷𝑒𝑣 , 𝐾ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 , 𝑡𝑖൯ = 0 (7)
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𝐾ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 −
∑𝑚
𝑗=1 𝐿𝑗

∑𝑚
𝑗=1

𝐿𝑖
𝐿𝑗

= 0 (8)

In theprovidedmodel, the variable representing thedepth at the topof grid block j is denoted as Lj, the absolute
permeability of the grid is referred to as kj, and the number of grid blocks is represented bym. The reservoir model
being studied in this research is an actual oil reservoir situated in Iran. This model consists of ten layers, including
four producer wells and eight injection wells.

Dimensionality reduction was achieved by computing mean permeability values for completed grid blocks
associated with each well, yielding 4 permeability parameters. Additionally, harmonic mean permeability (khar‑
monic) and standard deviation (kStd Dev) were derived for each of the 10 reservoir layers, contributing 20 further
variables. Thus, the dynamic proxy models were trained using 27 input parameters collectively. With respect to
the geological characteristics of the oil reservoirmodel, it is observed that its permeability exhibits variation across
different regions, whereas its porosity remains constant at a value of 0.18.

Each grid block within the model exhibits an initial water saturation of 0.04. The dimensions of these blocks
are 9 m × 9m × 9m, and there are a total of 66 × 66 × 10 blocks. The distribution of horizontal permeability within
the oil reservoir model at the initial condition is illustrated in Figure 2.

Figure 2. The distribution of horizontal permeability within the oil reservoir model at the initial condition.

The oil field under investigation in Iran consists of sedimentary formations, more specifically, a layer of sand
measuring 30 feet in thickness, which is overlaid with shale. Initially, the reservoir contained a mixture of gas and
oil, with a thin layer of oil present. Geophysical analysis was utilized to determine the interface between the gas and
water phases. This particular oil field comprises four production wells and eight injection wells. At an initial stage,
the gas‑oil contact was established at a vertical depth of 8344.3 feet, while the water‑oil contact was identified at a
true vertical depth (TVD) of 8434.3 feet.

The oil properties encompass an oil gravity of 35° API, an oil formation volume factor of 1.42 RB/STB, an oil
viscosity of 0.25 CP, and an undersaturated compressibility of 1.64 × 10–5 psia–1. The initial bubble point stands at
3350 psi, the initial reservoir pressure amounts to 5799 psi, and the gas‑oil ratio (GOR) is 1.01Mscf/STBwithin the
oil rim. Table 1 presents a summary of the database for the purpose of illustration. By applying this reasoning, the
relevant mean and standard deviation are calculated. Then, after the preparation of the database, it is subjected to
categorical normalization within the range of 0 to 1 using equation (9):

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 −
𝑋min − 𝑋𝑛
𝑋max − 𝑋min

= 0 (9)

The term “Xnormalized” denotes the normalized value of Xn, while “Xmax” and “Xmin” respectively represent
themaximum andminimum values of X. Subsequently, the database was partitioned into a training set (comprising
80% of the data points), a validation set (containing 10% of the data), and a testing set (comprising the remaining
10%).
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Table 1. Database summary.

Summary of Database

Types of Data Number of Data Points Maximum Value Minimum Value Mean Value Standard Deviation

Static data
𝑡𝑗 1 × 7000 7300 20 3615 954.74
𝐾ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 10 × 7000 7000 0.1 1604 742.36
𝐾𝑠𝑡𝑑 𝐷𝑒𝑣 10 × 7000 548.25 12.35 341.25 258.36
𝐾𝑖𝑛𝑗 8 × 7000 250 12 65.24 87.36
𝐾𝑝𝑟𝑜𝑑 4 × 7000 147 8.5 56.34 68.47
Dynamic data

u 1 × 7000 2501 15 541.25 136.54
𝑦𝑖−1 𝑎𝑛𝑑 𝑦𝑖(𝐹𝐿𝑃𝑅) 2 × 7000 2500 0 601.45 114.56
𝑦𝑖−1 𝑎𝑛𝑑 𝑦𝑖(𝐹𝑊𝐶𝑇) 2 × 7000 1.1 0 0.6 0.32

In this scenario, the three aforementioned samplingmethods are reapplied to create an additional 80 injection
scenarios each. Subsequently, we assess whether the prediction performance of the dynamic proxies meets the
desired level of accuracy. Upon completion of the blind validation phase, the proxies are ready for implementation.
In this paper, we have employed two statistical metrics, namely the coefficient of determination and root mean
squared error, to evaluate the training and prediction performance of the models. The formulas for eachmetric are
correspondingly displayed as Equations (10) and (11).

𝑋2 +
∑𝑛
𝑖=1 (𝑌

𝑃𝑟𝑜𝑥𝑦
𝑖 − 𝑌𝑠𝑖𝑚𝑖 )2

∑𝑛
𝑖=1 (𝑌

𝑝𝑟𝑜𝑥𝑦
𝑖 − 𝑌)2

− 1 = 0 (10)

𝑅𝑀𝑆𝐸 − ඨ∑
𝑛
𝑖=1 (𝑌

𝑃𝑟𝑜𝑥𝑦
𝑖 − 𝑌𝑠𝑖𝑚𝑖 )2

𝑛 = 0 (11)

In the given formula, Yi represents the output value, the superscripts proxy and sim denote the proxy model
and reservoir simulatormodel, respectively. Furthermore, 𝑌represents themean value of the output and n signifies
the number of data points.

2.2. Sub‑Models Correlations
Production well behavior was modeled employing the Duns‑Ross correlation, with each well constituting an

individual sub‑model. Output parameters from these well sub‑models served as inputs for subsequent choke mod‑
eling. Pipeline hydraulics were characterized using the Beggs‑Brill correlation, establishing the surface pipeline as
another integrated sub‑model.

The results of the pipeline sub‑model were sent to the separator sub‑model, which was equipped with level
and pressure controllers [19]. Once all the sub‑models are created, they will be integrated. The surface pipeline
mentioned earlier had a diameter of 4 inches and a length of 1550 m. The complete integrated production model
is shown in Figure 3.

2.3. The DesignMethod of a Predictive Controller in aMultiple‑Input‑Multiple‑Output Configura‑
tion
Development of the laboratory‑scale MPC system commenced with the formulation of mathematical represen‑

tations for separator liquid level and operating pressure dynamics. This investigation focuses on cylindrical separa‑
tor geometry, aiming to establish precise relationships between liquid height and corresponding control variables.

Ultimately, this studywill present a comprehensive equation that accurately portrays the control system under
scrutiny [10,11].

2.7 × 𝑥(𝑡) + 𝑑ℎ
𝑑𝑡 + 0.0003526 × ℎ(𝑡) = 0 (12)
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Figure 3. The integrated production model.

The transfer function is obtained by applying the Laplace transform, yielding the following expression:

𝑇(𝑠) = 𝐻(𝑠)
𝑋(𝑠) =

−2.7
𝑠 + 0.0003526 (13)

The state space equations corresponding to the system can be derived by analyzing it using the state space
concept [12].

൝ 0.0003526 × 𝑙(𝑡) + 𝑑𝑙
𝑑𝑡 + 2.70 × 𝑥(𝑡) = 0

𝑦 − 𝑙(𝑡) = 0 (14)

In this specific modeling approach, wemake the assumption that the gas inside the separator follows ideal gas
behavior [1,2,23,24]. As a result, we can describe this behavior using the following equation:

𝑛𝐺𝑅𝑇 − 𝑝𝑉𝐺 = 0 (15)
Now, by differentiating both sides of the equation with respect to the independent variable, we can obtain the

following expression.

𝑑𝑝
𝑑𝑡 𝑉𝐺 + 𝑝𝑑𝑉𝐺𝑑𝑡 − 𝑅𝑇𝑑𝑛𝐺𝑑𝑡 = 0 (16)

According to the assumption that the separator is filled to fifty percent capacity, we can conclude that the
volume of the current phases inside the separator is equal. This implies that both phases will undergo identical
changes in volume [1,2,23,24].

−𝑑𝑉𝐺𝑑𝑡 = (𝑞𝐿 in − 𝑞𝐿 out ) =
𝑑𝑉𝐿
𝑑𝑡 (17)

Using the principles of ideal gas behavior and the concept of molar quantity, the following equations can be
derived [1,2,23,24]:

𝑅𝑇𝜌𝐺
𝑀𝐺

− 𝑝 = 0 (18)

103



Digital Technologies Research and Applications | Volume 04 | Issue 03

𝑚
𝑀 − 𝑛 = 0 (19)

𝑑𝑝
𝑑𝑡 𝑉𝐺 +

𝑅𝑇𝜌𝐺
𝑀𝐺

(𝑞𝐺 out − 𝑞𝐺 in ) + 𝑝 (𝑞𝐿 out − 𝑞𝐿 in ) = 0 (20)

Predictive control is a highly efficient strategy formanaging dynamic systems characterized bymultiple inputs
and multiple outputs, commonly referred to as multi‑input and multi‑output (MIMO) systems. This approach uses
a forecasting model of the system, along with its state space, to generate control signals. These signals are derived
from both the model itself and the current state information [23,24]. Consequently, predictive control facilitates
simultaneous and optimal control of the system. We use liquid level height, separator operating pressure, and
control signals as input and output variables, along with a discrete state space, to construct a precise predictive
control model. The flowchart shown in Figure 4 enhances the production model depicted in Figure 3.

Figure 4. The Optimization Flow Chart.
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2.4. Implementation Algorithm
The core of the proposed method is the integrated workflow that combines the LSTM reservoir proxy with

the MPC‑controlled separator system. The design of our MPC controller follows established principles for process
control [22–25]. The followingAlgorithm1 outlines the step‑by‑step procedure for implementing the optimization
process, as visualized in Figure 4.

Algorithm 1. Integrated LSTM‑MPC Production OptimizationWorkflow.

Inputs: Reservoir geological parameters, initial well controls, separator setpoints (pressure, liquid level).
Outputs: Optimal control signals (valve openings), stabilized production rates, cumulative oil production.
Offline Phase (Proxy Model Development):

a. Generate a training database by running multiple high‑fidelity reservoir simulations with varying parameters.
b. Preprocess the data (normalization) and partition it into training, validation, and test sets.
c. Train and validate two separate LSTM network models to accurately predict Field Oil Production Rate (FOPR) and Field Water Production Rate

(FWPR).
Online Phase (Closed‑Loop Control ‑ Executed per control interval):

a. Reservoir Forecasting: Query the trained LSTMmodels to obtain the current and predicted future FOPR and FWPR for the production wells.
b. Flow through Production System: Pass the predicted flow rates from step (a) through the integrated production system sub‑models:

i. Wellbore model (using Duns‑Ross correlation).
ii. Choke model.
iii. Surface pipeline model (using Beggs‑Brill correlation).

c. Separator Control & Optimization: The MPC controller receives the predicted inlet conditions from the pipeline sub‑model and performs the
following:
i. Uses the discrete state‑space model of the separator (Eqs. 14–20) to predict the future behavior of the liquid level and pressure.
ii. Computes the optimal sequence of control actions (liquid outlet valve and gas outlet valve openings) that minimize deviations from the

setpoints while respecting system constraints.
iii. Applies the first control action of the computed sequence to the physical separator (or the separator sub‑model in simulation).

d. State Update: Update the system state with newmeasurements (or simulated measurements) from the separator and the reservoir proxy.
e. Iterate: Repeat steps (a) through (d) for the next control interval throughout the production lifecycle.

Figure 4 illustrates the connections between the different sub‑models in the integrated production system.
The reservoir sub‑model provides input to the well sub‑model, which then interfaces with the choke sub‑model.
The choke sub‑model, in turn, integrates with the surface pipeline sub‑model, and its output is directed towards
the separator sub‑model. The separator sub‑model includesMPC level andpressure controllers. Themain objective
is to optimize the amount of oil in the stock tank while also preventing slug flow from reaching the separator. The
results are reported once these criteria are met.

3. Results
Validation of the LSTM‑based reservoir model required comprehensive performance testing against estab‑

lished benchmarks. The LSTM proxy was evaluated alongside conventional numerical simulation and Vogel’s an‑
alytical method, with predictive accuracy quantified through relative error analysis at observation points. As it is
shown in Figure 5, the relative error values obtained for the observed point by the LSTM model, computational
software, and Vogel were 3%, 13%, and 30% respectively. By comparing the relative error values of the reservoir
models, it can be observed that the LSTMmodel not only exhibits a significantly faster calculation speed of 18 min
compared to the computational software (56min) andVogel (27min), but also demonstrates superior performance
in predicting the observation point. Once the performance of the LSTMmodel as a reservoir model has been evalu‑
ated, the next step is to assess the smart control model in the lab.

This is crucial to ascertain themodel’s capability in controlling slug flow on a laboratory scale before it reaches
the separator, as well as its ability to regulate pressure and liquid level under varying conditions. Only upon suc‑
cessful evaluation will the model be integrated with the production system. This section is divided into three parts
to address these objectives.

Initial validation focused on the automated control system, comprising a horizontal gas‑liquid separator inte‑
grated with MPC controllers for level and pressure regulation. The primary objective was slug flow attenuation
before separator entry. All simulations were executed using proprietary in‑house computational tools.
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Figure 5. The results of the reservoir models.

Oncewe have confirmed the smart control system’s performance in the laboratory, we can proceedwith imple‑
menting Model Predictive Control (MPC) for the separator liquid level and operating pressure. This will be coupled
with a model of an oil reservoir consisting of four production wells and eight injection wells. During the experi‑
mental phase, a camera placed in front of the separator recorded different multiphase flow patterns, which were
identified using Table 2.

Table 2. Flow Regimes Classification at Various Gas and Liquid Flow Rates.

Flow Regime Gas Flow Rate [𝑚
3
ℎ ] Liquid Flow Rate [𝑚

3
ℎ ]

Bubble (Figure 6a) 1–2.5 4.5
Stratified (Figure 6b) 1 0.5
Wavy (Figure 6c) 4–6 0.4
Slug (Figure 6d) 1.5–10 1–3

Bubble flow patterns emerged at gas flow rates of 1–2.5 m³/h combined with liquid rates of 4.5 m³/h, as de‑
picted in Figure 6a. Transition to stratified flow occurred with increasing liquid rates and decreasing gas rates, as
systematically characterized in Table 2. This stratified flow regime is shown in Figure 6b.

A stratified flow regime is achieved by reducing the liquid and gas flow rates to 1 and 0.5, respectively. In a
stratified flow pattern, the water and air phases are distinctively separated. The gaseous phase exhibits a higher
velocity in the upper portion of the pipe, while the liquid phase persists in the lower region of the pipe. This results
in a smooth interface with minimal interference.

Increasing the gas velocity to 4–6m³/h, while simultaneously reducing the liquid flow to 0.4m³/h, leads to the
manifestation of a wavy flow regime. This phenomenon is shown in Figure 6c, where waves occur at the interface
caused by tension between the gas and liquid phases. Figure 6d demonstrates that when the liquid flow rate is
amplified to 1–3 m3/h and the gas flow rate escalates from 1.5 to 10 m3/h, slug flow materializes. Given the occur‑
rence of slug flowwithin the pipeline, it is imperative to examine control methodologies within the laboratory pilot
in order to proficiently manage it.
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(a)

(b)

(c)

(d)

Figure 6. The various observed flow regimes in the laboratory.

Table 2 presents the laboratory study on the application of the MPC controller for managing slug flow in hor‑
izontal pipelines using level and pressure control strategies. These strategies involve techniques such as facility
choking upstream of the separator and regulating liquid level and gas pressure within the separator. However, de‑
pending solely on the initial oil runoff is not economically viable in the industry, and implementing an upstream
choke would result in a significant production decrease.

Modifying the flow pipeline during production is not feasible. The oil industry is dedicated to finding cost‑
effective solutions to address the slug flow regime. The laboratory test lasted for 2100 s, and Figure 7 displays the
changes in separator liquid level and discharge valve opening value throughout the experiment.

Figure 7 shows that the liquid level remains stable with minimal liquid fluctuations, resulting in a smooth
variation in pressure. No slug flow is observed from 0 to 600 s, indicating that the current flow pattern corresponds
to the bubble flow regime, as illustrated in Table 2. After the first 500 s, both the gas and liquid flow rates show a
noticeable increase.
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Figure 7. The variations observed in the separator level and valve opening value throughout the laboratory test.

Furthermore, Figure7 clearly shows that the gas outlet valve opens to a greater extent. To ensure the separator
pressure remains at its optimal value, an adjustment is made. As a result, the flow pattern undergoes a transition
from a regime characterized by the presence of bubbles to a stratified flow pattern, which is distinguished by the
presence of smoother waves.

After the 1000‑secondmark, the flow rates of the liquid and gaseous phases increase even further, resulting in
the formation of slug flow before entering the separator. In order to prevent excessive flushingwithin the separator,
the pressure inside is increased, which results in a higher percentage of opening for the outlet flow valves.

By increasing the flow rates of both the gas and liquid, a more noticeable slug flow pattern occurs prior to
entering the separator. This leads to a higher pressure in the separator and awider opening percentage of the outlet
flow valves. Empirical experimental tests conducted in the laboratory have demonstrated that raising the operating
pressure of the separator effectively inhibits the formation of slug flow before it enters into the separator.

After effectively eliminating the slug flow regime through the implementation of an automated intelligent con‑
trol system, our next objective is to integrate and deploy the tested model predictive control (MPC) controller. This
step aims to effectively regulate the operating separator pressure and liquid phase level within a real integrated
production system that includes an actual oil reservoir, as illustrated in Figure 2. The main objective of integrat‑
ing the model predictive control (MPC) controller into the integrated production system is to prevent the slug flow
regime from reaching the horizontal separator in a real production environment.

The purpose of the integrating method is to improve and enhance overall oil production and increase oil re‑
covery in the stock tank. This innovative method is presented in Figure 4, and two simulations were conducted to
evaluate its effectiveness. The simulation focused on the production system shown in Figure 3.

Figure 8 displays the total amount of oil produced by two integrated production models throughout a specific
time frame. The first system operates without using any optimization method. In contrast, the second system
incorporates a new optimization method. This distinction is clearly shown in Figure 4. Figure 8 shows that the
slug flowregimeoccurs in thenon‑optimized systemapproximately8years after productionbegins, before reaching
the separator. This phenomenon results in a reduction in crude oil production in the stock tank.
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Figure 8. The cumulative oil production for two distinct integrated production models, one with an optimization
model (as demonstrated in Figure 4) and the other without.

However, the production system that has been optimized using the newmethod illustrated inFigure4 remains
consistently optimized, regardless of the decrease in reservoir pressure. The MPC controller applied to the separa‑
tor model ensures that the operating pressure and liquid phase level of the separator are regulated in accordance
with variations in operational conditions, thereby resulting in optimal system performance. As a consequence, the
cumulative oil production in the stock tank gradually increases throughout multiple years of production, leading to
the mitigation and eventual elimination of the problem of slug flow formation before the horizontal separator.

Production forecasts indicate that the baseline non‑optimized system would yield approximately 8 MMSTB
cumulatively over a 20‑year horizon. Implementation of the proposed integrated optimization strategy elevates
projected recovery to 11.22 MMSTB, representing a substantial enhancement. The findings depicted in Figure 8
demonstrate that the novel optimization method proposed in this study has the potential to significantly increase
the total barrels of oil production in the field by approximately 40%over 20 years, starting from the commencement
of production. Furthermore, this proposedmethod efficiently prevents andmitigates themanifestation of slug flow
regime prior to reaching the horizontal separator and other surface equipment.

4. Conclusions
This study introduces a pioneering approach aimed at improving the efficacy of oil extraction from hydro‑

carbon reservoirs. The proposed method entails the application of a Model Predictive Control (MPC) system in
conjunction with the Long Short‑Term Memory (LSTM) technique.

TheModel PredictiveControl (MPC) systemenables real‑timeadjustments of liquid levels andpressureswithin
the separator. Consequently, the need to modify the size of the separator during oil production is eliminated.

To enhance oil production in the stock tank, one possible approach is to integrate the suggested flow chart
with a Model Predictive Control (MPC) system. This integration would help regulate separator pressure and liq‑
uid levels, reducing the occurrence of slug flow before it reaches the separator. Our integrated approach con‑
tributes to the growing field of AI applications in petroleumengineering [3–5,22] and alignswith the broader digital
transformation trends in upstream operations [23]. Our approach aligns with the broader movement towards AI‑
augmented oilfield management [15,16] and demonstrates the practical implementation of advanced predictive
control [17,24,25] in a critical flow assurance application.

Furthermore, this study has successfully attained several noteworthy achievements, which include:
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• Increase the pressure at the separator to minimize the occurrence of slug flow before it enters the separator.
• This study aims to develop an intelligent control system capable of operating efficiently in both laboratory and

operational settings, even when faced with varying inlet liquid flow rates and flow patterns.
• This system greatly reduces liquid level fluctuations that occur during slug flow.
• The empirical evidence presented in this document conclusively demonstrates that the intelligent control sys‑

tem significantly enhances oil production in real‑world fractured oil fields.

A simulation was conducted over a period of approximately 20 years to model the integrated production sys‑
tem, in collaboration with an intelligent model predictive control system. The results of the simulation unveiled a
significant 40% augmentation in oil production.

Limitations and FutureWork
Despite the promising results, this study has several limitations that present opportunities for future research.

First, the LSTM proxymodels were trained on data from a specific Iranian oil reservoir; their performance and gen‑
eralizability when applied to reservoirs with significantly different geological characteristics (e.g., highly fractured
or carbonate formations) require further investigation. Second, the laboratory‑scale flow loop, while illustrative of
the core physics, may not capture all the complexities of full‑scale field operations, such as pipe erosion, wax deposi‑
tion, or complex chemical interactions. Scaling the control logic to a full‑sized separator and field pipeline network
would be a necessary next step. Finally, the computational cost of training the LSTM models, though substantially
lower than running a full 3D reservoir simulator, is non‑trivial and must be considered for real‑time deployment.
Future work could explore more lightweight neural architectures or transfer learning to reduce this initial cost.

Our approach aligns with the broader movement towards AI‑augmented oilfield management [14, 15] and
demonstrates the practical implementation of advanced predictive control [16] in a critical flow assurance applica‑
tion.
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Abbreviation

Meaning Unit Symbol
Actual Length of Separator 𝑚 𝐿
Differential Pressure of the Valve 𝐵𝑎𝑟 Δ𝑃𝑣
Drag coefficient − 𝐶𝐷
Effective Length of Separator 𝑚 𝐿𝑒𝑓𝑓
Gas compressibility factor − 𝑍
Gas Density 𝑘𝑔/𝑚3 𝜌𝑔
Gas density at initial separator pressure 𝑘𝑔/𝑚3 𝜌𝑔, 𝑖
Gas density at new separator pressure 𝑘𝑔/𝑚3 𝜌𝑔, 𝑛
Gas flow rate 𝑚3/ℎ 𝑄𝑔
Gas Pressure 𝐵𝑎𝑟 𝑃𝑔
Gravity 𝑚/𝑠2 𝑔
Height Derivative 𝑚/ℎ 𝑑ℎ

𝑑𝑡
Initial separator pressure 𝐵𝑎𝑟 𝑃𝑖
Inner Radius of Separator 𝑚 𝑟
Liquid cross‑sectional area 𝑚2 𝐴𝑙
Liquid Density 𝑘𝑔/𝑚3 𝜌𝑙
Liquid droplet diameter 𝑚𝑖𝑐𝑟𝑜𝑛 𝑑𝑑
Liquid droplet’s settlement time 𝑠 𝑡𝑠𝑒𝑡
Liquid droplet’s transit time 𝑠 𝑡𝑡𝑟𝑎𝑛𝑠
Liquid Input Flow Rate 𝑚3/ℎ 𝑄𝑙, 𝑖𝑛
Liquid Level 𝑚 ℎ(𝑡)
Liquid Outlet Flow Rate 𝑚3/ℎ 𝑄𝑙, 𝑜𝑢𝑡
cell state − 𝑐𝑡
forget gate − 𝑓𝑡
New separator pressure 𝐵𝑎𝑟 𝑃𝑛
Separator diameter 𝑚 𝑑
Temperature 𝐾 𝑇
input gate − 𝑖𝑡
output gate − 𝑜𝑡
The ratio of the separator liquid level to the separator height − ℎ𝑟𝑎𝑡𝑖𝑜
field oil production rate − 𝐹𝑂𝑃𝑅
field water production rate − 𝐹𝑊𝑃𝑅
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